Spelling suggestions: "subject:"[een] SCORING"" "subject:"[enn] SCORING""
181 |
Métodos híbridos em docagem molecular: implementação, validação e aplicação / Hybrid methods in molecular docking: implementation, validation and applicationHeloisa dos Santos Muniz 13 June 2018 (has links)
A modelagem das interações entre macromoléculas e ligantes ainda se depara com diversos desafios na área de desenho de fármacos assistidos por computador. Apesar do crescimento da área, temas como a flexibilidade do receptor, funções de pontuação e solvatação ainda têm sido alvo de intensa investigação na comunidade científica. Com o objetivo de analisar a interação em milhares ou milhões de complexos, é imprescindível uma boa harmonização entre o custo computacional e a acurácia dos métodos computacionais que permitem a classificação de ligantes de acordo com a energia de interação. O LiBELa (Ligand Binding Energy Landscape) é um programa de docagem molecular com abordagem híbrida, ou seja, utiliza informações do ligante e do receptor durante o processo de docagem. Inicialmente, as características estéricas e eletrostáticas de um ligante de referência (cristalográfico, por exemplo) são utilizadas nos cálculos de similaridade e sobreposição, obtendo assim uma conformação inicial pré-otimizada do ligante testado. Em seguida, a energia de interação é minimizada no sítio ativo de receptor a partir de potenciais energéticos. Quatro funções de pontuação baseadas em campo de força foram testadas e otimizadas, compostas por potenciais de van der Waals, de Coulomb, e uma função empírica de solvatação denominada função de Stouten-Verkhivker (SV). A flexibilidade do sistema foi tratada através da geração de confôrmeros que amostram os graus de liberdade dos ligantes descritos como semi-rígidos e através de potenciais atenuados que suavizam a superfície de energia de interação, permitindo interações em distâncias interatômicas antes repulsivas. Como ponto de partida, os métodos implementados no programa LiBELa demonstraram resultados satisfatórios nos testes de cross- e self-docking, mostrando ser uma ferramenta eficiente em encontrar os modos de ligação cristalográficos de forma equivalente ou até melhor às dos programas comparados. Através de testes de enriquecimento nos conjuntos de dados DUD, DUDE e CM-DUD, foram otimizadas de forma sistemática as constantes dielétrica, do termo de solvatação, e dos termos de atenuação. Também foi realizado um paralelo entre as funções de pontuação, incluindo a atenuação e o termo de solvatação. Estes mesmos testes mostraram resultados superiores do LiBELa de 39% e 15% em comparação com um programa baseado puramente no receptor (DOCK 6.6), relativo à média da área sob a curva em escala semi-logarítmica nas bases de dados DUDE e DUD respectivamente. Apesar da função de solvatação SV implementada no LiBELa apresentar boa correlação com dados experimentais (r=0,72) e com o modelo Zou GB de solvatação (r=0,88), não apresentou correlação significativa com os métodos GB e PB implementados no pacote de programas disponível no AmberTools. Comparadas às funções de pontuação do LiBELa, as funções com correção para solvatação apresentaram pior enriquecimento, salvo alguns alvos específicos. Por fim, foram realizados ensaios de docagem molecular utilizando como alvo uma enzima β-galactosidase da família GH42, cuja estrutura fora resolvida em nosso grupo. Os resultados permitiram conclusões acerca de como o modo de ligação interfere na preferência de ligação entre dissacarídeos de ligações glicosídicas distintas, consistentes com dados experimentais de ensaios cinéticos de ligação. / Modeling the interactions between macromolecules and ligands still faces several challenges in the computer-aided drug design area. Despite the growth in the area, subjects such as receptor flexibility, scoring functions and solvation still have been widely explored in the scientific community. In order to analyze the interaction for thousands or millions of complexes, a good harmonization between the computational cost and the accuracy of the calculation methods in molecular docking programs is essential. LiBELa (Ligand Binding Energy Landscape) is a hybrid approach program that uses both ligand and receptor information for ligand docking. Initially, the steric and electrostatic characteristics from a reference binder (crystallographic, for example) are used to similarity and overlay calculations, thus obtaining an initial conformation of the ligand tested. Then, within the receptor´s active site, the interaction energy is minimized using energetic potentials. Four force field-based scoring functions were tested and optimized, composed of van der Waals and Coulomb potentials and an empirical solvation function called Stouten-Verkhivker (SV). Concerning the system flexibility, besides the confomers generation that sample the degrees of freedom for semi-rigid ligands, attenuated potentials smooth the energy surface allowing interactions between previously repulsive interatomic distances. As a starting point, LiBELa performed satisfactorily in the cross- and self-docking tests, showing that is an eficient tool to reproduce crystallographic binding modes equivalently to or even better than reference programs. Through enrichment of DUD, DUDE and CM-DUD datasets, the dielectric constant, solvation and softening terms were systematically optimized. It also allowed a parallel between scoring functions, including attenuation and solvation term. Finally, it revealed the LiBELa showed an enhancement of 39% and 15% as compared to the purely receptor-based program DOCK 6.6, relative to the mean of the area under the curve on a semi-logarithmic scale in the DUDE and DUD databases respectively. Although the SV solvation function implemented in LiBELa showed good correlations with experimental data (r = 0.72) and with the Zou GB / SA solvation method implemented in DOCK6 (r = 0.88), it did not show significant correlation with the GB/SA and PB/SA methods implemented in AmberTools. Comparing all the LiBELa tested scoring functions, those including solvation correction showed worse enrichments, except for some specific targets. Finally, molecular docking experiments using LiBELa were conducted with a β-galactosidase from GH42 family, whose structure was solved in our group. The results allowed conclusions concerning how the binding mode interferes the preference for some disaccharides of distinct glycosidic bonds, consistent with experimental data from kinetic assays.
