• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 16
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 77
  • 77
  • 15
  • 14
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Jämförelse av portrycksmätning i Uppsalalera mellan portrycksmätare och dissipationstest

Ahlgren Mattsson, David January 2019 (has links)
Portrycket är en viktig parameter för att bestämma jordens egenskaper, såsom dränering, permeabilitet och stabilitet (då portrycket har en påverkan på den effektiva spänningen i jorden). Portrycket kan mätas med portrycksmätare men det kan även mätas under ett Cone penetrating test (CPT) med ett s.k. dissipationstest. Fördelar med ett dissipationstest jämfört med traditionell portrycksmätning skulle vara att det skulle spara tid och pengar, då man slipper trycka ner portrycksmätare och sedan vänta på att få portrycket ifrån dem, istället kan portrycket mätas under sondering med CPT.Detta självständiga arbete har som syfte att jämföra portrycksmätningar mellan portrycksmätning med BAT-spets och dissipationstest under CPT-sondering för att se hur bra mätvärden dissipationstester ger och om de eventuellt kan ersätta portrycksmätare. Fältförsöken av metoderna skedde i Uppsalalera, på en tomt i Kungsängen i Uppsala.Två stationer med BAT-spetsar på 5 meter, 7,5 meter och 10 meters djup sattes ner i leran. Sondering med CPT genomfördes sedan, där borren stoppades på samma djup som BAT-spetsarna. CPT:n stoppades på dessa djup i drygt 24 timmar, för att tillåta det generade portrycket som skapades när borren trycks ner i leran att skingras åt sidan. Jämviktsportrycket kommer vara det portryck som finns kvar efter att det generade portrycket har försvunnit. Portrycken från de två olika metoderna jämfördes sedan för att se hur nära dissipationstestet kommer värdena från portrycksmätningen med BAT-spetsarna.Resultatet av dissipationstesterna blev att inga av dem nådde referensvärdena från BAT-spetsarna efter 24 timmar. Beroende på användningsklass ligger dissipationstesterna inom den tillåtna minsta noggrannheten. Dissipationstest är antagligen inte så praktiskt tillämpbart i jordar med låg permeabilitet. / The pore pressure is an important parameter for determining the properties of thesoil, such as drainage, permeability and stability (since the pore pressure has aneffect on the effective stress in the soil). The pore pressure can be measured withpore pressure gauges but it can also be measured during a Cone penetration test(CPT) with a dissipation test. Advantages of a dissipation test compared tomeasurement with traditional pore pressure gauges would be that it would save timeand money, since you don’t have to press down pore pressure gauges and then waitto get the pore pressure from them, instead the pore pressure can be measuredduring probing with CPT.The purpose of this project is to compare pore pressure measurements betweenpore pressure measurements with BAT-tips and dissipation test during CPT probing,to see how good measured values the dissipation tests will provide and if theyeventually can supersede pore pressure gauges for pore pressure measurements.The field tests of the methods were done in Uppsala clay, on a site in Kungsängen inUppsala.Two stations with BAT-tips at 5 meters, 7.5 meters and 10 meters depth wereinstalled in the clay. Probing with CPT was then carried out, by stopping the CPT atthe same depth as the BAT-tips. Measurements with the CPT were done at thesedepths for just over 24 hours, to allow the generated excess pore pressure createdwhen the cone is pushed into the clay to disperse to the sides. The equilibrium porepressure is the pore pressure that remains after the generated pore pressure hasdissipated. The pore pressure from the two different methods was then compared tosee how close the dissipation test results were to the values from the pore pressuremeasurements with the BAT tips.The result of the dissipation tests was that none of them reached the referencevalues from the BAT-tips after 24 hours. Depending on the chosen application class,the dissipation tests are within the permitted minimum accuracy. Dissipation tests areprobably not practically applicable to soils with low permeability.
22

Comparing a Low-Volume Piezometer to Traditional Wells in Evaluating Hydraulic Lag Caused by Low-Permeability Sediments

