• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 67
  • 22
  • 21
  • 9
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 322
  • 164
  • 98
  • 95
  • 92
  • 82
  • 73
  • 55
  • 42
  • 36
  • 33
  • 28
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Micro- and Nano-Raman Characterization of Organic and Inorganic Materials

Sheremet, Evgeniya 07 October 2015 (has links)
Die Raman-Spektroskopie ist eine der nützlichsten optischen Methoden zur Untersuchung der Phononen organischer und anorganischer Materialien. Mit der fortschreitenden Miniaturisierung von elektronischen Bauelementen und der damit einhergehenden Verkleinerung der Strukturen von der Mikrometer- zur Nanometerskala nehmen das Streuvolumen und somit auch das Raman-Signal drastisch ab. Daher werden neue Herangehensweisen benötigt um sie mit optischer Spektroskopie zu untersuchen. Ein häufig genutzter Ansatz um die Signalintensität zu erhöhen ist die Verwendung von Resonanz-Raman-Streuung, das heißt dass die Anregungsenergie an die Energie eines optischen Überganges in der Struktur angepasst wird. In dieser Arbeit wurden InAs/Al(Ga)As-basierte Multilagen mit einer Periodizität unterhalb des Beugungslimits mittels Resonanz-Mikro-Raman-Spektroskopie und Raster-Kraft-Mikroskopie (AFM) den jeweiligen Schichten zugeordnet. Ein effizienterer Weg um die Raman-Sensitivität zu erhöhen ist die Verwendung der oberflächenverstärkten Raman-Streuung (SERS). Sie beruht hauptsächlich auf der Verstärkung der elektromagnetischen Strahlung aufgrund von lokalisierten Oberflächenplasmonenresonanzen in Metallnanostrukturen. Beide oben genannten Signalverstärkungsmethoden wurden in dieser Arbeit zur oberflächenverstärkten Resonanz-Raman-Streuung kombiniert um geringe Mengen organischer und anorganischer Materialien (ultradünne Cobalt-Phthalocyanin-Schichten (CoPc), CuS und CdSe Nanokristalle) zu untersuchen. Damit wurden in beiden Fällen Verstärkungsfaktoren in der Größenordnung 103 bis 104 erreicht, wobei bewiesen werden konnte, dass der dominante Verstärkungsmechanismus die elektromagnetische Verstärkung ist. Spitzenverstärkte Raman-Spektroskopie (TERS) ist ein Spezialfall von SERS, bei dem das Auflösungsvermögen von Licht unterschritten werden kann, was zu einer drastischen Verbesserung der lateralen Auflösung gegenüber der konventionellen Mikro-Raman-Spektroskopie führt. Dies konnte mit Hilfe einer Spitze erreicht werden, die als einzelner plasmonischer Streuer wirkt. Dabei wird die Spitze in einer kontrollierten Weise gegenüber der Probe bewegt. Die Anwendung von TERS erforderte zunächst die Entwicklung und Optimierung eines AFM-basierten TERS-Aufbaus und TERS-aktiver Spitzen, welche Gegenstand dieser Arbeit war. TERS-Bilder mit Auflösungen unter 15 nm konnten auf einer Testprobe