|
182 |
Uma arquitetura para combinação de classificadores otimizada por métodos de poda com aplicação em credit scoringSilva Filho, Luiz Vieira e 17 February 2014 (has links)
Submitted by Lucelia Lucena (lucelia.lucena@ufpe.br) on 2015-03-09T19:29:39Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
DISSERTAÇÃO Luíz Vieira e Silva Filho.pdf: 2176053 bytes, checksum: 4882a96e67804421bca22e07debc49da (MD5) / Made available in DSpace on 2015-03-09T19:29:39Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
DISSERTAÇÃO Luíz Vieira e Silva Filho.pdf: 2176053 bytes, checksum: 4882a96e67804421bca22e07debc49da (MD5)
Previous issue date: 2014-02-17 / Sistemas de Múltiplos Classificadores (Multiple Classifiers Systems - MCS) se baseiam
na ideia de que combinar a opinião de vários especialistas pode produzir
melhores resultados do que quando se usa apenas um especialista. Diversas
técnicas de MCS foram desenvolvidas, apresentando pontos fortes e fracos,
a depender do contexto em que são aplicadas. Este trabalho propõe uma arquitetura
para MCS que visa potencializar a complementaridade entre essas
técnicas, possuindo dois objetivos principais: i) a combinação de métodos
de amostragem tradicionais, visando a geração de classificadores de melhor
desempenho que componham um pool de classificadores; ii) a aplicação de
um algoritmo de poda para remover do pool aqueles classificadores incompetentes
para lidar com o problema em questão, considerando os critérios de
seleção adotados. A arquitetura proposta foi avaliada em uma aplicação de
credit-scoring. Os métodos de amostragem usados foram o Bagging e o Random
Subspace com classificadores-base sendo árvores-de-decisão, construídas
com base no algoritmo CART. Para o processamento da poda foi usado o algoritmo
Orientation Ordering, e para combinação das saídas dos classificadores
do ensemble adotou-se o método Majority Vote. Os experimentos realizados
mostraram que a arquitetura proposta alcançou taxas de acerto similares ou
superiores às atingidas pelos métodos apresentados na literatura. Esses resultados
ainda foram obtidos com ensembles cujos tamanhos eram da ordemde
20% dos pools originais gerados na fase de treinamento.
