• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 88
  • 50
  • 26
  • 14
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 526
  • 144
  • 97
  • 74
  • 64
  • 64
  • 60
  • 59
  • 53
  • 49
  • 46
  • 45
  • 43
  • 41
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Examing Positive Psychological Constructs in the Context of 12-Step Recovery

Bietra, Danielle 01 January 2015 (has links)
Twelve step organizations such as Alcoholics Anonymous and Narcotics Anonymous are free, community-based fellowships. Such organizations are the most widely sought recovery management options, surpassing professional treatment. The emerging evidence base suggests that involvement in such organizations is associated with positive substance-related outcomes (e.g., abstinence). Relatively speaking, however, far less is known about whether or not involvement is associated with other meaningful psychosocial constructs. The current study examined gratitude, meaning in life, life satisfaction, personal growth, and various other recovery and psychosocial constructs in a sample of self-identified NA members (N = 128) from 26 U.S. states, ranging in age from 22 to 64 years. The primary aim of the present study was to psychometrically evaluate and refine four distinct positive psychology instruments (i.e., Gratitude Questionnaire (GQ – 6), Meaning in Life Scale (MLQ), Satisfaction With Life Scale (SWLS), Personal Growth Initiative Scale (PGIS)). The current study contained three phases. First, the psychometric properties of each instrument were examined within an Item Response Theory measurement framework. The Rating Scale Model was used to evaluate the each instrument using WINSTEPS 3.74.01. With the exception of the Meaning in Life Questionnaire (which did not conform to an IRT measurement model), each instrument was iteratively refined based on statistical and clinical considerations, resulting in the collapse of response options and the removal of poorly fitting items. These refinements improved the psychometric properties of each instrument, resulting in a more reliable, accurate, and efficient way to measure gratitude, life satisfaction, and personal growth in clinical samples. Second, items from the GQ – 6, SWLS, and PGIS were examined concurrently using the PROC IRT procedure in SAS to explore whether the constructs were distinct from one another. Results provide support that gratitude, life satisfaction, and personal growth are unique and distinct constructs. Last, the study examined several recovery-related correlates of gratitude, life satisfaction, and personal growth. Hierarchical regression models assessed whether abstinence duration and other recovery-related variables accounted for significant incremental variance in gratitude, life satisfaction, and personal growth, over and above several covariates. As a block, abstinence duration and recovery predictors accounted for significant incremental variance in all of the constructs. These data suggest ongoing recovery involvement in 12-step organizations may be associated with positive outcomes beyond abstinence. Limitations and directions for future research are discussed.
92

Structure and Phase Stability of CaC2 Polymorphs, Li2C2 and Lithium Intercalated Graphite : A Revisit with High Pressure Experiments and Metal Hydride–Graphite Reactions

Konar, Sumit January 2015 (has links)
Alkali (A) and alkaline earth (AE) metals can form carbides and intercalated graphites with carbon. The carbides mostly represent acetylides which are salt-like compounds composed of C22− dumbbell anions and metal cations. Both the acetylide carbides and intercalated graphites are technologically important. Superconductivity has been observed in several intercalated graphites such as KC8 and CaC6. Li intercalated graphites are a major ingredient in Li ion batteries. CaC2 is an important commodity for producing acetylene and the fertilizer CaCN2. In spite of the extensive research on A–C and AE–C compounds, phase diagrams are largely unknown. The thermodynamic and kinetic properties of both carbides and intercalalated graphites are discussed controversially. Recent computational studies indicated that well-known carbides, like CaC2 and BaC2, are thermodynamically unstable. Additionally, computational studies predicted that acetylide carbides will generally form novel polymeric carbides (polycarbides) at high pressures. This thesis is intended to check the validity of theoretical predictions and to shed light on the complicated phase diagrams of the Li–C and the Ca–C systems. The Li–C and the Ca–C systems were investigated using well-controllable metal hydride–graphite reactions. Concerning the Li–C system, relative stabilities of the metastable lithium graphite intercalation compounds (Li-GICs) of stages I, IIa, IIb, III, IV and Id were studied close to the competing formation of the thermodynamically stable Li2C2. The stage IIa showed distinguished thermal stability. The phase Id showed thermodynamic stability and hence, was included in the Li–C phase diagram. In the Ca–C system, results from CaH2–graphite reactions indicate compositional variations between polymorphs I, II and III. The formation of CaC2  I was favored  only  at  1100  ◦C or  higher  temperature  and  with  excess calcium, which speculates phase I as carbon deficient CaC2−δ . To explore the potential existence of polycarbides, the acetylide carbides Li2C2 and CaC2 were investigated under various pressure and temperature conditions, employing diamond anvil cells for in situ studies and multi anvil techniques for large volume synthesis. The products were characterized by a combination of diffraction and spectroscopy techniques. For both Li2C2 and CaC2, a pressure induced structural transformation was observed at relatively low pressures (10–15 GPa), which was followed by an irreversible amorphization at higher pressures (25–30 GPa). For Li2C2 the structure of the high pressure phase prior to amorphization could be elucidated. The ground state with an antifluorite Immm structure (coordination number (CN) for C22− dumbbells = 8) transforms to a phase with an anticotunnite Pnma structure (CN for C22− dumbbells = 9). Polycarbides, as predicted from theory, could not be obtained. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.</p>
93

