• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 208
  • 179
  • 53
  • 27
  • 20
  • 12
  • 8
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 945
  • 945
  • 417
  • 235
  • 189
  • 155
  • 155
  • 149
  • 140
  • 124
  • 122
  • 110
  • 87
  • 83
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Contribuições em controle otimo distribuido via formalismo de Dubovitskii e Milyutin : aspectos teoricos, numericos e aplicados

Aguiar, Rogerio de 01 August 2018 (has links)
Orientador : Marko Antonio Rojas Medar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-01T02:40:51Z (GMT). No. of bitstreams: 1 Aguiar_Rogeriode_D.pdf: 1168503 bytes, checksum: 21b80e1a1039e6b6b4e9304baab2aace (MD5) Previous issue date: 2002 / Doutorado / Doutor em Matemática Aplicada
222

As equações de movimento de fluidos viscosos incompressiveis com fenomenos de difusão

Damázio, Pedro Danizete 03 August 2018 (has links)
Orientador : Marko Antonio Rojas Medar / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T08:41:20Z (GMT). No. of bitstreams: 1 Damazio_PedroDanizete_D.pdf: 627337 bytes, checksum: 5c3ae8e81b499413f65fb96b6ae237f2 (MD5) Previous issue date: 2003 / Doutorado / Doutor em Matemática Aplicada
223

Os problemas de Leray e de Ladyzhenskaya-Solonnikov para fluidos micropolares

Silva, Fabio Vitoriano e 03 August 2018 (has links)
Orientador: Marcelo Martins dos Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T20:15:24Z (GMT). No. of bitstreams: 1 Silva_FabioVitorianoe_D.pdf: 460464 bytes, checksum: 9ba38131cae55adab96b0936f213c963 (MD5) Previous issue date: 2004 / Doutorado / Doutor em Matemática
224

Soluções auto-similares e comportamento assintótico para as equações de Navier-Stokes

Fernandes de Almeida, Marcelo 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T18:28:31Z (GMT). No. of bitstreams: 2 arquivo4372_1.pdf: 748754 bytes, checksum: c05f5b79ac8b05ea5d173829ba28519b (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta dissertação estudaremos as equações de Navier-Stokes em Rm, assumindo que o fluido é incompressível e homogêneo. Analisaremos o problema de Cauchy associado em espaços de Marcinkiewicz com índices escolhidos de forma a permitir a existência de soluções auto-similares. Estudaremos também o comportamento assintótico das soluções, mostrando que as soluções auto-similares atraem as soluções que são iniciadas em pequenas perturbações de funções homogêneas. Além disso, abordaremos o problema de Cauchy nos espaços de Lebesgue L p, e assumindo mais regularidade na condição inicial, demonstraremos algumas estimativas de decaimento para as soluções. O conteúdo desta dissertação encontra-se nas seguintes referências [2, 3, 6, 11, 13, 17]
225

Convecção natural em uma cavidade aberta para um canal

Franco, Admilson Teixeira 07 August 1999 (has links)
Orientador: Marcelo Moreira Ganzarolli / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-07-25T02:18:21Z (GMT). No. of bitstreams: 1 Franco_AdmilsonTeixeira_D.pdf: 2688564 bytes, checksum: f202fe5c772924ee18201d9e7a10fc21 (MD5) Previous issue date: 1999 / Resumo: Neste trabalho estuda-se a influência de uma parede formando um canal vertical quando é posicionada frontalmente a uma cavidade aberta. São consideradas duas condições de contorno para a parede posicionada em frente à cavidade: parede isotérmica à temperatura ambiente e parede adiabática. As paredes horizontais da cavidade aberta são adiabáticas e a parede vertical é mantida aquecida. A razão de aspecto da cavidade aberta, B = L/H, assume os valores 0,5, 1,0, 3,0 e 6,0, onde L é a largura e H a altura da cavidade. A faixa do número de Rayleigh estudada é de 103 a 107 e o número de Prandtl foi fixado como 1,0. É feita a análise da influência da razão de aspecto da cavidade e das condições de contorno da parede frontal sobre o valor do número de Nusselt médio, bem como o padrão de escoamento atingido em regime permanente. Para a solução numérica do problema, é empregado o método dos Volumes Finitos para a discretização espacial e o método SOLA para a discretização temporal. O esquema Power-Law é usado na aproximação dos termos convectivos e difusivos. Verifica-se que existem duas regiões distintas no domínio Ra x b/H, onde b/H é a distância adimensional entre as paredes do canal vertical: o escoamento no canal e o escoamento na cavidade. Quando o escoamento no canal está presente, o efeito da condição de contorno da parede frontal sobre o valor do número de Nusselt médio é pequeno. Para o caso do escoamento restrito à cavidade, a condição de contorno da parede frontal passa a ser importante. O aumento da razão de aspecto B para um mesmo número de Rayleigh, sendo Rayleigh < 104, faz com que a convecção se torne cada vez menos importante, assim como a aproximação da parede junto à entrada da cavidade. O método de análise de escala, quando possível, é utilizado na tentativa de melhor explicar os resultados / Abstract: In this work the problem of natural convection in a rectangular open cavity with and without the presence of a shrouding wall has been analysed. One vertical wall is heated and the horizontal walls are adiabatic. The other vertical wall is open to the ambient or a fluid reservoir. That is the opening. A shrouding wall is placed in front of this open wall forming a vertical open channel. Two different boundary conditions are analysed for the shrouding wall: isothermal or adiabatic. The aspect ratio effect B = L/H of the open cavity has been defined such as 0.5, 1.0, 3.0 e 6.0, where L is the width and H is the cavity height. The Rayleigh number ranged from 103 to 107 and the Prandtl number was mantained at 1.0. The influence of the aspect ratio of the cavity and the boundary conditions of the shrouding wall on the Nusselt number is analysed, and the flow pattern under steady state conditions is determined. The numerical solution of the Navier-Stokes equations have been obtained using the Finite Volume Method for the spatial discretization, and the SOLA method for the time discretization. The Power-Law scheme was used to obtain the convective and diffusive terms of the Navier-Stokes and Energy equations. There are two distincts regions in the Ra x b/H domain, where b/H is the dimensionless distance between the vertical walls of the channel: the channel flow and the cavity flow. When the flow is present in the channel, the effect of the boundary condition on the shrouding wall on the average Nusselt number is small. For the flow restricted into the cavity, the boundary condition on the shrouding wall becomes important. When the aspect ratio B increases and the Rayleigh number is little than 104, the convection becomes less important. The same occurs when the shrouding wall is too close from the opening. The scale analysis method is used to clarify the results when possible / Doutorado / Doutor em Engenharia Mecânica
226