|
183 |
Características associadas à inadimplência por parte de tomadores de Crédito Rural: uma análise no âmbito dos beneficiados do projeto FUNDAFGOMES, Evelyne Ruiz Soares Waked 28 April 2011 (has links)
Submitted by (edna.saturno@ufrpe.br) on 2016-05-24T14:42:10Z
No. of bitstreams: 1
Evelyne Ruiz.pdf: 530462 bytes, checksum: 724e20f36c304403d905d9e1ef1b05f7 (MD5) / Made available in DSpace on 2016-05-24T14:42:10Z (GMT). No. of bitstreams: 1
Evelyne Ruiz.pdf: 530462 bytes, checksum: 724e20f36c304403d905d9e1ef1b05f7 (MD5)
Previous issue date: 2011-04-28 / In recent years the increase in the volume of credits for rural activities have required the use of risk assessment models, such as credit scoring, form lenders in their credit policies that provide them, more precisely, an assessment effective regarding to the possibility of default. The objective of this research is to investigate the default among borrowers benefited from the rural Project Fund for the Development of Family Agriculture - FUNDAF Project, seeking to establish a relationship between the characteristics of borrowers and defaults. Using the method of exploratory and descriptive research, data from side to acquire the characteristics of the population investigated was collected. This collection was made in the loan portfolio consisted of 216 National Agency of Enterprise Development ANDE borrowers in the rural community of Jucuri / RN. Five groups of characteristics relating to borrowers were used to develop this work,: Status, Personal profile of borrowers, financial profile of borrowers, credit profile of the operation, the Default Profile. To achieve the proposed objectives, three methods of analysis were used: descriptive statistics, Fisher test and Mann-Whitney U test. The results show that the characteristics that have significance in relation to default were those relating to the financial profile of the borrower's credit, revenue, expense and provision for the ANDE and the profile of credit: the value of the parcel. It can be seen as indicative of the high percentage of defaults in the portfolio of rural credit in that entity, non-observance of strict evaluation criteria relating to income and expenditure characteristics of borrowers indispensable prerequisite to the discharge of the provision stipulated. / Nos últimos anos o acréscimo no volume de concessão de créditos voltados às atividades rurais tem exigido das entidades de crédito, modelos de avaliação de riscos, tais como o credit scoring, em suas políticas de crédito que lhes proporcionem, de forma mais precisa, uma avaliação eficaz quanto à possibilidade de ocorrência de inadimplência. O objetivo desta pesquisa é investigar a inadimplência entre os tomadores de Crédito Rural beneficiados pelo Projeto Fundo para o Desenvolvimento da Agricultura Familiar - FUNDAF, buscando estabelecer uma relação entre as características dos tomadores de crédito e a inadimplência. Através do método de pesquisa exploratória e descritiva, foi feita uma coleta de dados secundários para a aquisição das características relativas à população investigada. Esta coleta foi realizada na carteira de crédito da Agencia Nacional do Desenvolvimento Empresarial - ANDE composta de 216 tomadores de crédito da comunidade rural de Jucuri/RN. Utilizou-se para o desenvolvimento deste trabalho cinco grupos de características relativas aos tomadores de crédito: Status, Perfil pessoal dos tomadores de crédito, Perfil financeiro dos tomadores de crédito, Perfil da operação de crédito, Perfil da Inadimplência. Para obtenção dos objetivos propostos utilizou-se como métodos de análise a estatística descritiva e os testes exato de Fisher e Mann-Whitney U. Os resultados obtidos revelam que as características que possuem significância em relação à inadimplência foram as relativas ao perfil financeiro do tomador de crédito: receita, despesa,prestação ANDE e as relativas ao perfil operação de crédito: valor da parcela. Percebe-se, como indicativo do elevado percentual da inadimplência na carteira de concessão de Crédito Rural naquela entidade, a não observância rigorosa de critérios de avaliação referentes às características receita e despesa dos tomadores de crédito imprescindíveis à condição necessária a quitação da prestação estipulada.
|
184 |
Modelagem de risco de crédito : aplicação de modelos credit scoring no Fundo Rotativo de Ação da Cidadania Cred CidadaniaARAÚJO, Elaine Aparecida January 2006 (has links)
Made available in DSpace on 2014-06-12T15:07:00Z (GMT). No. of bitstreams: 2
arquivo1363_1.pdf: 1828701 bytes, checksum: f0a7740303ce331d14c5ebcc9b8eb289 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / Os modelos de Credit Scoring são modelos quantitativos empregados comumente por
instituições financeiras na mensuração e previsão do risco de crédito, possuindo uso
consolidado no processo de concessão de crédito destas instituições. Este trabalho de
dissertação objetivou avaliar a possibilidade de aplicação de modelos Credit Scoring em uma
instituição de microcrédito denominada Fundo Rotativo de Ação da Cidadania Cred
Cidadania, situada em Recife (PE). Para isso, foram coletados dados relativos a uma amostra
de clientes do Cred Cidadania, e estes dados foram utilizados para desenvolver dois tipos de
modelos de Credit Scoring: um de aprovação de crédito e um outro chamado behavioural
scoring (escoragem comportamental). As técnicas estatísticas empregadas na construção dos
modelos foram análise discriminante e regressão logística. Os modelos obtidos agregaram
variáveis como renda líquida do empreendimento, número de parcelas do empréstimo,
número de dependentes do cliente, estado civil do cliente, valor do empréstimo, tempo de
funcionamento do empreendimento, eficiência do agente de crédito, dentre outras. Algumas
variáveis representam atributos que contribuem para o aumento da propensão à inadimplência