Solidification behaviour of magnesium alloys

Jiang, Bo January 2013 (has links)
Magnesium alloys have been extensively used for structural and functional applications due to their low densities. In order to improve the mechanical properties, grain refinement of the microstructures of magnesium alloys has been studied for many years. However, an effective and efficient grain refiner or refinement technique hasn’t been achieved yet, especially for those with aluminium contained. In this study, solution for this problem has been discovered through further understanding of the solidification process, including the potency and the efficiency of nucleation particles, the role of solute, and the role of casting conditions. First of all, the study suggested that MgO particles can act as nuclei in magnesium alloys by measuring and analyzing the differences in cooling curves with various amount of endogenous MgO particles. The differences indicated that the number density of MgO particles has a huge influence on the microstructure. This idea has been fatherly proved by the inoculation of MgO particles in magnesium alloys because the microstructures have been significantly refined after the inoculation. A new kind of refiner (AZ91D-5wt%MgO) has been developed based on such understandings. Secondly, the study discovered that the role of solute has much smaller effect on the grain size than it was suggested in traditional understandings. The inverse-proportional relationship between the grain size and the solute is highly suspected and the major role of solute is to cause columnar- equiaxed transition. The role of casting conditions has also been studied in order to provide experimental evidence for the existence of melt quenching effect in magnesium alloys. It is shown that various casting conditions, such as pouring temperatures and mould temperatures, have large influence on the critical heat balance temperature after rapid pouring. In this study, a theoretical model based on the analysis of cooling curves is presented for grain size prediction. An analytical model of the advance of equiaxed solidification front is developed based on the understanding of the role of casting conditions. Eventually, all these understandings have been applied to magnesium direct-chill (DC) casting. The refined microstructure of DC cast ingots can further assist in understanding the mechanism of advanced shearing achieved by MCAST unit. The comparison of the ingots with and without melt shearing indicated that the advance shearing device can disperse MgO film into individual particles.
94

