• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 19
  • 10
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 78
  • 78
  • 32
  • 30
  • 23
  • 21
  • 16
  • 16
  • 16
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Physikalische Grundlagen des thermischen Raummodells THERAKLES

Nicolai, Andreas 17 January 2013 (has links)
Das thermische Raummodell THERAKLES berechnet das dynamische Verhalten eines Raumes und seiner Umschließungsflächen in Abhängigkeit von realistischen Klimarandbedingungen, sowie Nutzer- und Anlagenverhalten. Neben Energieverbrauchswerten werden die operative Temperatur sowie weitere Kriterien zur Beurteilung der Behaglichkeit berechnet. Schwerpunkt der Anwendung liegt auf Optimierung der thermischen Behaglichkeit im Sommerfall, sowie energetischer Optimierung der Regelung von Heizungsanlagen unter Ausnutzung der Dynamik schwerer Baukonstruktionen und Massivbauwände. Das Modell beschreibt das dynamische Verhalten der Umfassungskonstruktionen durch instationäre, räumlich aufgelöste Simulation der Wand-, Fußboden-, und Decken- bzw. Dachflächen. Dadurch werden in der Konstruktion enthaltene Phasenwechselmaterialien (PCM) berücksichtigt und die zeitliche Verfügbarkeit der zusätzlichen Wärmespeicherfähigkeit abgebildet.
62

Matériaux à base de phosphates pour le stockage thermique de l'énergie / Phosphate-based materials for thermal energy storage

