• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 305
  • 96
  • 34
  • 21
  • 15
  • 9
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 560
  • 560
  • 313
  • 292
  • 116
  • 83
  • 76
  • 74
  • 67
  • 66
  • 60
  • 59
  • 58
  • 58
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Influence of the types of grass of green roofs for the design of thermal comfort in buildings

Rodríguez, José, Vilela, Karina 01 January 2022 (has links)
The main objective of the research was to study the effect of the Stenotaphrum secundatum and Zoysia japonica grasses on the higher and lower environment temperature and lower relative humidity; the secondary objective was to compare whether the Stenotaphrum secundatum grass has a greater impact on the environment parameters of comfort than the Zoysia japonica species. Six materials were used for the extensive green roof, each one forming a layer of the system, which were placed on the concrete slab and in an upward direction, including: PVC geomembrane, Polyester asphalt carpet, Pumice stone, Planar geodren, Prepared soil with guano, compost, muss, and Substrate. In order to make measurements of the higher and lower ambient temperature, a digital thermometer and lower relative humidity meter was used. Stenotaphrum secundatum and Zoysia japonica were used as grass species, as they were the most representative of the grasses used in extensive green roofs. The experimentation was carried out for 2 months from September to October of 2021, having built 3 modules of 1000x600mm roofs, including 1module of the concrete roof with ceramic covering and 2 modules of extensive green roof with two types of grass: Stenotaphrum secundatum and Zoysia japonica. The readings of the environment temperature and relative humidity of the higher and lower part were taken in six points of each module to have a greater number of representative measurements. The watering of the 2 green roof modules with grass was carried out twice a week, applying 5L of water per module. The results indicate that the Zoysia japonica grass is the one that presents a better behavior before the higher ambient temperature and that the Stenotaphrum secundatum grass behaves better before the lower ambient temperature and lower relative humidity. The conclusions indicate that the Stenotaphrum secundatum grass behaves better temperature and relative humidity; the two grass types exhibit different behavior.
212

BAYESIAN METHODS FOR LEARNING AND ELICITING PREFERENCES OF OCCUPANTS IN SMART BUILDINGS

Nimish M Awalgaonkar (12049379) 07 February 2022 (has links)
<p>Commercial buildings consume more than 19% of the total energy consumption in the United States. Most of this energy is consumed by the HVAC and shading/lighting systems inside these buildings. The main purpose of such systems is to provide satisfactory thermal and visual environments for occupants working inside these buildings. Providing satisfactory thermal/visual conditions in indoor environments is critical since it directly affects occupants’ comfort, health and productivity and has a significant effect on energy performance of the buildings. </p> <p>Therefore, efficiently learning occupants’ preferences is of prime importance to address the dual energy challenge of reducing energy usage and providing occupants with comfortable spaces at the same time. The objective of this thesis is to develop robust and easy to implement algorithms for learning and eliciting thermal and visual preferences of office occupants from limited data. As such, the questions studied in this thesis are: 1) How can we exploit concepts from utility theory to model (in a Bayesian manner) the hidden thermal and visual utility functions of different occupants? Our central hypothesis is that an occupant’s preference relation over different thermal/visual states of the room can be described using a scalar function of these states, which we call the “occupant’s thermal/visual utility function.” 2) By making use of formalisms in Bayesian decision theory, how can we learn the maximally preferred thermal/visual states for different occupants without requiring unnecessary or excessive efforts from occupants and/or the building engineers? The challenge here is to minimize the number of queries posed to the occupants to learn the maximally preferred thermal/visual states for each occupant. 3) Inferring preferences of occupants based on their responses to the thermal/visual comfort-based questionnaire surveys is intrusive and expensive. Contrary to this, how can we learn the thermal/visual preferences of occupants from cheap and non-intrusive human-building interactions’ data? 4) Lastly, based on the observation that the occupant population decompose into different clusters of occupants having similar preferences, how can we exploit the collective information obtained from the similarities in the occupants’ behavior? This thesis presents viable answers to the aforementioned questions in the form of probabilistic graphical models/frameworks. In future, I hope that these frameworks would prove to be an important step towards the development of intelligent thermal/visual systems which would be able to respond to occupants’ personalized comfort needs. Furthermore, in order to encourage the use of these frameworks and ensure reproducibility in results,various implementations of this work (namely GPPref, GPElicit and GPActToPref) are published as open-source Python packages.</p><br>
213

Vulnerability of U.S. Residential Building Stock to Heat: Status Quo, Trends, Mitigation Strategies, and the Role of Energy Efficiency

