• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 17
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 17
  • 14
  • 14
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Equações diferenciais parciais elípticas multivalentes: crescimento crítico, métodos variacionais / Multivalued elliptic partial differential equations: critical growth, variational methods

Carvalho, Marcos Leandro Mendes 27 September 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-25T14:36:31Z No. of bitstreams: 2 Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-25T14:39:40Z (GMT) No. of bitstreams: 2 Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-11-25T14:39:40Z (GMT). No. of bitstreams: 2 Tese - Marcos Leandro Mendes Carvalho - 2013.pdf: 2450216 bytes, checksum: 78d3d3298d2050e0e82310644ecda305 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-09-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we develop arguments on the critical point theory for locally Lipschitz functionals on Orlicz-Sobolev spaces, along with convexity, minimization and compactness techniques to investigate existence of solution of the multivalued equation −∆Φu ∈ ∂ j(.,u) +λh in Ω, where Ω ⊂ RN is a bounded domain with boundary smooth ∂Ω, Φ : R → [0,∞) is a suitable N-function, ∆Φ is the corresponding Φ−Laplacian, λ > 0 is a parameter, h : Ω → R is a measurable and ∂ j(.,u) is a Clarke’s Generalized Gradient of a function u %→ j(x,u), a.e. x ∈ Ω, associated with critical growth. Regularity of the solutions is investigated, as well. / Neste trabalho desenvolvemos argumentos sobre a teoria de pontos críticos para funcionais Localmente Lipschitz em Espaços de Orlicz-Sobolev, juntamente com técnicas de convexidade, minimização e compacidade para investigar a existencia de solução da equação multivalente −∆Φu ∈ ∂ j(.,u) +λh em Ω, onde Ω ⊂ RN é um domínio limitado com fronteira ∂Ω regular, Φ : R → [0,∞) é uma N-função apropriada, ∆Φ é o correspondente Φ−Laplaciano, λ > 0 é um parâmetro, h : Ω → R é uma função mensurável e ∂ j(.,u) é o gradiente generalizado de Clarke da função u %→ j(x,u), q.t.p. x ∈ Ω, associada com o crescimento crítico. A regularidade de solução também será investigada.
32

O nÃcleo do calor em uma variedade riemanniana / The heat kernel on a Riemannian manifold

Landerson Bezerra Santiago 25 February 2011 (has links)
Em uma variedade riemanniana conexa e compacta introduziremos o conceito de espectro do operador laplaciano. Utilizando a existÃncia e a unicidade do nÃcleo do calor em uma variedade riemanniana,provaremos o teorema de decomposiÃÃo de Hodge. Este teorema afirma que o espaÃo de Hilbert L2(M, g) se decompÃe em uma soma direta de subespaÃos de dimensÃo finita, onde cada subespaÃo à o auto-espaÃo associado a um autovalor do laplaciano. AlÃm disso, os autovalores formam uma sequÃncia nÃo-negativa que acumula somente no infinito. Em seguida iniciaremos a construÃÃo do nÃcleo do calor e, por fim, mostraremos que se duas variedades riemannianas sÃo isospectrais entÃo elas possuem o mesmo volume. / In a connected and compact Riemannian Manifold we will introduce the concept of spectre of Laplace operator. Using the existence and unicity of the heat kernel in Riemannian manifold we proof the Hodge composition theorem. This theorem states that the Hilbert space L2(M, g) decompose in direct sum of subspaces with finite dimesion, where each subspace is the eigen-space relative of a eigenvalue of the laplacian. Furthermore, the eigenvalues form a nonnegative sequence the accumulate only in the infinity. After that we begin the construction of the heat kernel and, finally, we show that two isospetral Riemannian manifolds have the same volume.
33

Problemas estacionários para fluidos incompressíveis com uma lei de potência em domínios com canais ilimitados / Stationary problems for incompressible fluids with a power law in channels with unlimited domains