Some problems in low Reynolds' number flow

Evans, G. A. January 1969 (has links)
No description available.
227

Stabilité linéaire et non linéaire des schémas de Boltzmann sur réseau simulant des écoulements visqueux compressibles / Linear and non linear stability analysis of lattice Boltzmann methods for viscous compressible flows

Cleon, Louis-Marie 26 June 2014 (has links)
L'étude de stabilité des systèmes différentiels issus des équations de Navier-Stokes consiste à analyser la réponse du système linéarisé à une perturbation en onde plane. Elle ne peut pas rendre compte de tous les mécanismes possibles d'instabilité non linéaire. De telles analyses de stabilité non linéaire ont été abordées pour des discrétisations en différences finies de l'équation scalaire non visqueuse de Burgers. Elles sont basées sur l'analyse en ondes résonantes, en considérant un ensemble d'ondes qui forment un groupe fermé pour l'équation discrétisée. Une conclusion importante de ces travaux est que quelques mécanismes non linéaires instables existent qui échappent à l'analyse linéaire, comme le mécanisme de focalisation étudié et expliqué à l'aide des modes de side band, introduits pour amorcer les instabilités. Cette approche d'ondes résonantes est étendue à l'analyse non linéaire de stabilité pour les méthodes LBM (Lattice Boltzmann Method). Nous présentons pour la première fois une équation vectorielle à la place de l' équation scalaire de Burgers, car la méthode LBM considère une fonction de distribution par vitesses discrètes. L'application du principe des ondes résonantes aux équations de Boltzmann sur réseau pour un écoulement monodimensionnel, compressible et isotherme dans un schéma D1Q3 donne des cartes d'instabilité, dans le cas de 1 ou plusieurs modes résonants, très dépendantes des conditions initiales. Le phénomène de focalisation n'a pas été obtenu dans la formulation LBM. Des croissances transitoires dues à la non-normalité des opérateurs peuvent exister. Elles sont calculées par une méthode d'optimisation Lagrangienne utilisant les équations adjointes de LBM. L'application du principe des ondes résonantes est étendue à un modèle 2D. On montre que les instabilités deviennent prépondérantes. / The stability study of differential systems derived from the Navier- Stokes equations consists in analysing the response of the planar linearized system from a disturbance on a flat wave. It cannot account for all possible mechanisms of nonlinear instability. Such non-linear stability analyses were discussed for finite difference of the scalar non-viscous Burger equation. They are based on the analysis in resonant waves, considering a set of waves that form a closed group for the discretized equation. An important conclusion of this work is that some unstable nonlinear mechanisms exist that are beyond the linear analysis, as the focusing mechanism studied and explained using the methods of side band, introduced to initiate instabilities. This approach of resonant waves is extended to non-linear stability analysis for LBM (Lattice Boltzmann Method) methods. We report for the first time a vector equation instead of the scalar Burgers equation, because the LBM method considers a distribution function by discrete speeds. The principle of resonant waves to lattice Boltzmann equations for one-dimensional flow in a compressible and isothermal D1Q3 scheme gives instability maps, in the case of one or more resonant modes , highly dependent upon the initial conditions. The phenomenon of focus has not been obtained in the LBM formulation. Transient growth due to non-normality of operators may exist. They are calculated by a Lagrangian optimization method combined with LBM equations. The principle of resonant waves is extended to a 2D model. We show that the instabilities become dominant.
228