January 2019 (has links)
abstract: Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban areas is growing. Because people in modern societies (and in particular, vulnerable groups such as the elderly) spend most of their time inside their home, indoor exposure to heat is the underlying cause in a considerable fraction of heat-related morbidity and mortality. Notably, this can be observed in many US cities despite the high prevalence of mechanical air conditioning in the building stock. Therefore, part of the effort to reducing the overall vulnerability of urban populations to heat needs to be dedicated to understanding indoor exposure, its underlying behavioral and physical mechanisms, health outcomes, and possible mitigation strategies. This dissertation is an effort to advance the knowledge in these areas. The cities of Houston, TX, Phoenix, AZ, and Los Angeles, CA, are used as test beds to assess exposure and vulnerability to indoor heat among people 65 and older. Measurements and validated whole-building simulations were used in conjunction with heat-vulnerability surveys and epidemiological modelling (of collaborators) to (1) understand how building characteristics and practices govern indoor exposure to heat among the elderly; (2) evaluate mechanical air conditioning as a reliable protective factor against indoor exposure to heat; and (3) identify potential impacts from the evolving building stock and a warming urban climate. The results show strong associations between indoor heat exposure and certain health outcomes and highlight the vulnerability of elderly populations to heat despite the prevalence of air conditioning systems. Given the current construction practices and urban warming trends, this vulnerability will continue to grow. Therefore, policies promoting climate adaptive buildings features, as well as better access to reliable and affordable AC are needed. In addition, this research draws attention to the significant potential health consequences of large-scale power outages and proposes the implementation of passive survivability in regulations as one important preventative action. / Dissertation/Thesis / Doctoral Dissertation Engineering 2019
214

Studying building behaviors by using the Building Management System of a new teaching building : A study case of a school building in Stockholm

Zhang, Kaiying January 2020 (has links)
Building management system (BMS) offers a wide range of measurements and historical data about the building but few types of researches use these data to analyze the building performance. This study aims to explore the indoor climate and building insulation by taking advantage of the BMS of the study case, which 767 sensors are installed in the room and wall structures and the signal data are available at the online web application. In addition, during the inspection, several error sensors and meters are detected are discussed as feedback for the system. It is concluded that the building management system is a good tool to study the building performance in different aspects and the measurements from the sensors are helpful but need validation by conducting a further field measurement in the building.
215

Improving indoor thermal comfort in residential buildings in Andean regions of Peru

Basmaci, Benjamin January 2018 (has links)
In the Peruvian Andes, inadequate housing represents an important problem for the local rural people. Over 3000 meters above sea level, communities suffer from very low indoor temperatures this becomes an issue which affects the health and indoor thermal comfort of the building. At early winter mornings, outdoor temperatures can occasionally go down to -15°C and indoor temperatures can drop below zero. Previous work in the field has been done by the Pontifical Catholic University of Peru PUCP, to address thermal comfort in Langui, Peru involving participatory design techniques, multidisciplinary approaches and a focus on sustainability. Their most recent design is based on an attached passive solar heating system similar to a Trombe wall. The effect of housing environment on human health has been an acknowledged issue for many years. In the area, the occupants live with high levels of air infiltration, dirt floor (soil), simple windows, metallic or wood doors, roof most commonly made of corrugated metal sheets, adobe walls, no additional insulation attached and no house heating system. This thesis aims to contribute to a current body of research on thermal comfort and provide insights on how the building environment in Langui can be improved. The main objective is to improve thermal comfort in residential buildings in Andean regions of Peru. An improvement was made by installing a Heat Transfer Rocket which increased the temperature while the relative-humidity stayed steady. Overall, the study shows that indoor improvements can increase thermal comfort in Andean regions of Peru.
216

Improving the thermal climate of schools in semi-desert climate : A case study of solutions in La Guajira, Colombia / Förbättringar av det termiska klimatet på skolor i halvökenklimat : En fallstudie av lösningar i La Guajira, Colombia

