Spelling suggestions: "subject:"[een] PHYSICAL OPTICS"" "subject:"[enn] PHYSICAL OPTICS""
41 |
Transverse optical phenomena with Gaussian beams and optical vorticesAMARAL, Anderson Monteiro 29 February 2016 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2017-04-26T16:56:47Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese_Anderson_Amaral.pdf: 6016426 bytes, checksum: d9633b708d004572ce2495387f757089 (MD5) / Made available in DSpace on 2017-04-26T16:56:47Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese_Anderson_Amaral.pdf: 6016426 bytes, checksum: d9633b708d004572ce2495387f757089 (MD5)
Previous issue date: 2016-02-29 / CNPQ / In this thesis are presented various results regarding the transverse structure of light beams in the paraxial propagation regime, with a special concern with singularities in the transverse profile and in nonlinear optics applications. Theoretical and experimental tools were developed for the study of Optical Vortices (OV) and its most important characteristics, as the Orbital Angular Momentum (OAM) and the Topological Charge (TC). In a first step, we theoretically described and experimentally demonstrated that it is possible to shape the intensity profile of a beam containing OV by distributing TC over the plane transverse to the propagation direction [1]. The TC is associated with a phase singularity that implies in points of zero intensity. By distributing the TC on the transverse plane, it is possible to shape the beam dark region and also the OAM profile with the goal of optimizing the light beam for a given application. However, a problem identified in [1] was that most of the current available techniques to characterize OAM light implicitly assume that the beam has cylindrical symmetry, thus being inadequate to characterize fields resulting from more general TC distributions. These problems were approached in a second work [2], where it was shown that by measuring the field transverse amplitude and phase profiles it is possible to measure the OAM and the TC in TC distributions with arbitrary geometries. By combination of the results [1] and [2] it is possible to optimize and characterize the TC distributions for given applications, as for example by designing the transverse forces in an optical tweezer for microparticle manipulation. An important theoretical unfold during these works was the identification of an analogous relation between the field transverse phase in a TC distribution with the Coulomb potential in two-dimensional electrostatics. We then introduced in [3] the Topological Potential (TP) concept which allows the design of structured optical beams with complex spatial profiles inspired by two-dimensional electrostatics analogies. The TP can be used to describe a broad class of TC distributions, as those from [1,2] or the more sophisticate examples in [3]. In another set of results, it is discussed the possibility of using concepts and the formalism of quantum mechanics to solve light propagation problems in the classical approximation. Among the results obtained, it should be remarked that the formalism obtained has a simple and direct relation with ABCD matrices and ray optics [4]. These results were used to understand light propagation in systems containing nonlinear materials, as in SLIM [5] and D4σ [6] techniques. In [5, 6] the theoretical results were compared with experimental data obtained from standard samples, as carbon dissulfide (CS2), acetone and fused silica. It was obtained a very good agreement between the measured optical nonlinearities and the results established in literature for these materials. / Nesta tese são apresentados resultados relacionados com a estrutura transversal de feixes de luz no regime paraxial de propagação, com uma atenção especial em singularidades no perfil transversal e em aplicações para óptica não linear. Foram desenvolvidas ferramentas teóricas e experimentais para o estudo de vórtices ópticos (Optical Vortices - OVs), e suas características mais importantes, como o momento angular orbital (Orbital Angular Momentum - OAM) e a carga topológica (Topological Charge - TC). Inicialmente, foi teoricamente descrito e experimentalmente demonstrado como é possível moldar o perfil de intensidade de um feixe contendo OVs usando uma distribuição de TC sobre o plano transversal à direção de propagação [1]. A TC está associada a uma singularidade na fase, o que implica em um zero de intensidade. Ao se distribuir a TC sobre o plano transversal, é possível moldar o formato da região de intensidade nula e também o perfil de OAM no intuito de otimizar o feixe para uma dada aplicação. No entanto, um problema identificado neste trabalho é que a maior parte das técnicas de caracterização disponíveis para luz com OAM implicitamente supunham que o feixe possui simetria cilíndrica, e portanto não eram adequadas para caracterizar campos obtidos a partir de distribuições de TC com geometrias mais gerais. Tais problemas foram abordados em um segundo trabalho [2], onde foi mostrado que por meio de medições dos perfis transversais de amplitude e fase do campo elétrico é possível medir o OAM e a TC em distribuições de TC com formas geométricas arbitrárias. A união dos trabalhos [1] e [2] permite então que as distribuições de TC possam ser adequadamente otimizadas e caracterizadas para aplicações específicas, como por exemplo ao moldar as forças transversais numa pinça óptica para a manipulação de micropartículas. Um desdobramento teórico importante obtido foi identificar uma relação análoga entre o perfil de fase em uma distribuição de TC com o potencial de Coulomb em eletrostática bidimensional. Foi então introduzido em [3] o conceito de potencial topológico (Topological Potential - TP) que possibilita a construção de feixes ópticos estruturados com perfis espaciais complexos inspirados em analogias com eletrostática bidimensional. O TP pode ser usado na descrição de uma grande variedade de distribuições de TC, como nos feixes em [1, 2] ou nos exemplos mais sofisticados em [3]. Posteriormente, é discutida a possibilidade de se utilizar conceitos e o formalismo da mecânica quântica na solução de problemas de propagação da luz descrita na aproximação clássica. Dentre os resultados obtidos, destaca-se que o formalismo possui uma relação simples e direta com as matrizes ABCD e a óptica de raios [4]. Estes resultados foram utilizados na compreensão da propagação da luz em sistemas contendo materiais não lineares, como nas técnicas SLIM [5] e D4σ[6]. Nos trabalhos [5,6] os resultados teóricos foram comparados com dados experimentais obtidos em amostras padrão, como dissulfeto de carbono (CS2), acetona e sílica fundida. Foi obtida uma concordância muito boa entre os valores medidos para as não linearidades ópticas nestes materiais e os valores estabelecidos na literatura.
|
42 |
Propagation and Control of Broadband Optical and Radio Frequency Signals in Complex EnvironmentsBohao Liu (6407975) 15 May 2019 (has links)
A complex environment causes strong distortion of the field, inhibiting tasks such as imaging and communications in both the optical and radio-frequency (RF) region. In the optical regime, strong modal dispersion in highly multimode fiber (MMF) results in a scrambled output field in both space (intensity speckles) and time (spectral and temporal speckles). Taking advantage of the pulse shaping technique, spatial and temporal focusing has been achieved in this thesis, offering potential opportunities for nonlinear microscopy and imaging or space-division multiplexed optical communication through MMF. In the RF regime, multipath effect in wireless RF channel gives multiple echoes with random delay and amplitude attenuation at the receiver end. Static channel sounding and compensation with ultra-broadband spread spectrum technique resolves the issue by generating a peaking signal at the receiver, significantly improving the signal-to-noise/interference performance. However, the limited communication speed in the static approach makes it challenging for sounding and compensation in a dynamic channel. Here, we achieve real-time channel sounding and compensation for dynamic wireless multipath channel with 40 micro-seconds refresh rate by using a fast processing field programmable gate array (FPGA) unit, providing potential opportunities for mobile communications in indoor, urban, and other complex environments. Furthermore, by combining broadband photonics and RF radar technologies, a high depth and transverse resolution wide bandwidth (15 GHz) W-band (75 - 110 GHz) photonic monopulse-like radar system for remote target sensing is demonstrated, offering prospects for millimeter wave 3-D sensing and imaging.