Sane, Abdoul Razac 05 December 2017 (has links)
Le stockage d’énergie joue un rôle très important dans le secteur énergétique. Concernant le stockage thermique, il est indispensable pour le fonctionnement en continue des centrales solaires à concentration (CSP) ou pour la récupération des chaleurs perdues dans des installations industrielles. Il y a de nos jours un besoin urgent de nouveaux matériaux performants pour remplacer les matériaux conventionnels à base de nitrate pour un fonctionnement à haute température. La présente thèse porte sur le développement de nouveaux matériaux à base de phosphates pour le stockage de la chaleur sensible. C’est la première étude sur l’utilisation des phosphates dans le stockage de la chaleur. Deux approches ont été explorées : le développement des matériaux liquides et des matériaux céramiques monolithiques. Dans la partie des matériaux liquides, l’objectif est de développer des phosphates ayant le même principe de fonctionnement que les sels fondus. Un grand nombre de phosphates a été étudié et les premiers critères d’évaluation sont les températures de fusion, d’évaporation ou de décomposition et la stabilité thermique. Le ternaire M(PO)3 (M = Li, Na, K avec 33,3% molaire de chaque alkali) peut fonctionner à l’état liquide entre 390 et 850°C alors que l’acide polyphosphorique peut fonctionner jusqu’à 200°C (température de solidification restant à déterminer). Concernant les matériaux céramiques, l’étude sur les monolithes de phosphates purs montre des difficultés lors de la mise en forme et la médiocre performance mécanique de ces matériaux. Le travail s’est ensuite focalisé sur les mélanges argileux-sable/phosphates. L’ajout de phosphates est indispensable pour améliorer les propriétés thermiques et mécaniques des céramiques traditionnelles de terre cuite. L’influence de la température de cuisson, la nature des phosphates et la granulométrie des phosphates a été étudié. Les propriétés physiques, thermiques, mécaniques, thermophysiques, thermomécaniques et la stabilité thermique de ces céramiques ont été étudiées entre 30 et 1000°C. Les résultats obtenus ont montré la bonne compétitivité des céramiques à base du mélange argileux-sable/phosphates par rapport aux autres matériaux de stockage thermique solides tels que le béton, les roches naturelles...Le potentiel d’application de ces céramiques a été démontré par des tests de stockage de type thermocline à l’échelle pilote utilisant les meilleurs matériaux monolithiques et de l’air comme fluide caloporteur. Différents paramètres comme la température d’entrée (350 à 850°C) et le débit du fluide caloporteur ont été étudiés pour les deux phases de charge et de décharge. En parallèle, un modèle 1D a été développé avec COMSOL-multiphysics pour simuler des étapes de charges et de décharges. Le modèle décrit les échanges de chaleur entre le solide, l'air et la paroi et tient compte de tous les paramètres liés au stockage thermocline. Les résultats de simulation sont en bon accord avec les données expérimentales obtenues lors des tests à l'échelle pilote. Ce travail a montré de forts intérêts des matériaux à base de phosphates pour le stockage thermique à des différentes gammes de températures couvrant toutes les technologies CSP et la chaleur fatale industrielle. / Energy storage plays a very important role in the energy sector. Concerning the thermal energy storage (TES), it is indispensable for the continuous operation of concentrated solar power plants (CSP) as well as for the recovery of waste heat from industrial facilities. However, there is currently an urgency to develop new TES materials in order to support nitrate-based molten salts, which are up-to-date the only commercial TES materials. This work aimed to develop new phosphate-based materials for sensible heat storage. This is the first study on the use of phosphates as heat storage material. Both liquid and solid phosphate-based materials were developed and their properties and performances in TES were investigated. For liquid materials, the goal is to design phosphates which have the similar operation principle to nitrate-molten salts. This means they are under liquid state when working as TES materials. Different alkali polyphosphates (M(PO)3, M = Li, Na, K) were studied and the first assessment criteria was the melting point, boiling point and thermal stability. Two potential materials were identified. The first one was the ternary mixture of alkali polyphosphates ( Li33.3 Na33.3 K33.3(PO)3 ) which exists under liquid form between 390 and 850°C. The second one was polyphophoric acid ( HPO3.n H2O ) which exist in liquid form up to 200°C. Its melting point will be determined. For solid phosphate-based materials, the utilization of a selected synthetic phosphate or raw phosphate ore without any additive met a major difficulty of shaping step, and the products obtained exhibited poor mechanical performances. The work is then focused on ternary mixtures of clay-sand/phosphates. With this concept, phosphates played the role of additives to improve the properties of traditional fired clay ceramics for TES purposes. Thus, a parametric study was carried out for different clay-sand/phosphate mixtures. The influence of the firing temperature, the nature of phosphates and the granulometry of phosphates were investigated. The physical, thermal, mechanical, thermophysical, and thermomechanical properties and the thermal stability were studied between 30 and 1000°C. The best product was made of 76.24 wt.% clay, 19.06 wt.% sand and 4.7 wt.% hydroxyapatite - a synthetic phosphate and 80 wt.% clay, 15 wt.% sand and 5 wt.% raw phosphate ore. They were competitive versus other solid TES materials such as concrete, natural rocks etc. The potential application of these ceramics was experimentally demonstrated by using a pilot-scale TES system with air as heat transfer fluid. Both charging and discharging phases were successfully repeated several times with various inlet air temperatures (from 350 to 850°C) and air flow rates. Finally, a dynamic 1D model was developed using Comsol Multiphysics software to simulate the charging and discharging phases of the pilot-scale TES tests. This model took into account the role of air, solid ceramic and reservoir wall and integrated all the parameters that impacted the temperature profile in the storage tank. The simulation results matched well with experimental data.
63

Exergoeconomic Analysis and Benchmark of a Solar Power Tower with Open Air Receiver Technology