mit kohlenstoffhaltigen Verbindungen realisiert werden. Die TERS-Verstärkung und ihre Abhängigkeit vom Substratmaterial, der Substratmorphologie sowie der AFM-Betriebsart wurden anhand der CoPc-Schichten, die auf nanostrukturierten Goldsubstraten abgeschieden wurden, evaluiert. Weiterhin konnte gezeigt werden, dass die hohe örtliche Auflösung der TERS-Verstärkung die selektive Detektion des Signals weniger CdSe-Nanokristalle möglich macht.:Bibliografische Beschreibung 3 Parts of this work are published in 5 Table of contents 7 List of abbreviations 10 Introduction 11 Chapter 1. Principles of Raman spectroscopy, surface- and tip-enhanced Raman spectroscopies 15 1.1. Raman spectroscopy: its benefits and limitations 15 1.2. Electromagnetic enhancement in SERS and TERS 18 1.2.1. Light scattering by a sphere 19 1.2.2. Image dipole effect 22 1.3. Chemical enhancement 23 1.4. Summary 25 Chapter 2. Raman and AFM profiling of nanocrystal multilayer structures 27 2.1. Materials and methods 27 2.1.1. Nanocrystal growth 27 2.1.2. Sample preparation 28 2.1.3. TEM, AFM and Raman measurements 29 2.2. Structure of embedded NCs 31 2.2.1. Size and shape of embedded NCs by TEM 31 2.2.2. Phonon spectra of NCs 32 2.3. Profiling on NC multilayers 34 2.3.1. AFM profiling of multilayer NC structures 34 2.3.2. Raman profiling of NC multilayers 38 2.4. Summary 40 Chapter 3. Surface-enhanced Raman spectroscopy 43 3.1. Materials and methods 43 3.1.1. SERS substrate preparation 43 3.1.2. Organic and inorganic materials 45 3.1.3. Micro-Raman spectroscopy measurements 46 3.1.4. Micro-ellipsometry 46 3.1.5. Numerical simulations 47 3.2. SERS on organic films 47 3.2.1. SERS enhancement of CoPc 48 3.2.2. Polarization dependence of enhancement in SERS 51 3.3. SERS by nanocrytals 53 3.4. Summary 55 Chapter 4. Implementation of tip-enhanced Raman spectroscopy 57 4.1. TERS enhancement factor 58 4.2. State of the art of optical systems for TERS 60 4.3. Implementation of the optical system 61 4.4. TERS tips 64 4.4.1. State of the art of TERS tips 64 4.4.2. Fabrication of tips for AFM-based TERS 66 4.4.3. Mechanical properties of fully metallic TERS tips 68 4.5. Summary 74 Chapter 5. Tip-enhanced Raman spectroscopy imaging 75 5.1. Materials and methods 75 5.1.1. Preparation of multi-component sample 75 5.1.2. TERS experiments 76 5.1.3. Simulations of electric field enhancement 76 5.2. High resolution discrimination of carbon-containing compounds by TERS 78 5.3. Effect of substrate material and morphology on TERS enhancement 82 5.4. Effect of the AFM imaging mode on TERS enhancement 85 5.5. TERS on free-standing colloidal CdSe NCs 90 5.6. Summary 91 Conclusions 93 References 95 List of figures 104 Erklärung 109 Lebenslauf 111 Publication list 112 Acknowledgements 117
312

