• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 34
  • 31
  • 14
  • 11
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 264
  • 72
  • 37
  • 27
  • 26
  • 26
  • 24
  • 22
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

An Acoustic-based Microfluidic Platform for Active Separation and Mixing

Jo, Myeong Chan 01 January 2013 (has links)
Particle separation is of great interest to many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In addition, current gold standard active separation techniques are only capable of separation based on particle size; hence, separation cannot be achieved for same-size particles with different densities. In this dissertation, a sheathless acoustic-based microfluidic platform using surface acoustic wave for not only size-dependent but also density-dependent particle separation has been investigated. In this platform, two different functions were incorporated within a single microfluidic channel with varying the number of pressure node and position. The first function was to align particles on the center of the microfluidic channel without adding any external sheath flow. The second function was to separate particles according to their size or density. Two different size-pairs of polystyrene particles with different diameters (3 µm and 10 µm for general size-resolution, 3 µm and 5 µm for higher size-resolution) were successfully separated. Also, the separation of two 10 µm diameter, different-density particle streams (polystyrene: 1.05 g/cm3, melamine: 1.71 g/cm3) was successfully demonstrated. The effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. A range of high separation efficiencies with 94.8-100 % for size-based separation and 87.2 - 98.9 % for density-based separation were accomplished. In this dissertation, an acoustic-based microfluidic platform using dual acoustic streaming for active mixing has also been investigated. The rapid and high efficiency mixing of a fluorescent dye solution and deionized water in a microfluidic channel was demonstrated with single acoustic excitation by one interdigital transducer (IDT) as well as dual excitation by two IDTs. The mixing efficiencies were investigated as a function of applied voltage and flow rates. The results indicate that with the same operation parameters, the mixing efficiency with dual-IDT design increased to 96.7 % from 69.8 % achievable with the traditional single-IDT design. The effect of aperture length of the IDT on mixing efficiency was also investigated. Additionally, the effects of the polydimethylsiloxane (PDMS) channel wall thickness on the insertion loss and the particle migration to the pressure node due to acoustic radiation forces induced by SAW have been investigated. The results indicate that as the PDMS channel wall thickness decreased, the SAW insertion loss is reduced as well as the velocity of the particle migration due to acoustic forces increased significantly. As an example, reducing the side wall thickness of the PDMS channel from 8 mm to 2 mm in the design results in 31.2 % decrease in the insertion loss at the resonant frequency of 13.3 MHz and 186 % increase the particle migration velocity at the resonant frequency of 13.3 MHz with input power of 27 dBm. Lastly, a novel acoustic-based method of manipulating the particles using phase-shift has been proposed and demonstrated. The location of the pressure node was adjusted simply by modulating the relative phase difference (phase-shift) between two IDTs. As a result, polystyrene particles of 5 µm diameter trapped in the pressure node were manipulated laterally across the microfluidic channel. The lateral displacements of the particles from -72.5 µm to 73.1 µm along the x-direction were accomplished by varying the phase-shift with a range of -180° to 180°. The relationship between the particle displacement and the phase-shift of SAW was obtained experimentally and shown to agree with theoretical prediction of the particle position.
192

Optically interrogated biosensors in microfluidics

Bell, Laurence Livingstone January 2012 (has links)
No description available.
193

Polymer NdFeB Hard Magnetic Scanner for Biomedical Scanning Applications

Pallapa Venkataram, Manu Gopal January 2014 (has links)
Micromirror scanners are the most significant of the micro-optical actuator elements with applications in portable digital displays, automotive head-up displays, barcode scanners, optical switches and scanning optical devices in the health care arena for external scanning diagnostics and in vivo scanning diagnostics. Recent development in microscanning technology has seen a shift from conventional electrostatic actuation to electromagnetic actuation mechanisms with major advantages in the ability to produce large scan angles with low voltages, remote actuation, the absence of the pull-in failure mode and the acceptable electrical safety compared to their electrostatic counterparts. Although attempts have been made to employ silicon substrate based MEMS deposition techniques for magnetic materials, the quality and performance of the magnets are poor compared to commercial magnets. In this project, we have developed novel low-cost single and dual-axis polymer hard magnetic micromirror scanners with large scan angles and low power consumption by employing the hybrid fabrication technique of squeegee coating to combine the flexibility of polydimethylsiloxane (PDMS) and the superior magnetic performance of fine particle isotropic NdFeB micropowders. PCB coils produce the Lorentz force required to actuate the mirror for scanning applications. The problem of high surface roughness, low radius of curvature and the magnetic field interaction between the gimbal frame and the mirror have been solved by a part PDMS-part composite fabrication process. Optimum magnetic, electrical and time dependent parameters have been characterized for the high performance operating conditions of the micromirror scanner. The experimental results have been demonstrated to verify the large scan angle actuation of the micromirror scanners at low power consumption.
194