|
43 |
Classical and Quantum Optimization for Scientific ComputationShree Hari Sureshbabu (16640823) 25 July 2023 (has links)
<p>Optimization and Machine learning (ML) have emerged as two positively disruptive methodologies and have thus resulted in unprecedented applications in several domains of technology. In recent years, ML has forayed into physical sciences and provided promising outcomes thanks to its ability in representing and generalizing complex functions to reveal underlying relations among variables describing a system. By casting ML as an optimization task, we first focus on its application in solving quantum many-body problems. Leveraging the power of quantum computation, we develop hybrid quantum machine learning protocols and implement benchmark tests to calculate the band structures of two-dimensional materials. We also show how this method can be used to estimate the critical point for a quantum phase transition. One hurdle in such techniques is related to parameter optimization, wherein to obtain the desired result, the parameters have to be optimized, which can be computationally intensive. For a particular class of problem and a choice of algorithm, we deduce a simple parameter setting rule. This rule is projected as a heuristic and is validated numerically for several problem instances. Finally, by venturing into thermal photonics, a framework that takes advantage of the spectral and spatial information of hyperspectral thermal images to establish a completely passive machine perception, titled HADAR is presented. A conventional deep neural network is developed that utilizes the governing equation of HADAR and its performance in semantic segmentation is demonstrated. Altogether, this report establishes the need for creative algorithms that exploit modern hardware to solve complex problems that were previously deemed unsolvable.</p>
|
44 |
Design and Analysis of Receiver Systems in Satellite Communications and UAV Navigation RadarMorin, Matthew Robertson 08 July 2014 (has links) (PDF)
The design of a low cost electronically steered array feed (ESAF) is implemented and tested. The ESAF demonstrated satellite tracking capabilities over four degrees. The system was compared to a commercial low-noise block downconverter (LNBF) and was able to receive the signal over a wider angle than the commercial system. Its signal-to-noise ratio (SNR) performance was poor, but a proof of concept for a low cost ESAF used for tracking is demonstrated. Two compact low profile dual circularly polarized (CP) reflector feed antenna designs are also analyzed. One of the designs is a passive antenna dipole array over an electromagnetic band gap (EBG) surface. It demonstrated high isolation between ports for orthogonal polarizations while also achieving quality dual CP performance. Simulations and measurements are shown for this antenna. The other antenna was a microstrip cross antenna. This antenna demonstrated high gain and quality CP but had a large side lobe and low isolation between ports. A global positioning system (GPS) denied multiple input multiple output (MIMO) radar for unmanned aerial vehicles (UAVs) is simulated and tested in a physical optics scattering model. This model is developed and tested by comparing simulated and analytical results. The radar uses channel matrices generated from the MIMO antenna system. The channel matrices are then used to generate correlation matrices. A matrix distance between actively received correlation matrices to stored correlation matrices is used to estimate the position of the UAV. Simulations demonstrate the ability of the radar algorithm to determine its position when flying along a previously mapped path.
|
45 |
Design And Assessment Of Compact Optical Systems Towards Special Effects ImagingChaoulov, Vesselin 01 January 2005 (has links)
A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by SmARTLens(TM). While the art forms created via raytracing were powerful, they did not predict all effects acquired experimentally. Thus, finally, as key contribution of this work, the principles of scalar diffraction theory were applied to optical imaging of extended objects under quasi-monochromatic incoherent illumination in order to provide a path to more accurately model the proposed optical imaging process for special effects obtained in the hardware. The existing theoretical framework was generalized to non-paraxial in- and out-of-focus imaging and results were obtained to verify the generalized framework. In the generalized non-paraxial framework, even the most complex linear systems, without any assumptions for shift invariance, can be modeled and analyzed.
|
46 |
Исследование дифракции плоской электромагнитной волны на теле вращения : магистерская диссертация / Study of electromagnetic plane wave diffraction from a solid of revolutionВекшин, П. А., Vekshin, P. A. January 2015 (has links)
Необходимость в написании программы для расчета рассеянного поля телом вращения возникла в связи с неоднозначностью решения рассеянного поля таких объектов средствами электродинамического моделирования FEKO и Ansoft HFSS. В частности, в HFSS при повороте объекта (конуса) и соответствующем изменении характеристик падающей волны (направления распространения и поляризации) количество сегментов могло меняться более, чем на порядок. Отметим, что в качестве подхода к решению использовался метод физической оптики. Трудности расчета в FEKO вызваны по большей части ресурсами компьютера, а также сложностью последующей трактовки и математической обработки полученных результатов. Программа, описываемая в работе, позволит подойти к решению рассеянного на теле вращения поля более индивидуально и избежать таких неоднозначностей, что могут встречаться при расчетах в пакетах электродинамического моделирования. По результатам рассмотрения ряда задач сделан выбор в пользу метода физической оптики и его численной реализации на базе алгоритмов MATLAB. / The solution of diffraction from perfectly conducting convex solids of revolution is considered. The main aim is obtainment of an optimal approach for diffraction solution from large-scale solids. The implementation of a numerical solution of diffraction with physical optics method using MATLAB is considered. The realized program allows description of the solid of revolution with the analytic form equation of the curve. The possibility of curve description with a few functions defined on disjoint intervals is taken into consideration. The surface meshing with the required value is assured. The measure method of scattering characteristics is touched upon. The experimental results of the solid with three equations of curve are presented. The results of MATLAB modeling are compared with the experimental ones. The upgradability of mathematical modeling algorithms is proposed.