Dias, Gilberlandio Jesus, 1976- 08 May 2011 (has links)
Orientador: Marcelo Martins dos Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T21:33:13Z (GMT). No. of bitstreams: 1 Dias_GilberlandioJesus_D.pdf: 729241 bytes, checksum: 697941f5eb00690299a087d1432b35cf (MD5) Previous issue date: 2011 / Resumo: Neste trabalho estudamos o escoamento de fluidos viscosos não Newtonianos, modelados pelo sistema estacionário incompressível de Navier-Stokes obedecendo a uma Lei de Potência, em domínios com canais infinitos. Tratamos basicamente de dois tipos de domínios: domínios com canais cuja seção transversal é limitada e domínios com canais possuindo seção transversal ilimitada. Tanto para domínios com seção transversal limitada quanto para domínios com seção transversal ilimitada, estudamos o problema proposto por Ladyzhenskaya e Solonnikov [Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 96(1980)117-160 (English Transl.: J. Soviet Math., 21, 1983, 728-761)]. Findamos nosso trabalho fazendo um estudo sobre estimativas em espaços de Sobolev com peso para soluções do sistema de Stokes com Lei de Potência / Abstract: In this work we study the flow of the viscous non-Newtonian fluids, modeled by the steady incompressible Navier-Stokes system obeying a power-law, in domains with infinite channels. We deal basically two types of domains: domains with channels whose cross section is limited and domains with channels having unlimited cross section. For both domains with limited cross section and for domains with unbounded cross section, we study the problem proposed by Ladyzhenskaya and Solonnikov [Zap. Nauchno. Sem Leningrad Otdel. Mat. Inst. Steklov (Lomi), 96 (1980) 117-160 (Portugu¿es Transl.: J. Soviet Math., 21, 1983, 728-761)]. We finished our work making a study of estimates in Sobolev weight spaces for solutions of the Stokes power-law system / Doutorado / Matematica / Doutor em Matemática
34

Etude d'un problème pour le bilaplacien dans une famille d'ouverts du plan / Study of a problem for the biharmonic operator, in a open family of plan

Tami, Abdelkader 01 December 2016 (has links)
L’objet de cette thèse est l’étude du problème Δ 2uω = fω avec les conditions aux limites Uω = Δ uω = 0, le second membre étant supposé dépendre continûment de ω dans L2(ω), où ω = {(r, θ); 0 < r < 1, 0 < θ < ω} , 0 < ω ≤ π, est une famille de secteurs tronqués du plan. Si ω < π on sait d’après Blum et Rannacher (1980) que la solution de ce problème uω se décompose au voisinage de l’origine en uω = u1,ω + u2,ω + u3,ω, (1) où u1,ω, u2,ω sont les parties singulières de uω et u3,ω la partie régulière. En effet, au voisinage de l’origine u1,ω (resp. u2,ω, u3,ω) est de régularité H1+πω−ǫ (resp. H2+πω−ǫ, H4) pour tout Q > 0, tandis que la solution uπ appartient, au moins au voisinage de l’origine, à l’espace H4(π), où π est le demi-disque supérieur de centre 0 et de rayon r = 1. On voit clairement une résolution de la singularité près de l’angle π dont la description est l’objectif principal de ce travail. Le résultat obtenu est que la décomposition (1) de uω est uniforme par rapport à ω, lorsque ω → π, pour les meilleures topologies possibles pour chacun des termes, et converge terme à terme vers le développement limité de uπ au voisinage de 0. / In this work, we study the family of problems Δ 2uω = fω with boundary conditionuω = Δ uω = 0. There, the second member is assumed to depend smoothly on ω in L2(ω), where ω = {(r, θ); 0 < r < 1, 0 < θ < ω} , 0 < ω ≤ π, is a family of truncated sectors of the plane. If ω < π it is known from Blum et Rannacher (1980) that the solution uω decomposes as uω = u1,ω + u2,ω + u3,ω, (1) where u1,ω, u2,ω are singular and u3,ω is regular. Indeed, near the origin, u1,ω(resp. u2,ω, u3,ω) is of regularity H1+πω−ǫ (resp. H2+πω−ǫ, H4) for every Q > 0, while the solution uπ is, in the neighborhood of the origin again, of regularity H4. One clearly sees a resolution of the singularity near the angle π whose descriptionis the main objective of this work. The obtained result is that there exists a decomposition (1) of uω which is uniform with respect to ω, when ω → π, with the best possible topologies for each term, and which term by term convergestowards the Taylor expansion of uπ near 0.
35

Nonlinear Boundary Conditions in Sobolev Spaces

Richardson, Walter Brown 12 1900 (has links)
The method of dual steepest descent is used to solve ordinary differential equations with nonlinear boundary conditions. A general boundary condition is B(u) = 0 where where B is a continuous functional on the nth order Sobolev space Hn[0.1J. If F:HnCO,l] —• L2[0,1] represents a 2 differential equation, define *(u) = 1/2 IIF < u) li and £(u) = 1/2 l!B(u)ll2. Steepest descent is applied to the functional 2 £ a * + £. Two special cases are considered. If f:lR —• R is C^(2), a Type I boundary condition is defined by B(u) = f(u(0),u(1)). Given K: [0,1}xR—•and g: [0,1] —• R of bounded variation, a Type II boundary condition is B(u) = ƒ1/0K(x,u(x))dg(x).
36

Construction of p-energy and associated energy measures on the Sierpiński carpet / Sierpiński carpet上のp-エネルギーと対応するエネルギー測度の構成

Shimizu, Ryosuke 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24262号 / 情博第806号 / 新制||情||136(附属図書館) / 京都大学大学院情報学研究科先端数理科学専攻 / (主査)教授 木上 淳, 教授 磯 祐介, 准教授 白石 大典 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
37

Équations de Stokes et d'Oseen en domaine extérieur avec diverses conditions aux limites. / Stokes and Oseen equations in an exterior domain with different boundary conditions.