Auto-assemblage de copolymères à blocs à haute force de ségrégation dans une configuration de film mince

Reboul, Chrystilla 16 December 2013 (has links) (PDF)
Ce manuscrit de thèse porte sur la formation de masques de réseaux denses de nanopiliers ou nanotrous à partir de l'auto-assemblage de copolymères à blocs (CPB) à haute force de ségrégation, pour des applications dans la micro-électronique. Des copolymères à blocs, de type ABA, constitués d'un bloc central de polydiméthylsiloxane (PDMS) et de deux blocs terminaux de polylactide (PLA) ont été synthétisés par polymérisation par ouverture de cycle. Les caractérisations de deux CPB d'intérêt en masse et sous forme de film mince montrent une mesostructure hexagonale sphérique et cylindrique de PLA dans la matrice de PDMS,avec des périodes de 14,3 et 15,5 nm respectivement. Afin de contrôler l'organisation des domaines, les autoassemblages des films minces des deux CPB ont été étudiés en fonction de plusieurs facteurs : paramètres de dépôt et post-traitements (exposition à des vapeurs de solvant et recuit thermique). Dans le cas du réseau hexagonal cylindrique, le contrôle des énergies interfaciales entre le film et le substrat de silicium a été obtenu grâce au greffage d'une couche de copolymères statistique ayant des blocs chimiquement différent des blocs contenus dans le CPB. Par ailleurs, à des fins industrielles, les mesostructures doivent montrer une organisation à grande échelle (plusieurs micromètres) dépourvue de défauts. Dans cette perspective, l'auto-assemblage des CPB a aussi été étudié sur des surfaces à topographie contrôlée (graphoépitaxie) montrant un relief sinusoïdal.
195

Developing Microfluidic Volume Sensors for Cell Sorting and Cell Growth Monitoring

Riordon, Jason A. 28 April 2014 (has links)
Microfluidics has seen an explosion in growth in the past few years, providing researchers with new and exciting lab-on-chip platforms with which to perform a wide variety of biological and biochemical experiments. In this work, a volume quantification tool is developed, demonstrating the ability to measure the volume of individual cells at high resolution and while enabling microfluidic sample manipulations. Care is taken to maximise measurement sensitivity, range and accuracy, though novel use of buoyancy and dynamically tunable microchannels. This first demonstration of a microfluidic tunable volume sensor meant volume sensing over a much wider range, enabling the detection of ̴ 1 µm3 E.coli that would otherwise go undetected. Software was written that enables pressure-driven flow control on the scale of individual cells, which is used to great success in (a) sorting cells based on size measurement and (b) monitoring the growth of cells. While there are a number of macroscopic techniques capable of sorting cells, microscopic lab-on-chip equivalents have only recently started to emerge. In this work, a label-free, volume sensor operating at high resolution is used in conjunction with pressure-driven flow control to actively extract particle/cell subpopulations. Next, a microfluidic growth monitoring device is demonstrated, whereby a cell is flowed back and forth through a volume sensor. The integration of sieve valves allows cell media to be quickly exchanged. The combination of dynamic trapping and rapid media exchange is an important technological contribution to the field, one that opens the door to studies focusing on cell volumetric response to drugs and environmental stimuli. This technology was designed and fabricated in-house using soft lithography techniques readily available in most biotechnology labs. The main thesis body contains four scientific articles that detail this work (Chapters 2-5), all published in peer-reviewed scientific journals. These are preceded by an introductory chapter which provides an overview to the theory underlying this work, in particular the non-intuitive physics at the microscale and the Coulter principle.
196

Développement d'une méthode de préconcentration de phosphopeptides sur phase monolithique en puce