Ertl, Felix January 2012 (has links)
No description available.
64

PERFORMANCE ANALYSIS FOR A RESIDENTIAL-SCALE ICE THERMAL ENERGY STORAGE SYSTEM

Andrew David Groleau (17499033) 30 November 2023 (has links)
<p dir="ltr">Ice thermal energy storage (ITES) systems have long been an economic way to slash cooling costs in the commercial sector since the 1980s. An ITES system generates cooling in the formation of ice within a storage tank. This occurs during periods of the day when the cost of electricity is low, normally at night. This ice is then melted to absorb the energy within the conditioned space. While ITES systems have been prosperous in the commercial sector, they have yet to take root in the residential sector.</p><p dir="ltr">The U.S. Department of Energy (DoE) has published guidelines for TES. The DoE guidelines include providing a minimum of four hours of cooling, shifting 30-50% of a space’s cooling load to non-peak hours, minimizing the weight, volume, complexity, and cost of the system, creating a system than operates for over 10,000 cycles, enacting predictive control measures, and being modular to increase scale for larger single-family and multi-family homes [1]. The purpose of this research is to develop a model that meets these guidelines.</p><p dir="ltr">After extensive research in both experimental data, technical specifications, existing models, and best practices taken from the works of others a MATLAB model was generated. The modeled ITES system is comprised of a 1m diameter tank by 1m tall. Ice was selected as the PCM. A baseline model was constructed with parameters deemed to be ideal. This model generated an ITES system that can be charged in under four hours and is capable of providing a total of 22.18 kWh of cooling for a single-family home over a four-hour time period. This model was then validated with experimental data and found to have a root mean squared error of 0.0959 for the system state of charge. During the validation both the experimental and model estimation for the water/ice within the tank converged at the HTF supply temperature of -5.2°C.</p><p dir="ltr">With the model established, a parametric analysis was conducted to learn how adjusting a few of the system parameters impact it. The first parameter, reducing the pipe radius, has the potential to lead to a 152.6-minute reduction in charge time. The second parameter, varying the heat transfer fluid (HTF) within the prescribed zone of 0.7 kg/s to 1.2 kg/s, experienced a 4.8-minute increase in charge time for the former and a decrease in charge time by 5.4 minutes for the latter. The third parameter, increasing the pipe spacing and consequently increasing the ratio of mass of water to mass of HTF, yielded a negative impact. A 7.1mm increase in pipe spacing produced a 16.6-minute increase in charge time. Meanwhile, a 14.2mm increase in pipe spacing created a 93.3-minute increase in charge time and exceeded the charging time limit of five hours.</p><p dir="ltr">This functioning model establishes the foundation of creating a residential-scale ITES system. The adjustability and scalability of the code enable it to be modified to user specifications. Thus, allowing for various prototypes to be generated based on it. The model also lays the groundwork to synthesize a code containing an ITES system and a heat pump operating as one. This will aid in the understanding of residential-scale ITES systems and their energy effects.</p>
65

Techno-economic fesibility of a hybrid CSP (sCO2) - PV plant for hydrogen production