In situ Raman-Spektroskopie an Metallphthalocyaninen: Von ultradünnen Schichten zum organischen Feldeffekttransistor

Ludemann, Michael 06 July 2016 (has links) (PDF)
Im ersten Teil der Arbeit werden Signalverstärkungsmechanismen für Raman-Spektroskopie erschlossen und evaluiert. Die als geeignet bewerteten Methoden finden im zweiten Teil ihre Anwendung zur Untersuchung der vibronischen Eigenschaften von dünnen Manganphthalocyaninschichten, die anschließend mit Kalium interkaliert werden. Hierbei sind verschiedene Phasen identifizierbar, die ein ganzzahliges Verhältnis von Kaliumatomen zu Manganphthalocyaninmolekülen besitzen. Im dritten Teil werden die elektrischen Eigenschaften durch die Verwendung dieses Materialsystems als aktives Medium eines Feldeffekttransistors untersucht.
313

Spectroscopie Raman et microfluidique : application à la diffusion Raman exaltée de surface

Delhaye, Caroline 17 December 2009 (has links)
Ce mémoire porte sur la mise au point de plateforme microfluidique couplée à la microscopie Raman confocale, utilisée dans des conditions d’excitation de la diffusion Raman (diffusion Raman exaltée de surface), dans le but d’obtenir une détection de très haute sensibilité d’espèces moléculaires sous écoulement dans des canaux de dimensions micrométriques. Ce travail a pour ambition de démontrer la faisabilité d’un couplage microscopie Raman/microfluidique en vue de la caractérisation in-situ et locale, des espèces et des réactions mises en jeu dans les fluides en écoulement dans les microcanaux. Nous avons utilisé un microcanal de géométrie T, fabriqué par lithographie douce, dans lequel sont injectées, à vitesse constante, des nanoparticules métalliques d’or ou d’argent dans une des deux branches du canal et une solution de pyridine ou de péfloxacine dans l’autre branche. La laminarité et la stationnarité du processus nous ont permis de cartographier la zone de mélange et de mettre en évidence l’exaltation du signal de diffusion Raman de la pyridine et de la péfloxacine, obtenue grâce aux nanoparticules métalliques, dans cette zone d’interdiffusion. L’enregistrement successif de la bande d’absorption des nanoparticules d’argent (bande plasmon) et du signal de diffusion Raman de la péfloxacine, en écoulement dans un microcanal, nous a permis d’établir un lien entre la morphologie des nanostructures métalliques, et plus précisément l’état d’agrégation des nanoparticules d’argent, et l’exaltation du signal Raman de la péfloxacine observé. Nous avons alors modifié la géométrie du canal afin d’y introduire une solution d’électrolyte (NaCl et NaNO3) et de modifier localement la charge de surface des colloïdes d’argent en écoulement. Nous avons ainsi confirmé que la modification de l’état d’agrégation des nanoparticules d’argent, induite par l’ajout contrôlé de solutions d’électrolytes, permet d’amplifier le signal SERS de la péfloxacine et d’optimiser la détection en microfluidique. Enfin, nous avons développé une seconde approche qui consistait à mettre en place une structuration métallisée des parois d’un microcanal. Nous avons ainsi démontré que la fonctionnalisation chimique de surface via un organosilane (APTES) permettait de tapisser le canal avec des nanoparticules d’argent et d’amplifier le signal Raman des espèces en écoulement dans ce même microcanal. / This thesis focuses on the development of a microfluidic platform coupled with confocal Raman microscopy, used in excitation conditions of Raman scattering (Surface enhanced Raman scattering, SERS) in order to gain in the detection sensitivity of molecular species flowing in channels of micrometer dimensions. This work aims to demonstrate the feasibility of coupling Raman microscopy / microfluidics for the in situ and local characterization of species and reactions taking place in the fluid flowing in microchannels. We used a T-shaped microchannel, made by soft lithography, in which gold or silver nanoparticles injected at constant speed, in one of the two branches of the channel and a solution of pyridine or pefloxacin in the other one. The laminar flow and the stationarity of the process allowed us to map the mixing zone and highlight the enhancement of the Raman signal of pyridine and pefloxacin, due to the metallic nanoparticles, in the interdiffusion zone. The recording of the both absorption band of the silver nanoparticles (plasmon band) and the Raman signal of pefloxacin, flowing in microchannel, allowed us to establish a link between the shape of the metallic nanostructure, and more precisely the silver nanoparticle aggregation state, and the enhancement of the Raman signal of pefloxacin observed. We then changed the channel geometry to introduce an electrolyte solution (NaCl and NaNO3) and locally modify the surface charge of the colloids. We have put in evidence that the change of the silver nanoparticle aggregation state, induced by the controlled addition of electrolyte solutions, could amplify the SERS signal of pefloxacin and thus optimizing the detection in microfluidics. At last, we established second a approach that consists in the metallic structuring of microchannel walls. This has shown that the surface chemical functionalization through organosilanes (APTES) allowed the pasting of the channel with silver nanoparticles, thus amplifying the Raman signal of the species flowing within the same microchannel.
314

Templating gold nanoparticles on nanofibers using block copolymer thin films

Zhu, Hu 09 1900 (has links)
No description available.
315

Controlled and localized synthesis of molecularly imprinted polymers for chemical sensors / Synthèse localisée et contrôlée de polymères à empreintes moléculaires pour capteurs chimiques