Ayed, Ichraf 27 September 2012 (has links) (PDF)
La phosphorylation de protéines est un régulateur clé de voies de signalisation cellulaire. Elle est impliquée dans la plupart des événements cellulaires et contrôle les processus biologiques tels que la prolifération, la différenciation et l'expression des gènes. Une phosphorylation anormale de protéines peut être observée dans diverses maladies comme certains cancers ou maladies neurodégénératives. Ces protéines constituent donc des biomarqueurs potentiels pour le développement d'outils de diagnostic. Cependant les phosphoprotéines peuvent être présentes à faibles concentrations dans les liquides biologiques et des techniques d'enrichissement sélectif des protéines phosphorylées doivent être développées en amont des analyses. L'une des approches les plus courantes est basée sur la chromatographie d'affinité de type IMAC. Le but de ce travail de thèse était de développer un microsystème contenant un monolithe en tant que support solide d'extraction pour réaliser une préconcentration sélective de phosphopeptides par IMAC. La polymérisation par UV et la caractérisation (perméabilité, porosité et surface spécifique) d'un monolithe à base de phosphate de méthacrylate d'éthylène glycol dans des capillaires de silice ont été d'abord réalisées. Puis, nous avons tenté d'optimiser les différentes étapes de l'IMAC (immobilisation du métal, chargement de l'échantillon, lavage et élution). Une immobilisation efficace de zirconium sur le monolithe phosphaté a été démontrée par des mesures de FEO dans un capillaire et a été par la suite confirmée par la rétention d'un phosphopeptide modèle. Nous avons démontré que le monolithe phosphaté était également un support d'échange de cations vis-à-vis de peptides fortement basiques. Les protocoles de chargement et d'élution ont également été étudiés, mais nécessitent encore d'être améliorés. La transposition de l'enrichissement de phosphopeptides par IMAC sur un système miniaturisé a ensuite été envisagée. Nous avons choisi deux matériaux pour la puce : le PDMS, qui est un polymère attractif pour son faible coût, sa facilité de microfabrication, ses excellentes propriétés en termes de biocompatibilité ainsi que ses nombreuses possibilités d'intégration (enrichissement, séparation, détection) et le verre plus communément employé pour développer des microsystèmes analytiques et possédant une bonne transparence aux UV. Toutefois, le PDMS présente deux inconvénients majeurs: son absorption élevée et sa perméabilité importante à l'oxygène qui inhibe la polymérisation radicalaire. A l'exception de quelques tentatives, ce matériau n'a jamais été employé avec succès comme support pour la polymérisation d'un monolithe. Afin de pouvoir surmonter ces problèmes, nous avons étudié plusieurs stratégies de traitement de surface du PDMS tels que le traitement par plasma d'oxygène ou encore le revêtement au borosilicate. Enfin, nous avons démontré que notre module d'IMAC fonctionnait correctement dans un microsystème en verre. Ce module miniaturisé devrait à l'avenir s'intégrer dans un microsystème d'analyse dédié au diagnostic de la maladie d'Alzheimer.
197

Obtenção e caracterização de revestimentos antimicrobianos de silicone com nanopartículas de prata (PDMS/AgNPs) para uso em embalagens ativas, utensílios e equipamentos via solution blow spraying - SBSp