Johansson, Michael January 2023 (has links)
As the climate changes, hot regions like La Guajira's semi-desert will become even hotter. It is projected that the average temperature in this region will increase by 2.4 ℃ over the course of this century, with a 20 % reduction in precipitation. To ensure that these areas remain habitable in the future, implementing technical solutions will be necessary to mitigate the impacts on the people living there. A field study assessed the thermal comfort at a school in Manaure, which experiences excessively high temperatures that exceed international standards for good thermal comfort. Through subjective and objective data collection, the field study concluded that the school's thermal climate would negatively impact at least 83 % of the students. The study also found that the surface temperature of desks not exposed to sunlight reached a temperature of 43 ℃. To improve thermal comfort, three potential solutions were explored. Isolating the roof reduces incoming radiation and prevents excess heat from warming the structure. Increasing the ventilation rate helps dissipate hot air, and planting trees creates a cooler supply air temperature. Two of the three measures were implemented, and the tree-planting project is ongoing. Temperatures were measured on the roof, walls, desk and floor during a hot day. Together with a survey to students and teachers to evaluate the absolute temperature and the experienced thermal comfort. The results demonstrated that isolating the roof and installing a solar chimney on the classroom's roof can significantly lower the operative temperature to 36 ℃ and 35 ℃, respectively. These improvements can improve learning by 25 % due to better thermal comfort compared to a classroom that has not been modified. As a bonus, the acoustics were also improved in classrooms, resulting in a lower echo level. Overall, the study demonstrated that it is possible to significantly improve the thermal comfort of classrooms in semi-desert regions, even those without access to electricity. An added benefit is that these solutions have a low installation cost and no operational costs. However, further research is needed to determine the impact of heat on children and whether these measures will improve their learning outcomes. / A medida que cambie el clima, las regiones cálidas como el subdesierto de La Guajira se volverán aún más calientes. Se proyecta que la temperatura promedio en esta región aumente 2,4 ℃ en el transcurso de este siglo, con una reducción del 20 % en las precipitaciones. Para garantizar que estas áreas sigan siendo habitables en el futuro, será necesario implementar soluciones técnicas para mitigar los impactos en las personas que viven allí. Un estudio de campo evaluó el confort térmico en una escuela de Manaure, que experimenta temperaturas excesivamente altas que superan los estándares internacionales de buen confort térmico. A través de la recolección de datos subjetivos y objetivos, el estudio de campo concluyó que el clima térmico de la escuela impactaría negativamente al menos al 83 % de los estudiantes. El estudio también encontró que la temperatura de la superficie de los escritorios no expuestos a la luz solar alcanzó una temperatura de 43 ℃. Para mejorar el confort térmico, se exploraron tres posibles soluciones. Aislar el techo reduce la radiación entrante y evita que el exceso de calor caliente la estructura. El aumento de la tasa de ventilación ayuda a disipar el aire caliente y la plantación de árboles crea una temperatura del aire de suministro más fría. Se implementaron dos de las tres medidas y el proyecto de plantación de árboles está en curso. Se midieron las temperaturas en el techo, las paredes, el escritorio y el piso durante un día caluroso. Junto con una encuesta a estudiantes y docentes para evaluar la temperatura absoluta y el confort térmico experimentado. Los resultados demostraron que aislar el techo e instalar una chimenea solar en el techo del aula puede reducir significativamente la temperatura operativa a 36 ℃ y 35 ℃, respectivamente. Estas mejoras pueden mejorar el aprendizaje en un 25 % debido a un mejor confort térmico en comparación con un aula que no ha sido modificada. Como beneficio adicional, también se mejoró la acústica en las aulas, lo que resultó en un nivel de eco más bajo. En general, el estudio demostró que es posible mejorar significativamente el confort térmico de las aulas en las regiones semidesérticas, incluso aquellas sin acceso a la electricidad. Un beneficio adicional es que estas soluciones tienen un bajo costo de instalación y no tienen costos operativos. Sin embargo, se necesita más investigación para determinar el impacto del calor en los niños y si estas medidas mejorarán sus resultados de aprendizaje. / När klimatet förändras kommer redan varma regioner som halvöken i La Guajira, Colombia att bli ännu varmare. Den genomsnittliga temperaturen i regionen förväntas att öka med 2,4 ℃ under det här århundradet, samtidigt som nederbörden minskar med     20 %. För att dessa områden ska vara beboeliga i framtiden kommer det vara nödvändigt att implementera tekniska lösningar för att mildra konsekvenserna för de människor som bor där. En fältstudie genomfördes för att undersöka termisk komfort på en skola i Manaure, som upplever extremt höga temperaturer vilket överskrider internationella standarder inom termisk komfort. Genom subjektiv och objektiv datainsamling konstaterade fältstudien att skolans termiska klimat kommer påverka minst 83% av eleverna negativt. Studien visade också att temperaturen på skrivborden som inte utsatts för solljus nådde 43 ℃. Temperaturer mättes på tak, väggar, skrivbord och golv under en varm dag. Tillsammans med en undersökning till elever och lärare för att utvärdera den absoluta temperaturen och den upplevda termiska komforten. För att förbättra den termiska komforten undersöktes tre olika möjligheter. Att isolera taket minskar den inkommande strålningen och förhindrar att överflödig värme värmer upp konstruktionen. Ökningen av ventilationen hjälper till att avlägsna het luft och sist även plantera träd för att skapa en svalare utomhustemperatur. Av de tre åtgärderna genomfördes två, och projektet med att plantera träd pågår. Resultaten visade att den operativa temperaturen kan sänkas till 36 ℃ om taket isoleras och ytterligare till 35 ℃ om en solskorsten installeras på taket i klassrummen. Sammantaget kan inlärningen förbättras med åtminstone 25 % jämfört med ett klassrum som inte förbättrades. En positiv bieffekt var att akustiken i klassrummen förbättrades genom mindre eko. Sammanfattningsvis visade studien att det är möjligt att betydligt förbättra den termiska komforten i klassrum i halvökenklimat, även i klassrum utan tillgång till el. En annan fördel är att dessa lösningar har en låg installationskostnad och inga driftskostnader. Dock krävs ytterligare undersökningar för att fastställa vilken påverkan värme har på barn och om dessa åtgärder kommer att förbättra deras lärande.
217