Kaya, Zeynep 05 November 2015 (has links)
Les polymères à empreintes moléculaires (MIP), également appelés "anticorps en plastique", sont des récepteurs biomimétiques synthétiques qui sont capables de reconnaître et lier une molécule cible avec une affinité et une spécificité comparables à celles des récepteurs naturels tels que des enzymes ou des anticorps. En effet, les MIP sont utilisés comme éléments de reconnaissance synthétiques dans les biocapteurs et biopuces pour la détection de petits analytes et les protéines. La technique d'impression moléculaire est basée sur la formation de cavités de reconnaissance spécifiques dans des matrices polymères par un procédé de moulage à l'échelle moléculaire. Pour la conception de capteurs et biopuces, une cinétique d'adsorption et une réponse du capteur rapide, l'intégration des polymères avec des transducteurs, et une haute sensibilité de détection sont parmi les principaux défis. Dans cette thèse, ces problèmes ont été abordés par le développement de nanocomposites MIP / d'or via le greffage du MIP sur les surfaces en utilisant des techniques de polymérisation dédiées comme l'ATRP qui est une technique de polymérisation radicalaire contrôlée (CRP). Ces techniques CRP sophistiquées sont en mesure d'améliorer considérablement les matériaux polymères. L'utilisation de l'ATRP dans le domaine de MIP a été limitée jusqu'à présent en raison de son incompatibilité inhérente avec des monomères acides comme l'acide méthacrylique (MAA), qui est de loin le monomère fonctionnel le plus largement utilisé dans les MIP. Ici, un nouveau procédé est décrit pour la synthèse de MIP par ATRP photo-initiée utilisant fac-[Ir(Ppy)3] comme catalyseur. La synthèse est possible à température ambiante et est compatible avec des monomères acides. Cette étude élargit considérablement la gamme de monomères fonctionnels et de molécules empreintes qui peuvent être utilisés lors de la synthèse de MIP par ATRP. La méthode proposée a été utilisée pour la fabrication de nanocomposites hiérarchiquement organisés sur des surfaces métalliques nanostructurés avec des nano-trous et nano-ilots, présentant des effets plasmoniques pour l'amplification du signal. La synthèse de films de MIP à l'échelle du nanomètre localisés sur la surface d'or a été démontrée. Des méthodes de transduction optiques, à savoir la résonance de plasmons de surface localisée (LSPR) et la spectroscopie Raman exaltée par effet de surface (SERS) ont été exploitées. Ces techniques se sont montrées prometteuses pour l'amélioration de la limite de détection dans la détection d'analytes biologiquement pertinents, y compris les protéines et le médicament propranolol. / Molecularly imprinted polymers (MIPs), also referred to as plastic antibodies, are synthetic biomimetic receptors that are able to bind target molecules with similar affinity and specificity as natural receptors such as enzymes or antibodies. Indeed, MIPs are used as synthetic recognition elements in biosensors and biochips for the detection of small analytes and proteins. The molecular imprinting technique is based on the formation of specific recognition cavities in polymer matrices by a templating process at the molecular level. For sensor and biochip development, fast binding kinetics of the MIP for a rapid sensor response, the integration of the polymers with transducers, and a high sensitivity of detection are among the main challenges. In this thesis, the above issues are addressed by developing MIP/gold nanocomposites by grafting MIPs on surfaces, using dedicated techniques like atom transfer radical polymerization (ATRP) which is a versatile controlled radical polymerization (CRP) technique. Theses ophisticated CRP techniques, are able to greatly improve the polymeric materials. The use of ATRP in the MIP field has been limited so far due to its inherent incompatibility with acidic monomers like methacrylic acid (MAA), which is by far the most widely used functional monomer. Herein, a new method is described for the MIP synthesis through photo-initiated ATRP using fac-[Ir(ppy)3] as ATRP catalyst. The synthesis is possible at room temperature and is compatible with acidic monomers. This study considerably widens the range of functional monomers and thus molecular templates that can be used when MIPs are synthesized by ATRP. The proposed method was used for fabrication of hierarchically organised nanocomposites based on MIPs and nanostructured metal surfaces containing nanoholes or nanoislands, exhibiting plasmonic effects for signal amplification. The fabrication of nanometer scale MIP coatings localized on gold surface was demonstrated. Optical transduction methods, namely Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) were exploited and shown that they hold great promise for enhancing the limit of detection in sensing of biologically relevant analytes including proteins and the drug propranolol.
316