Meslameni, Mohamed 01 March 2013 (has links)
On s’intéresse aux équations stationnaires de Navier-Stokes linéarisées, il s'agit ici des équations d'Oseen et des équations de Stokes posées dans des domaines infinis, comme les domaines extérieurs, en dimension trois et l'espace tout entier. Le but est d'étudier l'existence de solutions généralisés et de solutions fortes dans un cadre général non nécessairement hilbertien. On s'intéresse aussi au cas des solutions très faibles. Dans ce travail, on considère aussi bien des conditions aux limites classiques de type Dirichlet que des conditions aux limites non standard portant sur certaines composantes du champ de vitesses, du tourbillon, voir du champ de pression. Les espaces de Sobolev classiques ne sont pas adaptés à l'étude de ces problèmes pour une telle géométrie. Pour une bonne analyse mathématique, nous avons choisi de travailler dans le cadre des espaces de Sobolev avec poids, ce qui permet en particulier de mieux contrôler le comportement à l'infini de la solution. / In this work, we study the linearized Navier-Stokes equations in an exterior domain or in the whole space at the steady state, that is, the Stokes equations and the Oseen equations. We give existence, uniqueness and regularity of solutions. The case of very weak solutions is also treated. We consider not only the Dirichlet boundary conditions but also the Non Standard boundary conditions, on some components of the velocity field, vorticity and also on the pressure. Since the domain is not bounded, the classical Sobolev spaces are not adequate. Therefore, a specific functional framework is necessary which also has to take into account the behaviour of the functions at infinity. Our approach rests on the use of weighted Sobolev spaces.
38

Interpolation of non-smooth functions on anisotropic finite element meshes

Apel, Th. 30 October 1998 (has links) (PDF)
In this paper, several modifications of the quasi-interpolation operator of Scott and Zhang (Math. Comp. 54(1990)190, 483--493) are discussed. The modified operators are defined for non-smooth functions and are suited for the application on anisotropic meshes. The anisotropy of the elements is reflected in the local stability and approximation error estimates. As an application, an example is considered where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges.
39

On Holder continuity of weak solutions to degenerate linear elliptic partial differential equations

Mombourquette, Ethan 13 August 2013 (has links)
For degenerate elliptic partial differential equations, it is often desirable to show that a weak solution is smooth. The first and most difficult step in this process is establishing local Hölder continuity. Sufficient conditions for establishing continuity have already been documented in [FP], [SW1], and [MRW], and their necessity in [R]. However, the complexity of the equations discussed in those works makes it difficult to understand the core structure of the arguments employed. Here, we present a harmonic-analytic method for establishing Hölder continuity of weak solutions in context of a simple linear equation div(Q?u) = f in a homogeneous space structure in order to showcase the form of the argument. Ad- ditionally, we correct an oversight in the adaptation of the John-Nirenberg inequality presented in [SW1], restricting it to a much smaller class of balls.
40

Sobolev Gradient Flows and Image Processing

Calder, Jeffrey 25 August 2010 (has links)
In this thesis we study Sobolev gradient flows for Perona-Malik style energy functionals and generalizations thereof. We begin with first order isotropic flows which are shown to be regularizations of the heat equation. We show that these flows are well-posed in the forward and reverse directions which yields an effective linear sharpening algorithm. We furthermore establish a number of maximum principles for the forward flow and show that edges are preserved for a finite period of time. We then go on to study isotropic Sobolev gradient flows with respect to higher order Sobolev metrics. As the Sobolev order is increased, we observe an increasing reluctance to destroy fine details and texture. We then consider Sobolev gradient flows for non-linear anisotropic diffusion functionals of arbitrary order. We establish existence, uniqueness and continuous dependence on initial data for a broad class of such equations. The well-posedness of these new anisotropic gradient flows opens the door to a wide variety of sharpening and diffusion techniques which were previously impossible under L2 gradient descent. We show how one can easily use this framework to design an anisotropic sharpening algorithm which can sharpen image features while suppressing noise. We compare our sharpening algorithm to the well-known shock filter and show that Sobolev sharpening produces natural looking images without the "staircasing" artifacts that plague the shock filter. / Thesis (Master, Mathematics & Statistics) -- Queen's University, 2010-08-25 10:44:12.23

Page generated in 0.0488 seconds