Spencer, John M 02 April 2008 (has links)
Traditionally-constructed wells are commonly used to measure hydraulic head in all saturated systems, even in fine-grained sediments. Previous studies (Hvorslev 1951, Penman 1961) have shown that time lag in response to head changes between traditional wells and the surrounding fine-grained sediments can be a significant source of error. Time lag is caused by the time required for water to flow into or out of the well to reflect the appropriate change in head. A low-volume piezometer was constructed to measure changes in hydraulic head without requiring a change in fluid volume within the piezometer by directly measuring pore pressure in the surrounding sediments. The low-volume piezometer used a commercially-available pressure transducer that is hydraulically connected to the surrounding sediment by a porous-ceramic cylinder. The device is attached to a drive point that allows for quick insertion without creating excessive over-pressure so that equilibrium is achieved rapidly. The low-volume piezometer was inserted near traditionally-constructed wells in 3-4 m thick, saturated clay in west-central Florida. The low-volume piezometer was field tested to compare measured pore pressures with observed levels in traditionally-constructed wells. The comparison highlights any head difference between the two methods, and determines if there is a time lag between the two measurement methods and its magnitude. The low-volume piezometer was installed next to a traditionally-constructed well and heads in both wells were monitored for three months. Results show that the low-volume piezometer can take up to a month to reach equilibrium. Using Hvorslev's equations, traditionally-constructed wells have time lag of roughly 6 orders of magnitude greater than the low-volume piezometer. If this is correct, it could take up to 83,000 years for a traditionally-constructed well to reach equilibrium. However, when a trend analysis is performed on the hydrographs from the low-volume piezometer and the two traditional wells, the correlation coefficients are 0.95 and 0.96. The very strong correlation suggests that the low-volume piezometer and the traditional wells both respond similarly to changes in head. More field data need to be collected, but it appears that contrary to theory, time lag in traditionally-constructed wells may be negligible.
23

Quantifiying The Effectiveness of a Grout Curtain Using a Laboratory-Scale Physical Model

Magoto, Elliot N 01 January 2014 (has links)
In the past decade, the grouting industry has made significant technological advancements in real-time monitoring of flow rate and pressure of pumped grout, stable grout mix design, and with grout curtain concepts dealing with placement and orientation. While these practices have resulted in improved construction practices in the grouting industry, current design guidelines for grout curtains are still predominately based on qualitative measures such as engineering judgment and experience or are based on proprietary methods. This research focused on the development of quantitative guidelines to evaluate the effectiveness of a grout curtain in porous media using piezometric and hydraulic flow data. In this study, a laboratory-scale physical seepage model was developed to aid in the understanding and development methodology to evaluate the effectiveness of a grout curtain. A new performance parameter was developed based on a normalization scheme that utilized the area of the grout curtain and the area of the improved media. The normalization scheme combined with model-based Lugeon values that correspond to pore pressure and flow rate measurements at different soil unit weights and grout curtain spacings, produced a mathematical equation that can be used to quantify the effectiveness of a grout curtain. This study found a relationship that takes into account soil unit weight, grout curtain spacing and a new performance parameter that can be used to help predict the effectiveness of a grout curtain.
24

Časová analýza sedání podloží vyztuženého štěrkovými pilíři / Time depending analysis of subsoil reinforced by stone columns

Vykoukal, Libor January 2012 (has links)
The thesis focuses on the time analysis of the subsoil which is reinforced with stone columns and without them. The subsoil is made of saturated clays. Main purpose is to introduce the improvement into the numerical models. For the purpose of the diploma thesis the software Plaxis has been chosen, which is normally used for geotechnical tasks. The influence of the stone columns have been introduce to the model using the drain elemnets, spare charakteristics and local elements.
25

Influence of strain rate in CRS tests : A laboratory study of three Swedish clays / Deformationshastighetens inverkan på CRS försök : en studie av tre svenska leror