The Fixpoint Checking Problem: An Abstraction Refinement Perspective

Ganty, Pierre P 28 September 2007 (has links)
<P align="justify">Model-checking is an automated technique which aims at verifying properties of computer systems. A model-checker is fed with a model of the system (which capture all its possible behaviors) and a property to verify on this model. Both are given by a convenient mathematical formalism like, for instance, a transition system for the model and a temporal logic formula for the property.</P> <P align="justify">For several reasons (the model-checking is undecidable for this class of model or the model-checking needs too much resources for this model) model-checking may not be applicable. For safety properties (which basically says "nothing bad happen"), a solution to this problem uses a simpler model for which model-checkers might terminate without too much resources. This simpler model, called the abstract model, over-approximates the behaviors of the concrete model. However the abstract model might be too imprecise. In fact, if the property is true on the abstract model, the same holds on the concrete. On the contrary, when the abstract model violates the property, either the violation is reproducible on the concrete model and so we found an error; or it is not reproducible and so the model-checker is said to be inconclusive. Inconclusiveness stems from the over-approximation of the concrete model by the abstract model. So a precise model yields the model-checker to conclude, but precision comes generally with an increased computational cost.</P> <P align="justify">Recently, a lot of work has been done to define abstraction refinement algorithms. Those algorithms compute automatically abstract models which are refined as long as the model-checker is inconclusive. In the thesis, we give a new abstraction refinement algorithm which applies for safety properties. We compare our algorithm with previous attempts to build abstract models automatically and show, using formal proofs that our approach has several advantages. We also give several extensions of our algorithm which allow to integrate existing techniques used in model-checking such as acceleration techniques.</P> <P align="justify">Following a rigorous methodology we then instantiate our algorithm for a variety of models ranging from finite state transition systems to infinite state transition systems. For each of those models we prove the instantiated algorithm terminates and provide encouraging preliminary experimental results.</P> <br> <br> <P align="justify">Le model-checking est une technique automatisée qui vise à vérifier des propriétés sur des systèmes informatiques. Les données passées au model-checker sont le modèle du système (qui en capture tous les comportements possibles) et la propriété à vérifier. Les deux sont donnés dans un formalisme mathématique adéquat tel qu'un système de transition pour le modèle et une formule de logique temporelle pour la propriété.</P> <P align="justify">Pour diverses raisons (le model-checking est indécidable pour cette classe de modèle ou le model-checking nécessite trop de ressources pour ce modèle) le model-checking peut être inapplicable. Pour des propriétés de sûreté (qui disent dans l'ensemble "il ne se produit rien d'incorrect"), une solution à ce problème recourt à un modèle simplifié pour lequel le model-checker peut terminer sans trop de ressources. Ce modèle simplifié, appelé modèle abstrait, surapproxime les comportements du modèle concret. Le modèle abstrait peut cependant être trop imprécis. En effet, si la propriété est vraie sur le modèle abstrait alors elle l'est aussi sur le modèle concret. En revanche, lorsque le modèle abstrait enfreint la propriété : soit l'infraction peut être reproduite sur le modèle concret et alors nous avons trouvé une erreur ; soit l'infraction ne peut être reproduite et dans ce cas le model-checker est dit non conclusif. Ceci provient de la surapproximation du modèle concret faite par le modèle abstrait. Un modèle précis aboutit donc à un model-checking conclusif mais son coût augmente avec sa précision.</P> <P align="justify">Récemment, différents algorithmes d'abstraction raffinement ont été proposés. Ces algorithmes calculent automatiquement des modèles abstraits qui sont progressivement raffinés jusqu'à ce que leur model-checking soit conclusif. Dans la thèse, nous définissons un nouvel algorithme d'abstraction raffinement pour les propriétés de sûreté. Nous comparons notre algorithme avec les algorithmes d'abstraction raffinement antérieurs. A l'aide de preuves formelles, nous montrons les avantages de notre approche. Par ailleurs, nous définissons des extensions de l'algorithme qui intègrent d'autres techniques utilisées en model-checking comme les techniques d'accélérations.</P> <P align="justify">Suivant une méthodologie rigoureuse, nous instancions ensuite notre algorithme pour une variété de modèles allant des systèmes de transitions finis aux systèmes de transitions infinis. Pour chacun des modèles nous établissons la terminaison de l'algorithme instancié et donnons des résultats expérimentaux préliminaires encourageants.</P>
95

Convergence rates of adaptive algorithms for deterministic and stochastic differential equations

Moon, Kyoung-Sook January 2001 (has links)
No description available.
96

Šiaulių miesto pradinio ugdymo pedagogų kvalifikacijos tobulinimo empirinis tyrimas „mokymosi visą gyvenimą“ strategijos įgyvendinimo kontekste / The empirical research of qualification refinement of Šiauliai town primary education pedagogues in the implementation context of „lifelong learning“ strateg