Ferreira, Thiago Péricles Martins 27 November 2015 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2016-07-28T13:03:24Z No. of bitstreams: 1 arquivototal.pdf: 3687108 bytes, checksum: faed97d764086daceda292cf64938c9c (MD5) / Made available in DSpace on 2016-07-28T13:03:24Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3687108 bytes, checksum: faed97d764086daceda292cf64938c9c (MD5) Previous issue date: 2015-11-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, poly coatings were obtained (dimethyl siloxane) with silver nanoparticles (PDMS / AgNPs), produced by the method of solution blow spraying (SBSp), a technique of adapting Solution Blow Spinning (SBS), with potential for application in packaging and equipment coatings in the food industry. AgNPs synthesized by Turkevich method were deposited on the PDMS film SBSp technique and tested antimicrobial activity against microorganisms S. aureus and E. coli (ATCC). The results of dynamic light scattering (DLS) showed that AgNPs had an average size of 170,5 nm. In addition, these nanoparticles show antimicrobial activity, in accordance with the disk diffusion test, and were considered for nontoxic toxicity tests against Artemia salina. The AgNPs were deposited on the PDMS films at various intervals cure this resin. Scanning electron microscopy (SEM) allowed the observation that the films form uniform coatings with a thickness of 1,62 ± 0,2μm and the particles are evenly distributed over the surface of the film (SEM-EDS) with concentrations varying according to the time and number of depositions of AgNPs. These results were also corroborated by atomic force microscopy (AFM) and atomic emission spectrometry with inductively coupled plasma (ICP / AES). When the application of AgNPs was performed at the end or after the course of ¾ PDMS curing time, there was a greater reduction in cell adhesion and biofilm formation uniespécie for S. aureus and E. coli (ATCC). This reduction has also been improved when multiple applications AgNPs were made. Once all coatings showed antimicrobial activity, their use in food industry can be considered promising. / Neste trabalho, foram obtidos revestimentos de poli(dimetil siloxano) com nanopartículas de prata (PDMS/AgNPs), produzidos pelo método de solution blow spraying (SBSp), uma adaptação da técnica de Solution Blow Spinning (SBS), com potencial para aplicação em embalagens e revestimentos de equipamentos na indústria de alimentos. AgNPs, sintetizadas pelo método de Turkevich, foram depositadas sobre filmes de PDMS pela técnica de SBSp e a atividade antimicrobiana testada contra os micro-organismos S. aureus e E. coli (ATCC). Os resultados de espalhamento dinâmico de luz (DLS) mostraram que as AgNPs tiveram tamanho médio de 170,5 nm. Além disso, essas nanopartículas apresentaram atividade antimicrobiana, de acordo com o teste de disco de difusão, e foram consideradas atóxicas pelo teste de toxicidade frente a Artemia salina. As AgNPs foram depositadas sobre os filmes de PDMS em vários intervalos de cura dessa resina. Análises por microscopia eletrônica de varredura (MEV) permitiram observar que os filmes formam revestimentos uniformes com espessura de 1,62 ± 0,2μm e que as partículas estão uniformemente distribuídas pela superfície do filme (MEV-EDS) com concentrações variando de acordo com o tempo e número de deposições das AgNPs. Estes resultados também foram corroborados por microscopia de força atômica (AFM) e espectrometria de emissão atômica com plasma acoplado indutivamente (ICP/AES). Quando a aplicação das AgNPs foi realizada no final ou após decorrer ¾ do tempo de cura do PDMS, houve uma redução mais significativa na adesão celular e formação de biofilme uniespécie para S. aureus e E. coli (ATCC). Essa redução também foi melhorada quando múltiplas aplicações de AgNPs foram feitas. Uma vez que todos os revestimentos apresentaram atividade antimicrobiana, sua utilização na indústria de alimentos pode ser considerada promissora.
198

Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

January 2014 (has links)
abstract: In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ~100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2014
199

Information Quality Criteria Analysis in Query Reformulation in Dynamic Distributed Environments