Holm, Daniélle January 2016 (has links)
The Constant Rate of Strain (CRS) test is currently the most widely used method for determination of consolidation parameters in Sweden. These parameters are used to calculate the probable settlements and behavior of soils. With the Swedish standard strain rate, the duration of a single the test is about 24h, but a higher strain rate would allow for more tests to be performed in the same amount of time. For all clays in Sweden, the Swedish standard for the CRS test suggests a fixed rate of strain that is independent of soil properties, while the North American standard proposes a strain rate that generates a pore pressure ratio of 3-15%. Soil properties such as water content, liquid limit, sensitivity and shear strength vary greatly between different regions of Sweden. It would be beneficial if these properties could be used to find the ideal strain rate for the CRS test. Performing the tests at a higher strain rate, and thus performing more tests within a shorter amount of time, would save both time and money. In this report, 24 CRS tests are performed on three different clays with distinctive properties. Each clay is tested with three different strain rates: the Swedish standard rate of 0.680%/h, a higher rate of 3.00%/h and a lower rate of 0.154%/h. The results are evaluated according to both standards, and are compared and analyzed to determine whether there is any indication that the strain rate can be selected based on the soil properties. The results indicate that the selection of the strain rate is dependent on the soil properties. In addition, the majority of the tests can be conducted with higher strain rates than what is required by the Swedish standard and still manage to lie within the 3-15% limit of the pore pressure ratio, which is acceptable for the North American standard. However, the preconsolidation pressure does rise with increased strain rates, which can generate problems and erroneous results when calculating the settlements. A more extensive testing program with CRS tests and full-scale field tests must be carried out before any recommendation of a higher strain rate can be made.
26

Multiscale factors that control hydrocarbon storage capacity, and successful hydrofracturing and refracturing in mudrocks

Haider, Syed 11 1900 (has links)
Hydrocarbon production from mudrocks (“shales”) is vital to global economic growth and smooth transition to a clean energy infrastructure. The commercial development prospect of a shale play depends on its evolution history over millions of years. Economic hydrocarbon production from shale starts after hydraulic fracturing, that creates a multiscale fracture network leading to an increased overall permeability. The properties of the stimulated rock can be assessed via parameters at different scales (nano-, micro- and macro-scale). Better understanding of these parameters is the key to predicting well productivity and profitability. This work aims to deepen the understanding of the multiscale parameters that define effective hydraulic fracturing. To investigate permeability increase in shales, we start with a model of micro-capillary in contact with nanopores . We show that the nanopores that discharge gas into a fracture network in the source rock significantly increase and extend gas flow into the hydrofractured horizontal wells. We then use a fractal stimulated reservoir volume model to match production histories of 45 Barnett gas wells and to quantify connectivity between the nanopores and the fracture network. This model relies on a source term, ${s}$, and fracture permeability $k_f$ . Our analysis shows that the different degrees of coupling between ${s}$ and $k_f$ create distinctly different types of fracture networks after rock stimulation and impact the well production profiles. We then couple the fractal SRV model with universal scaling $τ − M$ model to simulate production history of 1000 wells each in the Barnett, Marcellus, Haynesville and Eagle Ford shale plays. The analysis shows the coupled effect of stimulated surface area $A$, fracture half-distance, $d$, and the fractal dimension ,$D$, on production and economics of gas production. These parameters define the key differences between different shale plays in the US. Finally, we simulate microfracturing associated with hydrocarbon expulsion in the Tuwaiq Mountain source rock, Saudi Arabia, and propose the pore/microchannel blocking by bitumen/pyrobitumen as a viable mechanism of sustaining the high pore pressure in the source rock for millions of years.
27

Closure of Lilla Bredsjön Tailings Dam : an Evaluation of the Long-Term Dam Safety Measures

