• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 17
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 17
  • 14
  • 14
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimal concentration for SU(1,1) coherent state transforms and an analogue of the Lieb-Wehrl conjecture for SU(1,1)

Bandyopadhyay, Jogia 30 June 2008 (has links)
We derive a lower bound for the Wehrl entropy in the setting of SU(1,1). For asymptotically high values of the quantum number k, this bound coincides with the analogue of the Lieb-Wehrl conjecture for SU(1,1) coherent states. The bound on the entropy is proved via a sharp norm bound. The norm bound is deduced by using an interesting identity for Fisher information of SU(1,1) coherent state transforms on the hyperbolic plane and a new family of sharp Sobolev inequalities on the hyperbolic plane. To prove the sharpness of our Sobolev inequality, we need to first prove a uniqueness theorem for solutions of a semi-linear Poisson equation (which is actually the Euler-Lagrange equation for the variational problem associated with our sharp Sobolev inequality) on the hyperbolic plane. Uniqueness theorems proved for similar semi-linear equations in the past do not apply here and the new features of our proof are of independent interest, as are some of the consequences we derive from the new family of Sobolev inequalities. We also prove Fisher information identities for the groups SU(n,1) and SU(n,n).
42

Controle na fronteira para um sistema de equações de ondas

Andrade, Juliano de [UNESP] 13 December 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-12-13Bitstream added on 2014-06-13T18:07:01Z : No. of bitstreams: 1 andrade_j_me_sjrp.pdf: 383087 bytes, checksum: ab50e9b76a6329cf8014c0127f5dc9ae (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Um problema de controle exato na fronteira para um sistema de equações de ondas acopladas e considerado em um retângulo do plano. Obtem-se controle de quadrado integrável para estados iniciais de energia finita. / We are concerned with a problem of exact boundary controllability for a coupled sistem of wave equations in a rectangle of the plane. We obtain square integrable control for initial state with nite energy.
43

[en] WEAK SOLUTIONS FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER / [pt] SOLUÇÕES FRACAS DE EQUAÇÕES DIFERENCIAIS ELÍPTICAS DE SEGUNDA ORDEM

GABRIEL DE LIMA MONTEIRO 08 January 2019 (has links)
[pt] Esse trabalho tem como objetivo ser uma introdução ao estudo da existência e unicidade de soluções fracas para equações diferenciais parciais elípticas. Começamos definindo o espaço de Sobolev para, a partir da definição, provarmos algumas propriedades básicas que nos ajudarão no estudo das equações diferenciais parciais elípticas. Finalizamos com o desenvolvimento do Teorema de Lax-Milgram e de Stampacchia que permitirão o uso de técnicas de Análise Funcional para estudarmos alguns exemplos de equações elípticas. / [en] This dissertation aims to be an introduction to the study of the existence and uniqueness of weak solutions for elliptic partial differential equations. We begin by defining the Sobolev spaces and proving some basics properties that will assist in the study of the elliptical equations. Lastly, we develop the Theorems of Lax-Milgram and Stampacchia that allow the use of Functional Analysis for the studying of some examples of elliptic equations.
44

Existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / Existence of multiple positive solutions for a class of quaselinear elliptic problems.

MENESES, João Paulo Formiga de. 13 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-13T18:38:15Z No. of bitstreams: 1 JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5) / Made available in DSpace on 2018-08-13T18:38:15Z (GMT). No. of bitstreams: 1 JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5) Previous issue date: 2016-11-25 / Neste trabalho, utilizando sub e supersoluções e métodos variacionais sobre espaços de Orlicz-Sobolev, estudamos a existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / In this work, using sub and supersolutions and variational methods on Orlicz-Sobolev spaces, we study the existence of multiple positive solutions for a class of quasilinear elliptic problems.
45

O problema de Cauchy para a equação de Benjamin-Ono-Zakharov-Kuznetsov / The Cauchy problem for the Benjamin-Ono-Zakharov-Kuznetsov equation

Cunha, Alysson Tobias Ribeiro, 1976- 24 August 2018 (has links)
Orientador: Ademir Pastor Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-24T23:55:39Z (GMT). No. of bitstreams: 1 Cunha_AlyssonTobiasRibeiro_D.pdf: 2613588 bytes, checksum: a1484c40a841c1479e707e39620338b7 (MD5) Previous issue date: 2014 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full electronic digital document / Doutorado / Matematica / Doutor em Matemática
46

Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes

Apel, T., Nicaise, S. 30 October 1998 (has links) (PDF)
This paper is concerned with the anisotropic singular behaviour of the solution of elliptic boundary value problems near edges. The paper deals first with the description of the analytic properties of the solution in newly defined, anisotropically weighted Sobolev spaces. The finite element method with anisotropic, graded meshes and piecewise linear shape functions is then investigated for such problems; the schemes exhibit optimal convergence rates with decreasing mesh size. For the proof, new local interpolation error estimates in anisotropically weighted spaces are derived. Moreover, it is shown that the condition number of the stiffness matrix is not affected by the mesh grading. Finally, a numerical experiment is described, that shows a good agreement of the calculated approximation orders with the theoretically predicted ones.
47

Charakterizace funkcí s nulovou stopou pomocí funkce vzdálenosti od hranice / Characterization of functions with zero traces via the distance function

Turčinová, Hana January 2019 (has links)
Consider a domain Ω ⊂ RN with Lipschitz boundary and let d(x) = dist(x, ∂Ω). It is well known for p ∈ (1, ∞) that u ∈ W1,p 0 (Ω) if and only if u/d ∈ Lp (Ω) and ∇u ∈ Lp (Ω). Recently a new characterization appeared: it was proved that u ∈ W1,p 0 (Ω) if and only if u/d ∈ L1 (Ω) and ∇u ∈ Lp (Ω). In the author's bachelor thesis the condition u/d ∈ L1 (Ω) was weakened to the condition u/d ∈ L1,p (Ω), but only in the case N = 1. In this master thesis we prove that for N ≥ 1, p ∈ (1, ∞) and q ∈ [1, ∞) we have u ∈ W1,p 0 (Ω) if and only if u/d ∈ L1,q (Ω) and ∇u ∈ Lp (Ω). Moreover, we present a counterexample to this equivalence in the case q = ∞. 1
48

Matematické modelování perfúze jater / Mathematical modelling of liver perfusion

Kociánová, Barbora January 2019 (has links)
Liver perfusion can be modelled by Darcy's flow in multiple connected com- partments. The first part of the present thesis shows in detail the existence of a solution to the multi-compartmental model. The flow in each compartment in this model is characterized by a permeability tensor, which is obtained from the geometry of liver vasculature. It turns out that this tensor might be singular, which potentially causes solvability problems. The second part deals with this abnormality in one compartment. By using the theory of degenerate Sobolev spaces, an appropriate weak formulation is defined. Analogues of Poincar'e and traces inequalities in this degenerate setting are proved, which also imply the existence of the weak solutions. In addition, this part justifies another possibil- ity how to deal with degenerate permeability, which is regularizing the tensor by adding a small isotropic permeability to it. In the third part, the aim is to find subdomains of autonomous perfusion with respect to the source positions. This is formulated as a minimization problem and several numerical results are presented. 1
49

On Hamiltonian elliptic systems with exponential growth in dimension two / Sistemas elípticos hamiltonianos com crescimento exponencial em dimensão dois

Leuyacc, Yony Raúl Santaria 23 June 2017 (has links)
In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation. / Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita.
50

Dinâmica da equação de Schrödinger com potencial delta de Dirac em espaço com peso / Dynamics of Schrödinger equation with Dirac delta potential in weighted space

Vieira, Ânderson da Silva 17 July 2014 (has links)
Nesse trabalho, estudamos a equação de Schrödinger não-linear com uma função potencial delta atrativa. As soluções para essa equação tem uma componente localizada e uma dispersiva. Além de estudar o comportamento das soluções dessa equação em espaços de Sobolev clássicos, mostramos algumas propriedades do grupo unitário em espaços Lp, L2 com peso, Sobolev com peso e assim obtemos alguns resultados de boa colocação local e global das soluções. O ponto central desta tese é mostrarmos a existência de uma variedade invariante centro que irá consistir de órbitas periódicas no tempo. / In this work, we study the nonlinear Schrodinger equation with an attractive delta function potential.The solutions to this equation have a localized and a dispersive component. In addition to studying the behavior of solutions of this equation in classical Sobolev space, we show some properties for the unitary group in Lp, weighted L2 and Sobolev spaces and so we get some results of local and global well-posedness of solutions. The central theme this thesis is to show the existence of a center invariant manifold, which will consist of time-periodic orbits.

Page generated in 0.0402 seconds