Desenvolvimento de um codigo de calculo utilizando o metodo dos volumes finitos e o modelo de turbulencia K-E para solução de problemas bidimensionais

Carvalho, Claudio Bezerra de 17 February 1993 (has links)
Orientador: Gilmar Mompean Munhoz da Cruz / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-07-18T05:27:31Z (GMT). No. of bitstreams: 1 Carvalho_ClaudioBezerrade_M.pdf: 2637264 bytes, checksum: 36139345836e4a4e02410f6acf03ea5c (MD5) Previous issue date: 1993 / Resumo: Desenvolvimento de um código de cálculo, em FORTRAN 77, para solução das equações de Navier-Stokes, considerando-se fluidos newtonianos e escoamento em regime turbulento. O método dos volumes finitos foi utilizado para a discretização espacial. Os termos convectivos foram discretizados utilizando-se dois esquemas: UPWIND e QUlCK. Para a discretização temporal foi utilizado o método semi-implícito SOLA e o modelo de turbulência empregado foi o modelo a duas equações k-8. Este código foi desenvolvido para a solução de problemas bidimensionais em coordenadas cartesianas e cilíndricas. O código de cálculo foi validado utilizando-se quatro configurações clássicas: -escoamento laminar entre placas planas paralelas; -escoamento laminar em uma cavidade quadrada; -escoamento laminar no interior de dutos de secção circular e -escoamento turbulento no interior de dutos de secção circular / Abstract: A computer code was developed in this thesis, in FORTRAN 77, for the solution of the Navier-Stokes equations, considering newtonian fluids and turbulent flow. The finite volumes method was used for the spatial discretization. The convective terms were discretized using two alternative schemes: UPWIND and QUICK. For the temporal discretization the semi-implicit SOLA method was used. The two equations, k - Emethod, modelled the turbulence terms. This code was developed for the solution of bidimensional problems in cartesian and cylindrical coordinates. The algorithm was validated using four classical configurations: . Laminar flow between parallel plates; . Laminar flow in a square cavity; . Laminar flow in ducts of circular section and . Turbulent flow in ducts of circular section / Mestrado / Mestre em Engenharia Mecânica
229

Structure-Preserving Methods for the Navier-Stokes-Cahn-Hilliard System to Model Immiscible Fluids

Sarmiento, Adel 03 December 2017 (has links)
This work presents a novel method to model immiscible incompressible fluids in a stable manner. Here, the immiscible behavior of the flow is described by the incompressible Navier-Stokes-Cahn-Hilliard model, which is based on a diffuse interface method. We introduce buoyancy effects in the model through the Boussinesq approximation in a consistent manner. A structure-preserving discretization is used to guarantee the linear stability of the discrete problem and to satisfy the incompressibility of the discrete solution at every point in space by construction. For the solution of the model, we developed the Portable Extensible Toolkit for Isogeometric Analysis with Multi-Field discretizations (PetIGA-MF), a high-performance framework that supports structure-preserving spaces. PetIGA-MF is built on top of PetIGA and the Portable Extensible Toolkit for Scientific Computation (PETSc), sharing all their user-friendly, performance, and flexibility features. Herein, we describe the implementation of our model in PetIGA-MF and the details of the numerical solution. With several numerical tests, we verify the convergence, scalability, and validity of our approach. We use highly-resolved numerical simulations to analyze the merging and rising of droplets. From these simulations, we detailed the energy exchanges in the system to evaluate quantitatively the quality of our simulations. The good agreement of our results when compared against theoretical descriptions of the merging, and the small errors found in the energy analysis, allow us to validate our approach. Additionally, we present the development of an unconditionally energy-stable generalized-alpha method for the Swift-Hohenberg model that offers control over the numerical dissipation. A pattern formation example demonstrates the energy-stability and convergence of our method.
230

Selection of quasi-stationary states In the 2D Navier-Stokes equation on the torus

Cooper, Eric 12 November 2019 (has links)
We consider the two-dimensional Navier-Stokes equation on the (possibly) asymmetric torus, D_δ = [0,2𝜋δ] × [0,2𝜋], both with and without stochastic forcing. Absent external force, the vorticity is known to reach a rest state of zero. There exists at least three so called "quasi-stationary states" which attract nearby solutions at rates faster than the global decay rate. The system evolves toward one of these three qualitatively different transient states for long times while the system overall tends toward the final rest state. We develop a finite-dimensional model of the associated deterministic vorticity equation to show how the selection of the dominant quasi-stationary state depends on the aspect ratio of the domain, given by δ. This is followed by formal analysis of the problem as a perturbation from the symmetric domain. Once the selection mechanism for the deterministic model is characterized, stochastic forcing is added to the reduced system. Numerical analysis shows the dominant quasi-stationary state is consistent with what is seen in the deterministic setting. Finally through multiscale averaging methods, the leading order dynamics of the stochastically forced finite-dimensional model for δ close to one is studied. As a result we formally obtain leading order asymptotics of statistics of interest, including the selection mechanism.

Page generated in 0.0557 seconds