do solicitante, enquanto outras colaboram para a redução do risco de inadimplência, o que
repercute positivamente na sustentabilidade financeira na instituição. Os resultados do estudo
demonstraram que os modelos Credit Scoring obtêm desempenho satisfatório quando
utilizados na análise de risco de crédito na instituição de microcrédito Cred Cidadania,
alcançando um percentual de classificação correta dos clientes de cerca de 80%. Os resultados
indicam também que o uso de modelos Credit Scoring fornece subsídios à instituição,
auxiliando-a na prevenção e redução da inadimplência e na diminuição dos seus custos
operacionais, dois problemas que afetam a sua sustentabilidade financeira
|
185 |
Evaluating Industrial Relevance in Search Based Software Engineering Research : A Systematic Mapping Study and SurveyVamsi Appana, Vamsi January 2017 (has links)
Search Based Software Engineering is one of the important field of software engineering. Over the past few years even though there is a lot of study performed on SBSE and its search techniques in software development areas, it appears SBSE is not very industry relevant at the moment because most of the academic work was limited towards the application of search techniques. Hence, author proposes a study to know the trend of SBSE literature over the past few years and also analyze to what degree current SBSE research is industry relevant
|
186 |
An intelligent search for feature interactions using Restricted Boltzmann MachinesBertholds, Alexander, Larsson, Emil January 2013 (has links)
Klarna uses a logistic regression to estimate the probability that an e-store customer will default on its given credit. The logistic regression is a linear statistical model which cannot detect non-linearities in the data. The aim of this project has been to develop a program which can be used to find suitable non-linear interaction-variables. This can be achieved using a Restricted Boltzmann Machine, an unsupervised neural network, whose hidden nodes can be used to model the distribution of the data. By using the hidden nodes as new variables in the logistic regression it is possible to see which nodes that have the greatest impact on the probability of default estimates. The contents of the hidden nodes, corresponding to different parts of the data distribution, can be used to find suitable interaction-variables which will allow the modelling of non-linearities. It was possible to find the data distribution using the Restricted Boltzmann Machine and adding its hidden nodes to the logistic regression improved the model's ability to predict the probability of default. The hidden nodes could be used to create interaction-variables which improve Klarna's internal models used for credit risk estimates. / Klarna använder en logistisk regression för att estimera sannolikheten att en e-handelskund inte kommer att betala sina fakturor efter att ha givits kredit. Den logistiska regressionen är en linjär modell och kan därför inte upptäcka icke-linjäriteter i datan. Målet med detta projekt har varit att utveckla ett program som kan användas för att hitta lämpliga icke-linjära interaktionsvariabler. Genom att införa dessa i den logistiska regressionen blir det möjligt att upptäcka icke-linjäriteter i datan och därmed förbättra sannolikhetsestimaten. Det utvecklade programmet använder Restricted Boltzmann Machines, en typ av oövervakat neuralt nätverk, vars dolda noder kan användas för att hitta datans distribution. Genom att använda de dolda noderna i den logistiska regressionen är det möjligt att se vilka delar av distributionen som är viktigast i sannolikhetsestimaten. Innehållet i de dolda noderna, som motsvarar olika delar av datadistributionen, kan användas för att hitta lämpliga interaktionsvariabler. Det var möjligt att hitta datans distribution genom att använda en Restricted Boltzmann Machine och dess dolda noder förbättrade sannolikhetsestimaten från den logistiska regressionen. De dolda noderna kunde användas för att skapa interaktionsvariabler som förbättrar Klarnas interna kreditriskmodeller.
|
187 |
Automated Essay Scoring : Scoring Essays in SwedishSmolentzov, Andre January 2013 (has links)
Good writing skills are essential in the education system at all levels. However, the evaluation of essays is labor intensive and can entail a subjective bias. Automated Essay Scoring (AES) is a tool that may be able to save teacher time and provide more objective evaluations. There are several successful AES systems for essays in English that are used in large scale tests. Supervised machine learning algorithms are the core component in developing these systems. In this project four AES systems were developed and evaluated. The AES systems were based on standard supervised machine learning software, i.e., LDAC, SVM with RBF kernel, polynomial kernel and Extremely Randomized Trees. The training data consisted of 1500 high school essays that had been scored by the students' teachers and blind raters. To evaluate the AES systems, the agreement between blind raters' scores and AES scores was compared to agreement between blind raters' and teacher scores. On average, the agreement between blind raters and the AES systems was better than between blind raters and teachers. The AES based on LDAC software had the best agreement with a quadratic weighted kappa value of 0.475. In comparison, the teachers and blind raters had a value of 0.391. However the AES results do not meet the required minimum agreement of a quadratic weighted kappa of 0.7 as defined by the US based nonprofit organization Educational Testing Services. / Jag har utvecklat och utvärderat fyra system för automatisk betygsättning av uppsatser (AES). LDAC, SVM med RBF kernel, SVM med Polynomial kernel och "Extremely Randomized trees" som är standard klassificerarprogramvaror har använts som grunden för att bygga respektivt AES system.