|
47 |
[pt] APLICAÇÃO DE TÉCNICA DE SÍNTESE DE LENTES CIRCULARMENTE SIMÉTRICAS / [en] APPLICATION OF A TECHNIQUE FOR THE SYNTHESIS OF CIRCULARLY SYMMETRIC LENSESRODRIGO SAMICO BALTER 24 January 2024 (has links)
[pt] Este trabalho tem como objetivo aplicar uma técnica de síntese ótica
de lentes dielétricas circularmente simétricas, que são iluminadas por uma
fonte pontual com diagrama circularmente simétrico. A interface da lente
(interface do dielétrico-ar) será modelada utilizando as aproximações da Ótica
Geométrica e da Física Ótica. Da Ótica Geométrica, o controle da densidade
de potência em campo distante é obtido pela aplicação de conservação de
energia no interior dos tubos de raios que emergem do centro de fase da
fonte e a determinação da direção dos raios que emergem da superfície do
dielétrico é obtida através da aplicação da Lei de Snell para os raios incidentes
na interface. Da Física Ótica, é possível obter as correntes elétrica e magnética
na superfície externa da lente para determinar o campo radiado na integração
dessas correntes pela superfície a partir da suposição de que as dimensões da
lente e da curvatura da interface sejam muito maiores que um comprimento de
onda no espaço livre. Devido a simetria circular, simplificações na formulação
e nos esquemas numéricos para a solução serão apresentadas, resultando em
técnica de projeto mais eficientes. A descrição da superfície da interface da
lente é obtida através de técnica numérica. / [en] This work aims to apply a technique of optical synthesis of symmetrically
circular dielectric lenses, which are illuminated by a point source with a
symmetrically circular diagram. The lens interface (dielectric-air interface) will
be modeled using the approximations of Geometric Optics and Physical Optics.
From Geometric Optics, control of the power density in the far field is obtained
by applying energy conservation inside the ray tubes that emerge from the
phase center of the source and the determination of the direction of the rays
emerging from the dielectric surface is obtained through the application of
Snell’s law for the incident rays at the interface. From Physical Optics, it is
possible to obtain the electric and magnetic currents on the external surface
of the lens to determine the radiated field in the integration of these currents
along the surface assuming that the lens dimensions and interface curvature
are much larger than a wavelength in free space. Due to circular symmetry,
simplifications in formulation and numerical schemes for the solution will be
presented, resulting in a more efficient design technique. The description of the
lens interface surface is obtained through numerical technique.
|
48 |
OVERCOMING THE RAYLEIGH LIMIT FOR HIGH-RESOLUTION OPTICAL IMAGING: QUANTUM ANDCLASSICAL METHODSHyunsoo Choi (18989168) 12 July 2024 (has links)
<p><br></p><p dir="ltr">Achieving high optical resolution imaging is one of the most important goals in the history of optics. However, due to finite aperture sizes, a diffraction limit is imposed on optical imaging. Therefore, the Rayleigh limit, which describes the minimum separation at which two point sources are resolvable, has served as a critical limit in optical resolution. Many methods have been studied to break the limit and succeed in resolving nearby sources below the Rayleigh criterion but only beyond a certain distance. Furthermore, it has been demonstrated that quantum-inspired optics techniques maintain consistent variance in estimating the separation of point sources even at low separations, but only with prior information like a known number of sources and equal brightness. Therefore, achieving the ultimate optical resolution remains an open question. This thesis will conclusively address this challenge considering real-world scenarios, i.e., no prior information or controlled lab environment as well as low signal-to-noise ratio (SNR), turbulence, and other practical challenges.</p><p><br></p><p dir="ltr">In information theory, the estimation variance of a random parameter can be quantified using the inverse of Fisher information. By maximizing the Fisher information, one can minimize the variance in estimation. In my thesis, we have shown that the measurement can be accelerated without sacrificing optical resolution using the adaptive mode so that quantum Fisher information per detected photon is maximized. The notable attribute that sets it apart from other quantum-inspired methods is that it does not require any prior information, making it more feasible for practical application. We have further shown that the space domain awareness (SDA) challenge can be effectively handled with the aforementioned approach with a very limited photon budget and even in the presence of turbulence. Toward solving the challenges, we designed a photon statistics-based direct imaging method that can also serve as a baseline method for quantum optics. In my thesis, atmospheric turbulence is also deeply explored and the effect is mitigated using reinforcement learning.</p><p><br></p>
|
49 |
Computation Of Radar Cross Sections Of Complex Targets By Physical Optics With Modified Surface NormalsDurgun, Ahmet Cemal 01 August 2008 (has links) (PDF)
In this study, a computer code is developed in MATLAB® / to compute the Radar Cross Section (RCS) of arbitrary shaped complex targets by using Physical Optics (PO) and Modified PO. To increase the computational efficiency of the code, a novel fast integration procedure for oscillatory integrals, called Levin&rsquo / s integration, is applied to PO integrals.