Borusevičiūtė, Ineta 02 September 2010 (has links)
Dėl globalizacijos, informacinių technologijų plėtros, pasikeitusios šalies ekonomikos, politikos, švietimo, bei didėjančių visuomenės poreikių mokymasis visą gyvenimą tampa pagrindinis iššūkis švietimui. Vis labiau akcentuojama būtinybė kelti mokymo kokybę, kurios pagrindinis veiksnys - nuolatinio tobulinimo ir atnaujinimo reikalaujanti pedagogų kvalifikacija. Kadangi mažų vaikų specifika reikalauja ypatingų pradinių klasių pedagogo kompetencijų, pedagogas negali sustoti vietoje, jis turi nuolatos tobulėti, atnaujinti savo žinias, gebėjimus, plėtoti studijų metu įgytas kompetencijas, kas šiame darbe bus suprantama kaip nuolatinis formalus kvalifikacijos kėlimo procesas. / Due to globalization, information technology development, changes in the economics, politics, education, and the growing needs of society, lifelong learning becomes a key challenge for education. There is more emphasis on the need to raise the quality of teaching, the main factor - the continuing improvement and upgrading requiring qualification of pedagogues. Since the specificity of small children require special primary school pedagogue competence, the pedagogue can not stand in the place, it must continually improve, update their knowledge, skills, develop expertise acquired during their studies, what this work will be understood as a continuous process of formal training. Because the specificity of small children require special primary school pedagogue competence, the pedagogue can not stand in the place, it must continually improve, update their knowledge, skills, develop expertise acquired during their studies, what in this work will be understood as a continuous formal process of qualification refinement. Research object - qualification refinement of primary education in the implementation context of „lifelong learning“ strategy.
97

Two-Dimensional Anisotropic Cartesian Mesh Adaptation for the Compressible Euler Equations

Keats, William A. January 2004 (has links)
Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This document discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for transient compressible flow. This technique, originally developed for laminar incompressible flow, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this document the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant.
98

Requirements specification using concrete scenarios

Au, Oliver T. S. January 2009 (has links)
The precision of formal specifications allows us to prove program correctness. Even if formal methods are not used throughout the software project, formalisation improves our understanding of the problem. Formal specifications are amenable to automated analysis and consistency checking. However using them is challenging. Customers do not understand formal notations. Specifiers have difficulty tackling large problems. Once systems are built, formal specifications quickly become outdated during software maintenance. A method of developing formal specifications using concrete scenarios is proposed to tackle the disadvantages just mentioned. A concrete scenario describes system behaviour with successive steps. The pre- and post-states of scenario steps are expressed with actual data rather than variables. Concrete scenarios are expressed in a natural language or formal notation. They increase customer involvement in the creation of formal specifications. Scenarios may be ranked by priorities allowing specifiers to focus on a small part of the system. Formal specifications are constructed incrementally. New requirements are also captured in concrete scenarios which guide the modification of formal specifications. On one hand, concrete scenarios assist the creation and maintenance of formal specifications. On the other hand, they facilitate program correctness proofs without using conventional formal specifications. This is achieved by adding implementation details to customer scenarios. The resulting developer scenarios, encapsulating decisions of data structures and algorithms, are generalised to operation schemas. With the implementation details, the schemas written in formal notations are programs rather than specifications.
99

Hydrogen incorporation in Zintl phases and transition metal oxides- new environments for the lightest element in solid state chemistry