Adaptable housing during crisis : Sustainable transition from tents to permanent accommodations. / Anpassningsbara boenden under kris : en hållbar övergång från tält till permanent boenden.

Dam, Alex January 2023 (has links)
This study delves into the development of a long-term, sustainable housing solution to address the challenges faced during crisis when people are in immediate need of an accommodation. While temporary tents have been traditionally employed as shelters, their inefficiency in colder climates and lack of sustainability necessitate the exploration of alternative options. The proposed solution focuses on the construction of permanent houses equipped with proper insulated floorings, walls, and roofs.  Several crucial factors are taken into consideration throughout this study, including resistance to biological decomposition, exposure to precipitation, breathability, U-value per thickness, storage capabilities, and environmental impact. Therefore, studies and simulations are conducted to evaluate the viability of two organic insulation materials, with the objective of identifying the most suitable option for the project. In the next step energy simulations are conducted using the VIP software, enabling an accurate assessment of the concept building's energy efficiency. Moreover, a detailed model of the housing prototype is constructed using Revit and rendered using Twinmotion, facilitating a comprehensive visualization of the final design. Additionally, the transportation of the developed housing units was investigated and an efficient storage concept for standard shipping container was developed and modelled in SketchUp. With this study a sustainable, lightweight, flexible, adaptable, and easily transportable housing solution that can be constructed without reliance on external forces is to develop. By emphasizing sustainability and resilience, this study provides dignified and long-lasting housing for individuals and communities in need, effectively bridging the gap between temporary shelters and permanent housing structures. The findings and insights obtained from this study contribute to the broader body of knowledge in the field, fostering future advancements in crisis housing and promoting sustainable development practices.
218

Thermal Delight in Santo Domingo

Sabater Musa, Luis E. 10 October 2017 (has links)
No description available.
219

A Variation of Positioning Phase Change Materials (PCMs) Within Building Enclosures and Their Utilization Toward Thermal Performance

Abuzaid, Abdullah Ibrahim 26 April 2018 (has links)
Recently, buildings have been receiving more serious attention to help reduce global energy consumption. At the same time, thermal comfort has become an increasing concern for building occupants. Phase Change Materials (PCMs), which are capable of storing and releasing significant amounts of energy by melting and solidifying at a given temperature, are perceived as a promising opportunity for improving the thermal performance of buildings. This is because they use their thermophysical properties and latent heat while transforming state (or phase) as a feature for thermal energy storage systems to reduce overall energy demand, specifically during peaks hours, as well as to improve thermal comfort in buildings. This research aims to provide an overview of opportunities and challenges for the utilization of PCMs in the Architecture, Engineering, and Construction (AEC) sector, a broader understanding of specifically promising technologies, and a clarification of the effectiveness of different applications in building enclosures design especially in exterior walls. The research discusses how PCMs can be incorporated within building enclosures effectively to enhance building performance and improve thermal comfort while reducing heating and cooling energy consumption in buildings. The major objectives of the research include studying the properties of PCMs and their potential impact on building construction, clarifying PCMs selection criteria for building application, identifying the effectiveness of utilizing PCMs on saving energy, and evaluating the contribution of utilizing PCMs in building enclosures to thermal comfort. The research uses an exploratory quantitative approach that contains three main stages: 1) a systematic literature review, 2) laboratory experiments, and 3) validation to meet the goal of the research. Finally, by extrapolating results, the research ends with a practical assessment of application opportunities and how to effectively utilize PCMs in exterior walls of buildings. / PHD
220

The Environmental Bubble : a study about thermal comfort in residential housing

Mohammad, Mohammad January 2024 (has links)
This thesis explores the concept of thermal comfort in residential architecture, emphasizing a climatic approach that balances the physical needs of the human body with subjective well-being. It investigates the integration of air and heat as building materials in Swedish residential architecture. The study critiques traditional energy-intensive heating and cooling methods, proposing a design ethos that aligns with principles of sustainability and the adaptive thermal comfort model. Through a thermodynamic lens, the thesis follows the paradigm shift in architectural practice, emphasizing performance over form and the unseen meteorological influences within the built environment

Page generated in 0.0656 seconds