Perez De La Calle, Patricia January 2023 (has links)
The global need to eliminate CO2 emissions and its consequent reduction in the use of fossil fuels drives the ongoing energy transition that highly involves the research achievements of the scientific community to reach the goals of this purpose. Renewable sources like photovoltaic and wind energy, are central to this endeavor, however, the intermittency of natural resources makes it non-dispatchable and energy storage is fundamental. According to the European Roadmap [1] just a 60% of the CO2 emissions reduction goal can be achieved with available technologies and existing energy. However, the production, use and specially storage opportunities that hydrogen offers can drive non-dispatchable renewable sources to achieve its full potential by clearing up the intermittency problem as well as covering the remained 40% gap. This master's thesis aims to investigate the techno-economic feasibility of integrating a Solid Oxide Electrolyzer Cell (SOEC) into a hybrid PV-CSP(sCO2) plant. The study focuses on assessing various indicators related to electricity, energy, and hydrogen production prices. To achieve this, three different integration strategies within the hybrid PV-CSP(sCO2) plant were selected for analysis: Soec using heat from the particles coming from the receiver, soec using heat coming from the particles available in the thermal energy storage (TES) and soec recovering heat from the sCO2 power block. A sensitivity analysis was conducted on different PV sizes (MWp), battery capacities (MWh), and SOEC installed capacities (MWh) to investigate the technology's potential in the plant and determine optimal sizing of subsystems. However, the individual optimization of economic indicators presented technical and economic challenges. Scenarios allowing individual optimization of hydrogen production prices (€/kg H2) resulted in 10.9, 11.7, and 14.6 €/kg h2 for receiver, TES, and sCO2 integration strategy, respectively. These scenarios, however, require high SOEC installed capacities, leading to elevated electricity and energy production prices. On the other hand, the individual optimization of electricity and energy production prices led to better and lower results when no hydrogen production presence within the plant. However, this analysis also showed that soec capacities below 5MWh together with no installation of batteries and a new definition for calculating hydrogen production prices (LCOH) allows feasible integration of hydrogen production within the plant. LCOH(€/kg h2) results were 10.2€/kg h2, 7.6€/kg h2, and 9.4€/kg h2 for receiver, TES, and sCO2, respectively, for a soec installed capacity of 0.5MWh (119m2 size) along with energy production values not exceeding 101€/MWh. While the results present a favorable outlook for SOEC installations based on literature review data [2] [3] [4] they still face challenges when competing with the cost-efficient PEM technology, which offers 4.5-5.5€/kg H2 [5] without storage. Nonetheless, this research contributes valuable insights into the integration of SOEC technology within hybrid renewable energy systems and provides a comprehensive analysis of the techno-economic aspects related to hydrogen production following different integration strategies. The findings may inform decision-making processes and promote further advancements in sustainable energy solutions. / Det globala behovet av att eliminera CO2utsläpp och därmed minska användningen av fossila bränslen driver pågående energiomställning, som starkt involverar forskningsresultaten från vetenskapssamhället för att nå syftet med detta mål. Förnybara källor som solceller och vindkraft är centrala i detta arbete, men intermittensen hos naturliga resurser gör dem icke disponibla och energilagring är grundläggande. Enligt den europeiska vägkartan [1] kan endast 60% av målet att minska CO2-utsläppen uppnås med tillgängliga teknologier och befintlig energi. Produktionen, användningen och särskilt lagringsmöjligheterna som väte erbjuder kan emellertid driva icke-disponibla förnybara källor att nå sin fulla potential genom att lösa intermitt ensproblemet och täcka den återstående 40% klyftan. Detta examensarbete syftar till att undersöka den tekniskekonomiska genomförbarheten av att integrera en fastoxid elektrolysör (SOEC) i en hybrid PV CSP(sCO2)-anläggning. Studien fokuserar på att utvärde ra olika indikatorer relaterade till el-, energi- och vätgasproduktionspriser. För att uppnå detta har tre olika integrationsstrategier inom hybrid PV CSP(sCO2) anläggningen valts för analys: SOEC med hjälp av värme från partiklar som kommer från mottagaren, SOEC med hjälp av värme från partiklar som finns i termisk energilagring (TES) och SOEC som återvinner värme från sCO2-kraftblocket. En känslighetsanalys har genomförts för olika PVstorlekar (MWp), batterikapaciteter (MWh) och SOEC installerade kapacit eter (MWh) för att undersöka teknologins potential i anläggningen och bestämma optimal dimensionering av delsystem. Resultaten från individuell optimering av ekonomiska indikatorer ledde dock till flera tekniska och ekonomiska utmaningar. Scenarier som tillåter individuell optimering av vätgasproduktionspriser (€/kg H2) resulterade i 10, 9, 11, 7 respektive 14,6 €/kg H2 för mottagare, TES och sCO2 integrationsstrategi. Dessa scenarier kräver dock höga SOEC installerade kapaciteter, vilket leder till höga el och energipriser. Å andra sidan ledde individuell optimering av el och energiproduktionspriser till bättre och lägre resultat när ingen vätgasproduktion fanns i anläggningen. Denna analys visade också att SOEC kapaciteter under 5MWh tillsammans med ingen installation av batterier och en ny definition för beräkning av vätgasproduktionspriser (LCOH) möjliggör genomförbar integration av vätgasproduktion i anläggningen. LCOH (€/kg H2) resultaten var 10,2 €/kg h2 , 7 ,6 €/kg h2 respektive 9,4 €/kg h2 för mottagare, TES och sCO2, för en SOEC installerad kapacitet på 0,5 MWh (storlek 119m2) tillsammans med energiproduktionsvärden som inte överstiger 101 €/MWh. Medan resultaten visar en gynnsam utsikt för SOECinstallationer baserat på data från litteraturöversikter [2] [3] [4], står de ändå inför utmaningar när de konkurrerar med den kostnadseffektiva PEM teknologin, som erbjuder 4,5-5,5 €/kg H2 [5] utan lagring. Trots detta bidrar forskningen med värdefulla insikter i integrationen av SOEC teknologi i hybrid förnybara energisystem och ger en omfattande an alys av de teknisk-ekonomiska aspekterna relaterade till vätgasproduktion enligt olika integrationsstrategier. Resultaten kan informera beslutsprocesser och främja ytterligare framsteg inom hållbara energilösningar.
66