Fabrication and Optimization of a Nanoplasmonic Chip for Diagnostics

Segervald, Jonas January 2019 (has links)
To increase the survival rate from infectious- and noncommunicable diseases, reliable diagnostic during the preliminary stages of a disease onset is of vital importance. This is not trivial to achieve, a highly sensitive and selective detection system is needed for measuring the low concentrations of biomarkers available. One possible route to achieve this is through biosensing based on plasmonic nanostructures, which during the last decade have demonstrated impressive diagnostic capabilities. These nanoplasmonic surfaces have the ability to significantly enhance fluorescence- and Raman signals through localized hotspots, where a stronger then normal electric field is present. By further utilizing a periodic sub-wavelength nanohole array the extraordinary optical transmission phenomena is supported, which open up new ways for miniaturization. In this study a nanoplasmonic chip (NPC) composed of a nanohole array —with lateral size on the order of hundreds of nanometer— covered in a thin layer of gold is created. The nanohole array is fabricated using soft nanoimprint lithography on two resists, hydroxypropyl cellulose (HPC) and polymethyl methacrylate (PMMA). An in depth analysis of the effect of thickness is done, where the transmittance and Raman scattering (using rhodamine 6G) are measured for varying gold layers from 5 to 21 nm. The thickness was proved to be of great importance for optimizing the Raman enhancement, where a maximum was found at 13 nm. The nanohole array were also in general found beneficial for additionally enhancing the Raman signal. A transmittance minima and maxima were found in the region 200-1000 nm for the NPCs, where the minima redshifted as the thickness increased. The extraordinary transmission phenomena was however not observed at these thin gold layers. Oxygen plasma treatment further proved an effective treatment method to reduce the hydrophobic properties of the NPCs. Care needs be taken when using thin layers of gold with a PMMA base, as the PMMA structure could get severely damaged by the plasma. HPC also proved inadequate for this projects purpose, as water-based fluids easily damaged the surface despite a deposited gold layer on top.
317

Formation of Porous Metallic Nanostructures Electrocatalytic Studies on Self-Assembled Au@Pt Nanoparticulate Films, and SERS Activity of Inkjet Printed Silver Substrates