In order to improve the performance of PO near grazing angles and to model diffraction effects, a method called PO with Modified Surface Normal Vectors is implemented. In this method, new surface normals are defined to model the diffraction mechanism.
Secondary scattering mechanisms like multiple scattering and shadowing algorithms are also included into the code to obtain a complete RCS prediction tool. For this purpose, an iterative version of PO is used to account for multiple scattering effects. Indeed, accounting for multiple scattering effects automatically solves the shadowing problem with a minor modification. Therefore, a special code for shadowing problem is not developed.
In addition to frequency domain solutions of scattering problems, a waveform analysis of scattered fields in time domain is also comprised into this thesis. Instead of direct time domain methods like Time Domain Physical Optics, a Fourier domain approach is preferred to obtain the time domain expressions of the scattered fields.
Frequency and time domain solutions are obtained for some simple shapes and for a complex tank model for differently polarized incident fields. Furthermore, a statistical analysis for the scattered field from the tank model is conducted.
|
50 |
DEVELOPMENT OF IMAGE-BASED DENSITY DIAGNOSTICS WITH BACKGROUND-ORIENTED SCHLIEREN AND APPLICATION TO PLASMA INDUCED FLOWLalit Rajendran (8960978) 07 May 2021 (has links)
<p>There is growing interest in the use of nanosecond surface dielectric barrier discharge (ns-SDBD) actuators for high-speed (supersonic/hypersonic) flow control. A plasma discharge is created using a nanosecond-duration pulse of several kilovolts, and leads to a rapid heat release and a complex three-dimensional flow field. Past work has been limited to qualitative visualizations such as schlieren imaging, and detailed measurements of the induced flow are required to develop a mechanistic model of the actuator performance. </p><p><br></p><p></p><p>Background-Oriented Schlieren (BOS) is a quantitative variant of schlieren imaging and measures density gradients in a flow field by tracking the apparent distortion of a target dot pattern. The distortion is estimated by cross-correlation, and the density gradients can be integrated spatially to obtain the density field. Owing to the simple setup and ease of use, BOS has been applied widely, and is becoming the preferred density measurement technique. However, there are several unaddressed limitations with potential for improvement, especially for application to complex flow fields such as those induced by plasma actuators. </p><p></p><p>This thesis presents a series of developments aimed at improving the various aspects of the BOS measurement chain to provide an overall improvement in the accuracy, precision, spatial resolution and dynamic range. A brief summary of the contributions are: </p><p>1) a synthetic image generation methodology to perform error and uncertainty analysis for PIV/BOS experiments, </p><p>2) an uncertainty quantification methodology to report local, instantaneous, a-posteriori uncertainty bounds on the density field, by propagating displacement uncertainties through the measurement chain,</p><p>3) an improved displacement uncertainty estimation method using a meta-uncertainty framework whereby uncertainties estimated by different methods are combined based on the sensitivities to image perturbations, </p><p>4) the development of a Weighted Least Squares-based density integration methodology to reduce the sensitivity of the density estimation procedure to measurement noise.</p><p>5) a tracking-based processing algorithm to improve the accuracy, precision and spatial resolution of the measurements, </p><p>6) a theoretical model of the measurement process to demonstrate the effect of density gradients on the position uncertainty, and an uncertainty quantification methodology for tracking-based BOS,</p><p>Then the improvements to BOS are applied to perform a detailed characterization of the flow induced by a filamentary surface plasma discharge to develop a reduced-order model for the length and time scales of the induced flow. The measurements show that the induced flow consists of a hot gas kernel filled with vorticity in a vortex ring that expands and cools over time. A reduced-order model is developed to describe the induced flow and applying the model to the experimental data reveals that the vortex ring's properties govern the time scale associated with the kernel dynamics. The model predictions for the actuator-induced flow length and time scales can guide the choice of filament spacing and pulse frequencies for practical multi-pulse ns-SDBD configurations.</p>
|
Page generated in 0.0434 seconds