Bramsäter, Jenny January 2017 (has links)
The mining industry contributes to enormous amounts of waste all over the world, which places high demands on tailings dams. In Sweden, there are strict regulations regarding the management and treatment of tailings dams, but some dams that were built before these regulations existed still pose a threat to the environment. Lilla Bredsjön in Dalarna, Sweden, is an example of an old tailings dam that has not been treated properly. Boliden, which is the owner of the dam, and the county board of Dalarna are currently in meetings regarding the responsibilities of old polluted sites in Garpenberg, where Lilla Bredsjön is included. This study aims to investigate possible remediation measures of the dams at Lilla Bredsjön in order to achieve long- term stability upon closure of the facility. Lilla Bredsjön is 350 000 m2 large and contains three impoundments; dam 1 to the east, dam 2 to the south and dam 3 to the north. Dam 1 is seven meters at its highest point whereas dam 2 and 3 both are three meters high. All of the dams are classified to a consequence level of 3, meaning that the consequences in case of a failure would be negligible. They are built using the centerline method with impermeable cores of moraine. The tailings are partly covered with sludge mixed with biomass ash, but no proper closure method have been implemented. A geotechnical investigation was conducted to obtain more information about the geometry, construction and foundation of each dam. It could be observed that dam 1 consisted of a moraine core and support fill, both constructed using the Christmas tree principle. Dam 2 consisted of a coarse and fine filter in the upstream part of the dam, whereas the rest of the dam consisted of a moraine core. Dam 3 consisted of tailings and a moraine core, and was like dam 1 also constructed using the Christmas tree principle. The downstream slopes of all dams are moreover very steep with slope angles of approximately 34o. Seepage and stability calculations were therefore performed in the software GeoStudio. In GeoStudio, two different analysis tools were used; SEEP/W to calculate seepage and SLOPE/W to calculate slope stability. Four hydraulic load cases were analyzed in the calculations: present conditions, flooded conditions, potential maximum seepage and present conditions with lower permeability of the tailings. The result shows that all of the dams are unstable in their present con- ditions, both with original and lower permeability of the tailings, as well as at flooded conditions. The required safety factor is however fulfilled at potential maximum seepage. The stability highly depends on the pore pressure inside the dams, which in turn depends on the choice of closure method. Based on the result from the stability calculations it can be concluded that if a dry cover is chosen as the closure method, it will probably be enough to reinforce the existing dams to achieve long-term stability. If, on the other hand, a raised groundwater level is chosen, more extensive solutions in terms of for example completely new impoundments directly downstream of the existing ones are most likely needed. Before a decision regarding the closure method is taken, it is hence very difficult to come to a conclusion regarding suitable remediation measures of the dams. / Gruvindustrin bidrar med enorma mängder avfall över hela världen, vilket ställer höga krav på gruvdammar. I Sverige finns det strikta förordningar gällande hanteringen och efterbehandlingen av gruvdammar, men en del dammar som byggdes innan dessa förordningar existerade utgör fortfarande ett hot mot miljön. Lilla Bredsjön i Dalarna är ett exempel på en gammal gruvdamm som inte blivit efterbehandlad tillräckligt. Boliden, som äger dammen, har möten med Länsstyelssen Dalarna angående ansvarsförhållanden gällande gamla förorenade områden i Garpenberg där även Lilla Bredsjön ingår. Denna studie syftar till att undersöka möjliga efterbehandlingsmetoder av dammarna vid Lilla Bredsjön för att uppnå långtidsstabilitet i samband med nedläggning av anläggningen. Lilla Bredsjön är 350 000 m2 stor och består av tre uppdämningar; damm 1 i öst, damm 2 i söder och damm 3 i norr. Damm 1 är sju meter som högst medan damm 2 och 3 båda är tre meter höga. Samtliga dammar är klassificerade till konsekvensklass 3, vilket betyder att konsekvenserna i händelse av ett dammbrott är försumbara. Dammarna är byggda med uppåtmetoden och har tätkärnor av morän. Magasinet är delvis täckt med slam utblandat med biobränsleaska, men ingen riktig efterbehandling har utförts. En geoteknisk undersökning genomfördes för att erhålla mer information om geometrin, konstruktionen och grundläggningen av varje damm. Det observerades att damm 1 består av en tätkärna av morän samt stödfyllning som båda konstruerades med julgransprincipen. Damm 2 består av ett grov- och finfilter i uppströmsdelen av dammen medan resten av dammen består av en tätkärna av morän. Damm 3 består av anrikningssand och en tätkärna av morän, och var liksom damm 1 konstruerad med julgransprincipen. Nedströmsslänterna på alla dammar är väldigt branta med en vinkel på ungefär 34o. Genomströmnings- och stabilitetsberäkningar genomfördes därför i programmet GeoStudio. I GeoStudio användes två olika verktyg; SEEP/W för att beräkna genomströmning och SLOPE/W för att beräkna släntstabilitet. Fyra olika hydrauliska belastningsfall analyserades i beräkningarna: normalfallet, överdämning, dimensionerat läckage och normalfallet med lägre permeabilitet på anrikningssanden. Resultatet visar på att samtliga dammar är instabila i deras nuvarande skick, beräknat på normalfallet med både ursprunglig och lägre permeabilitet på anrikningssanden, samt vid överdämning. Den erforderliga säkerhetsfaktorn är däremot uppfylld vid dimensionerat läckage. Stabiliteten är starkt beroende av portrycket inuti dammarna, vilket i sin tur är beroende av vilken efterbehandlingsmetod som väljs för magasinet. Baserat på resultatet från stabilitetsberäkningarna kan det konstateras att om torrtäckning väljs som efterbehandlingsmetod så räcker det förmodligen med att förstärka nuvarande dammar för att uppnå långtidsstabilitet. Om, å andra sidan, en förhöjd grundvattennivå väljs behövs med största sannolikhet en mer omfattande lösning, till exempel helt nya dammar direkt nedströms de nuvarande. Innan ett beslut gällande efterbehandlingsmetod av magasinet har tagits är det alltså väldigt svårt att dra en slutsats gällande den mest lämpliga efterbehandlingsmetoden av dammarna.
28