Banerjee, Ipshita January 2013 (has links) (PDF)
Porous, conductive metallic nanostructures are required in several fields, such as energy conversion, low-cost sensors etc. This thesis reports on the development of an electrocatalytically active and conductive membrane for use in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) and fabrication of low-cost substrates for Surface Enhanced Raman Spectroscopy (SERS). One of the main challenges facing large-scale deployment of PEMFCs currently is to fabricate a catalyst layer that minimizes platinum loading, maximizes eletrocatalytically active area, and maximizes tolerance to CO in the feed stream. Modeling the kinetics of platinum catalyzed half cell reactions occurring in a PEMFC using the kinetic theory of gases and incorporating appropriate sticking coefficients provides a revealing insight that there is scope for an order of magnitude increase in maximum current density achievable from PEMFCs. To accomplish this, losses due to concentration polarization in gas diffusion layers, which occur at high current densities, need to be eliminated. A novel catalyst design, based on a porous metallic nanostructure, which aims to overcome the limitations of concentration polarization as well as minimize the amount of platinum loading in PEMFCs is proposed. Fabrication steps involving controlled in-plane fusion of self-assembled arrays of core-shell gold-platinum nanoparticles (Au@Pt) is envisioned. The key steps involved being the development of a facile synthesis route to form Au@Pt nanoparticles with tunable platinum shell thicknesses in the 5 nm size range, the formation of large-scale 2D arrays of Au@Pt nanoparticles using guided self-assembly, and optimization of an RF plasma process to promote in-plane fusion of the nanoparticles to form porous, electrocatalytically active and electrically conductive membranes. This thesis consists of seven chapters. The first chapter provides an introduction into the topic of PEMFCs, some perspective on the current status of research and development of PEMFCs, and an outline of the thesis. The second chapter provides an overview on the methods used, characterization techniques employed and protocols followed for sample preparation. The third chapter describes the modelling of a PEMFC using the Kinetic theory of gases to arrive at an estimate of the maximum feasible current density, based on the kinetics of the electrocatalytic reactions. The fourth chapter presents the development of a simple protocol for synthesizing Au@Pt nanoparticles with control over platinum shell thicknesses from the sub monolayer coverage onwards. The results of spectroscopic and microscopic characterization establish the uniformity of coating and the absence of secondary nucleation. Chapter five describes the formation of a nanoporous, electrocatalytically active membrane by self-assembly to form bilayers of 2D arrays of Au@Pt nanoparticles and subsequent fusion using an RF plasma based process. The evolution of the electrocatalytic activity and electrical conductivity as a function of the duration of RF plasma treatment is monitored for Au@Pt nanoparticles with various extent of platinum coating. Spectroscopic, microscopic, electrical and cyclic voltammetry characterization of the samples at various stages were used to understand the structural evolution with RF plasma treatment duration and discussed. Next durability studies were carried out on the nanoporous, Au@Pt bilayer nanoparticle array with an optimum composition of Pt/Au atomic ratio of 0.88 treated to 16 minutes of argon plasma exposure. After this the novel catalyst membrane design of PEM fuel cell is revisited. Two different techniques are proposed so that the thin, nanoporous, metallic catalyst membrane achieves horizontal electronic resistance equivalent to that of the conventional gas diffusion layer with catalyst layer. The first technique proposes the introduction of gold coated polymeric mesh in between the thin, nanoporous, metallic catalyst membrane and bipolar plate and discusses the advantages. Later the gold coated polymeric mesh is introduced in a conventional membrane electrode assembly and efficiency of the polarization curves probed with and without the introduction of gold coated polymeric mesh. The second technique describes the results of fabrication of a nanoporous metallic membrane using multiple layers of 2D Au@Pt nanoparticle arrays at an optimum composition of Pt/Au atomic ratio of 0.88 to reduce the horizontal electronic resistance. Preliminary studies on the permeability of water through such membranes supported on a porous polycarbonate filter membrane are also presented. In chapter six, a simple reactive inkjet printing process for fabricating SERS active silver nanostructures on paper is presented. The process adapts a simple room temperature protocol, using tannic acid as the reducing agent, developed earlier in our group to fabricate porous silver nanostructures on paper using a commercial office inkjet printer. The results of SERS characterization, spectroscopic and microscopic characterizations of the samples and the comparison of the substrate’s long-term performance with respect to a substrate fabricated using sodium borohydride as the reducing agent is discussed. Preliminary findings on attempts to fabricate a conductive silver network using RF plasma induced fusion area also presented. Chapter seven provides a summary of the results, draws conclusions and a perspective on work required to accomplish the goals of incorporating the porous metallic nanostructures into PEMFCs.
318

Advanced Raman, SERS, and ROA studies of biomedical and pharmaceutical compounds in solution