Nedum Kandathil, Reji January 2017 (has links)
This PhD thesis presents investigations of hydrogen incorporation in Zintl phases and transition metal oxides. Hydrogenous Zintl phases can serve as important model systems for fundamental studies of hydrogen-metal interactions, while at the same time hydrogen-induced chemical structure and physical property changes provide exciting prospects for materials science. Hydrogen incorporation in transition metal oxides leads to oxyhydride systems in which O and H together form an anionic substructure. The H species in transition metal oxides may be highly mobile, making these materials interesting precursors toward other mixed anion systems.  Zintl phases consist of an active metal, M (alkali, alkaline earth or rare earth) and a more electronegative p-block metal or semimetal component, E (Al, Ga, Si, Ge, etc.). When Zintl phases react with hydrogen, they can either form polyanionic hydrides or interstitial hydrides, undergo full hydrogenations to complex hydrides, or oxidative decomposition to more E-rich Zintl phases. The Zintl phases investigated here comprised the CaSi2, Eu3Si4, ASi (A= K, Rb) and GdGa systems which were hydrogenated at various temperature, H2 pressure, and dwelling time conditions. For CaSi2, a regular phase transition from the conventional 6R to the rare 3R took place and no hydride formation was observed. In contrast, GdGa and Eu3Si4 were very susceptible to hydrogen uptake. Already at temperatures below 100 ºC the formation of hydrides GdGaH2-x and Eu3Si4H2+x was observed. The magnetic properties of the hydrides (antiferromagnetic) differ radically from that of the Zintl phase precursor (ferromagnetic). Upon hydrogenating ASi at temperatures around 100 oC, silanides ASiH3 formed which contain discrete complex ion units SiH3-. The much complicated β – α order-disorder phase transition in ASiH3 was evaluated with neutron powder diffraction (NPD), 2H NMR and heat capacity measurements.  A systematic study of the hydride reduction of BaTiO3 leading to perovskite oxyhydrides BaTiO3-xHx was done. A broad range of reducing agents including NaH, MgH2, CaH2, LiAlH4 and NaBH4 was employed and temperature and dwelling conditions for hydride reduction examined. Samples were characterized by X-ray powder diffraction (XRPD), thermal gravimetric analysis and 1H NMR. The concentration of H that can be incorporated in BaTiO3-xHx was found to be very low, which is in contrast with earlier reports. Instead hydride reduction leads to a high concentration of O vacancies in the reduced BaTiO3. The highly O-deficient, disordered, phases - BaTiO3-xHy□(x-y) with x up to 0.6 and y in a range 0.05 – 0.2 and (x-y) &gt; y – are cubic and may represent interesting materials with respect to electron and ion transport as well as catalysis. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 5: Manuscript.</p>
100

Adaptive Mesh Refinement and Simulations of Unsteady Delta-Wing Aerodynamics

Le Moigne, Yann January 2004 (has links)
This thesis deals with Computational Fluid Dynamics (CFD)simulations of the flow around delta wings at high angles ofattack. These triangular wings, mainly used in militaryaircraft designs, experience the formation of two vortices ontheir lee-side at large angles of attack. The simulation ofthis vortical flow by solving the Navier-Stokes equations isthe subject of this thesis. The purpose of the work is toimprove the understanding of this flow and contribute to thedesign of such a wing by developing methods that enable moreaccurate and efficient CFD simulations. Simulations of the formation, burst and disappearance of thevortices while the angle of attack is changing are presented.The structured flow solver NSMB has been used to get thetime-dependent solutions of the flow. Both viscous and inviscidresults of a 70°-swept delta wing pitching in anoscillatory motion are reported. The creation of the dynamiclift and the hysteresis observed in the history of theaerodynamic forces are well reproduced. The second part of the thesis is focusing on automatic meshrefinement and its influence on simulations of the delta wingleading-edge vortices. All the simulations to assess the gridquality are inviscid computations performed with theunstructured flow solver EDGE. A first study reports on theeffects of refining thewake of the delta wing. A70°-swept delta wing at a Mach number of 0.2 and an angleof attack of 27° where vortex breakdown is present abovethe wing, is used as testcase. The results show a strongdependence on the refinement, particularly the vortex breakdownposition, which leads to the conclusion that the wake should berefined at least partly. Using this information, a grid for thewing in the wind tunnel is created in order to assess theinfluence of the tunnel walls. Three sensors for automatic meshrefinement of vortical flows are presented. Two are based onflow variables (production of entropy and ratio of totalpressures) while the third one requires an eigenvalue analysisof the tensor of the velocity gradients in order to capture theposition of the vortices in the flow. These three vortexsensors are successfully used for the simulation of the same70° delta wing at an angle of attack of 20°. Acomparison of the sensors reveals the more local property ofthe third one based on the eigenvalue analysis. This lattertechnique is applied to the simulation of the wake of a deltawing at an angle of attack of 20°. The simulations on ahighly refined mesh show that the vortex sheet shed from thetrailing-edge rolls up into a vortex that interacts with theleading-edge vortex. Finally the vortex-detection technique isused to refine the grid around a Saab Aerosystems UnmannedCombat Air Vehicle (UCAV) configuration and its flight dynamicscharacteristics are investigated. Key words:delta wing, high angle of attack, vortex,pitching, mesh refinement, UCAV, vortex sensor, tensor ofvelocity gradients.

Page generated in 0.0546 seconds