Coupling model for waves propagating over a porous seabed

Liao, C.C., Lin, Z., Guo, Yakun, Jeng, D-S. 11 March 2015 (has links)
The wave–seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one-way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave–seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model. / Yes
29

Wave induced silty seabed response around a trenched pipeline

Gao, Y., Zhang, J., Tong, L., Guo, Yakun, Lam, Dennis 18 March 2022 (has links)
Yes / Most previous studies on seabed liquefaction around offshore pipelines focused on investigating the wave-induced pore pressure variation in sandy seabed, while limited studies have been conducted for silty seabed. In this study, laboratory experiments are conducted to investigate wave-induced pore pressure within silty bed around the buried or partially/fully backfilled pipeline. Results show that residual pore pressure is the dominant factor that causes the liquefaction in silty soil. For buried pipeline, liquefaction first occurs at the pipeline bottom, then propagates upwards and downwards vertically. Comparing with the buried pipeline, the liquefaction potential is reduced when the pipeline is placed in a trench. To protect pipeline from liquefaction, backfill is recommended. Experiments show that the residual pore pressure significantly decreases as backfill depth increases. Fully backfilled pipeline is the best choice for silty seabed. Furthermore, backfill material with coarser particle size than native soil provides better protection for pipeline. In this study, there is no residual pore pressure around the pipeline periphery for three backfill soils (d50 = 0.15 mm; 0.3 mm; and 0.5 mm) tested. Results indicate that for the range of this experimental study, d50 = 0.15 mm is the best backfill material that provides the most protection for the underneath pipeline. / National Postdoctoral Program for Innovative Talents granted by China Postdoctoral Science Foundation (Grant No. BX20190105) and the Fundamental Research Funds for the Central Universities (Grant No. B200202062).
30