Levene, Clare January 2012 (has links)
The primary purpose of this study was to investigate the combination of experimental and computational methods in the search for reproducible colloidal surface-enhanced Raman scattering of pharmaceutical compounds. In the search for optimal experimental conditions for colloidal surface-enhance Raman scattering, the amphipathic β-blocker propranolol was used as the target molecule. Fractional factorial designs of experiments were performed and a multiobjective evolutionary algorithm was used to find acceptable solutions, from the results, that were Pareto ranked. The multiobjective evolutionary algorithm suggested solutions outside of the fractional factorial design and the experiments were then performed in the laboratory. The results observed from the suggested solutions agreed with the solutions that were found on the Pareto front. One of the experimental conditions observed on the Pareto front was then used to determine the practical limit of detection of propranolol. The experimental conditions that were chosen for the limit of detection took into account reproducibility and enhancement, the two most important parameters for analytical detection using surface-enhanced Raman scattering. The principal conclusion to this study was that the combination of computational and experimental methods can reduce the need for experiments by > 96% and then selecting solutions from the Pareto front improved limit of detection by a factor of 24.5 when it was compared to the previously reported limit of detection for propranolol. Using the same experimental conditions that were used for the limit of detection, these experiments were extended to plasma spiked with propranolol in order to test detection of this pharmaceutical in biofluids. Concentrations of propranolol were prepared using plasma as the solvent and measured for detection using colloidal surface-enhanced Raman scattering. Detection was determined as <130 ng/mL, within physiological concentrations, previously achieved using separation techniques. The second part of this thesis also involved a combination of experimental and computational methods. Raman optical activity was utilized to investigate secondary structure of amino acids and diamino acid peptides in combination with density functional theory calculations. Amino acids are important biological molecules that have vital functions in the biological system. They have been recognized as neurotransmitters and implicated in neurodegenerative diseases. Raman and Raman optical activity experimental results were compared to determine site-specific acetylation, marker bands for constitutional isomers and identification of functional groups that interact with the solvent. The experimental spectra were then compared to those from the density functional theory calculations. The results indicated that; constitutional isomers cannot be distinguished from the Raman spectra but can be distinguished from the Raman optical activity spectra, site-specific acetylation can be identified from the Raman spectra, however, Raman optical activity provides more structural information in relation to acetylation. When the results were compared to the density functional theory calculations for the diamino acid peptides the results agreed reasonably well, however, agreement was not as good for the monoamino acids because diamino acid peptides support fewer conformations due to the peptide bond whereas monoamino acids can adopt a far greater number of conformations. Combined computational and experimental techniques have developed the ability to detect and characterize biomedical compounds, a significant move in the advancement of Raman spectroscopies.
319

Selection and Characterization of ssDNA Aptamers for Salivary Peptide Histatin 3 and Their Application Towards Assay and Point-of-Care Biosensing

Ojha, Yagya Raj January 2019 (has links)
No description available.
320

In situ Raman-Spektroskopie an Metallphthalocyaninen: Von ultradünnen Schichten zum organischen Feldeffekttransistor

Ludemann, Michael 01 July 2016 (has links)
Im ersten Teil der Arbeit werden Signalverstärkungsmechanismen für Raman-Spektroskopie erschlossen und evaluiert. Die als geeignet bewerteten Methoden finden im zweiten Teil ihre Anwendung zur Untersuchung der vibronischen Eigenschaften von dünnen Manganphthalocyaninschichten, die anschließend mit Kalium interkaliert werden. Hierbei sind verschiedene Phasen identifizierbar, die ein ganzzahliges Verhältnis von Kaliumatomen zu Manganphthalocyaninmolekülen besitzen. Im dritten Teil werden die elektrischen Eigenschaften durch die Verwendung dieses Materialsystems als aktives Medium eines Feldeffekttransistors untersucht.:1. Einleitung 2. Theoretische Grundlagen der angewendeten Effekte 3. Experimentelle Details 4. Herstellung, Charakterisierung und Optimierung von Substraten für Raman-Oberflächenverstärkungseffekte 5. Untersuchung zu Verstärkungsmechanismen des Raman-Effekts an dünnen organischen Schichten 6. Interkalation mit Kalium in dünne Schichten aus Manganphthalocyanin 7. MnPc unter Spannungs- und Stromeinfluss - Der Feldeffekttransistor 8. Zusammenfassung Anhang Literatur Abbildungsverzeichnis Eidesstattliche Versicherung Lebenslauf Liste wissenschaftlicher Leistungen Danksagung

Page generated in 0.0286 seconds