|
188 |
Finding potential electroencephalography parameters for identifying clinical depressionGustafsson, Johan January 2015 (has links)
This master thesis report describes signal processing parameters of electroencephalography (EEG) signals with a significant difference between the signals from the animal model of clinical depression and the non-depressed animal model. The signal from the depressed model had a weaker power in gamma (30 - 80 Hz) than the non-depressed model during awake and it had a stronger power in delta (1.5 - 4 Hz) during sleep. The report describes the process of using visualisation to understand the shape of the signal which helps with interpreting results and helps with the development of parameters. A generic tool for time-frequency analysis was improved to cope with the size of the weeklong EEG dataset. A method for evaluating the quality of how well the EEG parameters are able to separate the strains with as short recordings as possible was developed. This project shows that it is possible to separate an animal model of depression from an animal model of non-depression based on its EEG and that EEG-classifiers may work as indicative classifiers for depression. Not a lot of data is needed. Further studies are needed to verify that the results are not overly sensitive to recording setup and to study to what extent the results are translational. It might be some of the EEG parameters with significant differences described here are limited to describe the difference between the two strains FSL and SD. But the classifiers have reasonable biological explanations that makes them good candidates for being translational EEG-based classifiers for clinical depression.
|
189 |
Prevalence and characterization of Gardnerella vaginalis in pregnant mothers with a history of preterm deliveryStemmet, Megan January 2012 (has links)
>Magister Scientiae - MSc / Risk factors such as intrauterine and vaginal infection put pregnant women at risk for delivering preterm. Bacterial vaginosis (BV) is a polymicrobial clinical syndrome commonly diagnosed in women of reproductive age, with women of African descent with low socioeconomic status and previous preterm delivery at high risk. Although frequently isolated from healthy women, Gardnerella vaginalis has been most frequently associated with BV. There is limited data available on the prevalence of BV in Southern Africa; therefore, we embarked on a study to determine the prevalence of BV and G. vaginalis in predominantly black communities in the Western Cape, in order to establish the role of G. vaginalis in BV. Women attending various Maternity and Obstetrics units (MOU) in the Cape Peninsula with and without a history of pre-term delivery (PTD) were invited to participate in the study. Several factors were statistically associated with pregnancy history, including location of study population, parity, smoking and presence of clinical symptoms. The presence of G. vaginalis was determined by culture in 51.7% of the preterm delivery group (PTDG) and 44% of the full-term delivery group (FTDG) women. BV was detected in 31.13% of PTDG and 23.67% of FTDG by Gram stained analysis according to Nugent scoring criteria, with age and HIV status posing as risk factors. When comparing PTDG and FTDG for an association between the presence of G. vaginalis and BV, a stronger association was observed in the PTDG but it was not statistically significant. In both PTDG and FTDG, G. vaginalis was isolated significantly more often in women diagnosed with BV at 24.5% (p < 0.05). Antibiogram studies revealed both Metronidazole and Clindamycin resistant strains of G. vaginalis. G. vaginalis Biotype 7 is specifically associated with BV, while Biotype 2 appears to be associated with BV in women with a history of PTD. Accuracy of diagnostic tools were tested and it was determined that Nugent scoring is more sensitive in diagnosing BV (76.04%), but culture for G. vaginalis is more specific (83.21%). Although this study was limited in that we were unable to follow-up pregnancy outcomes, we were able to confirm the perceived role of G. vaginalis in BV. / South Africa
|
190 |
Performance Analysis of Credit Scoring Models on Lending Club Data / Performance Analysis of Credit Scoring Models on Lending Club DataPolena, Michal January 2017 (has links)
In our master thesis, we compare ten classification algorithms for credit scor- ing. Their prediction performances are measured by six different classification performance measurements. We use a unique P2P lending data set with more than 200,000 records and 23 variables for our classifiers comparison. This data set comes from Lending Club, the biggest P2P lending platform in the United States. Logistic regression, Artificial neural network, and Linear discriminant analysis are the best three classifiers according to our results. Random forest ranks as the fifth best classifier. On the other hand, Classification and regression tree and k-Nearest neighbors are ranked as the worse classifiers in our ranking. 1
|
Page generated in 0.0458 seconds