Wave Induced Vertical Pore Pressure Gradients at Sandy Beaches

Florence, Matthew Benedict Skaanning 08 June 2022 (has links)
Predicting sediment transport at sandy beaches is a significant challenge in civil engineering owing to the variability in hydrodynamic, morphological, and geotechnical properties within a site and across multiple sites. Additionally, there are difficulties in measuring in-situ properties, and challenges in identifying and quantifying the different relevant driving and resisting forces. These challenges are further exacerbated in the intertidal zone where the addition of infiltration-exfiltration, wave run-up and run-down, bore collapse, cyclic emergence and submergence of sediments, interactions between standing waves and incident bores, and other processes must be considered. Among these many processes, pore pressure gradients within sandy beach sediments affect sediment transport by reducing the sediment's effective stress to zero (this process is called liquefaction). Despite the known importance of these pressure gradients with respect to sediment transport, there has been little field evidence of the role that these pore pressure gradients have on sediment transport, how they relate to the hydrodynamic properties, and their inclusion into predictive sediment transport equations. This study is based on field measurements of hydrodynamic and geotechnical properties, as well as pore pressure gradients during storm and non-storm conditions at sandy beaches in the intertidal zone. From the analysis of these field measurements, it was found that (1) liquefying pressure gradients are likely to develop in sediments that are rapidly inundated during storm conditions; (2) the magnitude of pore pressure gradients is related to the asymmetry of the pressure gradient and can occur with shoreward-directed near bed velocities; and (3) during non-storm conditions, pressure gradients that often do not exceed liquefaction criteria occurred more (less) frequently during a time period where erosion occurred in large (small) quantities, indicating that small non-liquefying pore pressure gradients may facilitate sediment transport. The results of this study demonstrate that current methods of scour calculations must include effects of pore pressure gradients to reduce error. Additionally, from this work it was found that sediment transport can be directed shoreward under momentary liquefaction. Finally, the results of this study show that sediment pore pressure gradients are related to wave skewness, spatial group steepness, and temporal group steepness which may aid modelling of pore pressure gradients. / Doctor of Philosophy / The transport of sediment particles (in this case, sand grains at beaches) is difficult to predict because of the many different governing processes that can be hard to measure, may be hard to relate to erosion or sediment accumulation specifically, and the variability in sediment and flow properties (grain size, fluid velocity, and others) at a specific location and across different locations. Storms, like hurricanes, tropical storms, and tsunamis, can drastically change the expected water properties (like water depth, wave height, and wave period), and the effects of water pressure within the sand bed. When a wave moves across the sand it causes a change in the water pressure that is within the sand. This water pressure is not the same throughout the sand with depth. When the gradient, or the difference between the water pressure at two different vertical locations, is large enough, the sand behaves like a fluid (like quicksand) and becomes easier to move, this process is called liquefaction. Even though previous work has shown that these pressure gradients (and the resulting liquefaction) is important for sediment transport, there have been few field measurements demonstrating their impact on sediment transport and how these gradients (and the resulting liquefaction) relate to wave and sand properties. This study presents field measurements of pressure gradients, wave and sediment properties, and sediment transport events during both storm and non-storm conditions. From these field measurements, it was shown that (1) during an extreme storm event, pressure gradients that liquefy the sediment are likely to occur on sediments that are not normally subjected to waves; (2) liquefying pressure gradients can occur when waves arrive at the beach, which may cause sediment to be moved shoreward; and (3) during non-storm conditions, pressure gradients that do not liquefy the sand occurred frequently during a sediment transport event, suggesting that these smaller pressure gradients may contribute to sediment transport by reducing the effective weight of the sediment. This work can be used to further understand the behavior of sediment pore pressure gradients, their relation to hydrodynamic properties, and how they influence sediment transport allowing for better predictions of sediment transport, beach nourishment calculations, and the design of coastal structures.

Page generated in 0.0525 seconds