SOUZA, Bruno Felipe de França 09 September 2013 (has links)
Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-10T13:03:19Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação Bruno Souza.pdf: 3055649 bytes, checksum: 5cedaf83e4e87135a1f22f1bb7c1dd09 (MD5) / Made available in DSpace on 2015-03-10T13:03:19Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação Bruno Souza.pdf: 3055649 bytes, checksum: 5cedaf83e4e87135a1f22f1bb7c1dd09 (MD5) Previous issue date: 2013-09-09 / FACEPE / Ambientes dinâmicos e distribuídos são sistemas descentralizados que fornecem aos usuários recursos de consultas sobre um conjunto de fontes de dados heterogêneas, distribuídas e autônomas (peers). Sistemas de Integração de Dados, Peer Data Management System (PDMS) e Dataspaces são exemplos de tais sistemas. Eles são constituídos por peers que pertencem a um domínio específico e estão ligados entre si por meio de correspondências semânticas. No entanto, um desafio inerente em ambientes dinâmicos e distribuídos é o processo de reformulação de consulta entre um par de peers. Quando um usuário coloca uma consulta em um peer, a fim de adquirir mais informações, a consulta deve ser reformulada de acordo com o esquema dos peers vizinhos. Neste processo podem surgir alguns problemas como a perda semântica e a degradação da consulta. A perda semântica e degradação da consulta são problemas relacionados à perda de conceitos semânticos durante a reformulação. Por outro lado, em um ambiente semanticamente rico, ao invés de uma perda semântica, a consulta pode ter um enriquecimento semântico por meio da agregação de conceitos semanticamente relacionados durante a reformulação. Neste sentido, a consulta do usuário pode ser enriquecida e resultados semânticos mais ricos podem ser recuperados. Critérios de qualidade da informação têm sido usados em alguns trabalhos para avaliar o nível de qualidade dos elementos de um ambiente dinâmico e distribuído como, por exemplo, peers, dados e a resposta da consulta. Estes critérios são medidas dinâmicas proporcionadas pelo sistema e servem como uma pontuação que pode ser constantemente avaliada para obter o nível real de qualidade. Neste trabalho, apresentamos quatro critérios de qualidade da informação que medem a perda e o ganho de conceitos semânticos durante a reformulação da consulta entre os pares de peers. Nós apresentamos um exemplo da nossa abordagem e os algoritmos de avaliação de critérios. Também damos as nossas definições para os problemas de perda semântica e degradação da consulta. Por fim, apresentamos a experimentação que fizemos com o PDMS SPEED e os resultados obtidos. / Dynamic distributed environments are decentralized systems that provide users with querying capabilities over a set of heterogeneous, distributed and autonomous data sources (peers). Data Integration Systems, Peer Data Management Systems (PDMS) and Dataspaces are examples of such systems. They are composed by peers that belong to a specific domain and are linked to each other by correspondences (semantic connections). Nonetheless, a challenge inherent to dynamic distributed environments is the query reformulation process between a pair of peers. When a user poses a query at a peer, in order to acquire more information, the query should be reformulated in accordance with the neighbor peers schema. In this process some problems as semantic loss and query degradation can arise. The semantic loss and query degradation are problems related to the loss of semantic concepts during query reformulation. In the other hand, in such a semantic environment instead of a semantic loss the query can have a semantic enrichment by aggregating semantic related concepts during reformulation. In this sense, the user’s query can be enriched and semantically richer results can be delivered. Information Quality criteria has been used in some works to evaluate the level of quality of the distributed dynamic environment’s elements such as, peers, data and query answer. These criteria are dynamic measures provided by the system and serve as scores that can be constantly evaluated to get the actual level of quality. In this work we present four Information Quality criteria that measure the loss and enrichment of semantic concepts during query reformulation among peers. We present an example of our analysis and the algorithms that implement the evaluation of the presented criteria. We also give our definitions to the semantic loss and query degradation problems. Finally, we present the experimentation we have done with the SPEED PDMS and the obtained results.
200

Developing Microfluidic Volume Sensors for Cell Sorting and Cell Growth Monitoring

Riordon, Jason A. January 2014 (has links)
Microfluidics has seen an explosion in growth in the past few years, providing researchers with new and exciting lab-on-chip platforms with which to perform a wide variety of biological and biochemical experiments. In this work, a volume quantification tool is developed, demonstrating the ability to measure the volume of individual cells at high resolution and while enabling microfluidic sample manipulations. Care is taken to maximise measurement sensitivity, range and accuracy, though novel use of buoyancy and dynamically tunable microchannels. This first demonstration of a microfluidic tunable volume sensor meant volume sensing over a much wider range, enabling the detection of ̴ 1 µm3 E.coli that would otherwise go undetected. Software was written that enables pressure-driven flow control on the scale of individual cells, which is used to great success in (a) sorting cells based on size measurement and (b) monitoring the growth of cells. While there are a number of macroscopic techniques capable of sorting cells, microscopic lab-on-chip equivalents have only recently started to emerge. In this work, a label-free, volume sensor operating at high resolution is used in conjunction with pressure-driven flow control to actively extract particle/cell subpopulations. Next, a microfluidic growth monitoring device is demonstrated, whereby a cell is flowed back and forth through a volume sensor. The integration of sieve valves allows cell media to be quickly exchanged. The combination of dynamic trapping and rapid media exchange is an important technological contribution to the field, one that opens the door to studies focusing on cell volumetric response to drugs and environmental stimuli. This technology was designed and fabricated in-house using soft lithography techniques readily available in most biotechnology labs. The main thesis body contains four scientific articles that detail this work (Chapters 2-5), all published in peer-reviewed scientific journals. These are preceded by an introductory chapter which provides an overview to the theory underlying this work, in particular the non-intuitive physics at the microscale and the Coulter principle.

Page generated in 0.0639 seconds