Validation expérimentale d'un système de stockage thermocline air/céramique à échelle pilote - développement d'un matériau céramique issu de sous-produits industriels / Experimental validation of a pilot-scale air/ceramic thermocline thermal storage – Development of a thermal energy storage ceramic based on industrial sub-products

Lopez Ferber, Nicolas 30 November 2018 (has links)
La valorisation de chaleur fatale industrielle en flux gazeux à haute température peut bénéficier de technologies de stockage thermique thermocline, fonctionnant sur la base d’un matériau de stockage céramique et d’un caloporteur gazeux (air). La diversité des gisements de chaleur fatale et des débouchés potentiels met en évidence la nécessité d’un procédé de stockage versatile et robuste. Ce travail de thèse consiste à accompagner le développement de l’entreprise Eco-Tech Ceram, dont les deux activités sont le développement d’une unité de stockage thermique, et le développement de matériaux céramiques issus de sous-produits industriels destinés à une utilisation dans de telles unités. Concernant l’axe stockage, il s’agit de réaliser une validation expérimentale du concept EcoStock via des essais sur des pilotes représentatifs, notamment concernant la sensibilité des performances au débit de décharge, et à la nature de la ressource thermique disponible en charge (débits et températures d’entrées variables).Concernant l’axe matériau, il s’agit de développer une céramique frittée issue de mâchefer d’incinérateur, et destinée à une utilisation en tant que matériau de garnissage dans un système thermocline à lit en vrac, via une approche expérimentale, dans une démarche d’écologie industrielle et avec l’objectif de diminuer autant que possible les coûts de production et les impacts environnementaux, en calquant les méthodes d’élaboration sur celles des céramiques de batiment (briques et tuiles) dont les capacités industrielles sont pré-existantes. r. / The recovery and valorization of high-temperature gaseous waste heat streams can benefit from the development of thermocline thermal energy storage, based on the use of a ceramic material as a solid filler and gases (including air) as heat transfer fluid. The wide diversity of waste heat streams implies developping a versatile and robust system, able to operate in such various conditions.This thesis aims at supporting the development of the company Eco-Tech Ceram, which focuses on developing a compact thermocline air/ceramic thermal storage unit (named EcoStock), and developing ceramics produced from industrial inorganic byproducts, designed to be used as thermal energy storage material. Regarding the « thermal storage » topic, this thesis is focused on the experimental validation of the EcoStock concept, through experimental campaigns on a representative pilot-scale system, especially regarding the influence of operating conditions over performances, and the sensitiviy of the system’s efficiency when discharged at different power level, or charged with low-quality heat streams (varying mass flow rate and inlet temperature during charging phase). Regarding the « ceramic » topic, this thesis is focused on developing a sintered ceramic based on municipal waste incinerator bottom ashes compatible with high temperature thermocline system, with an experimental approach, taking in consideration industrial potential of such ceramics by making industrial mass production of such material realistic, using already widely available industrial processes from the bricks and tiles industries.Keywords: thermal storage, thermocline, experimental validation, waste heat, high temperature, sintered ceramics, incinerator bottom ash valorization.
67

Etude structurale d’aluminosilicates de calcium : application à la valorisation de déchets amiantés pour le stockage thermique d’énergie solaire / Structural characterization of calcium aluminosilicates : development of asbestos-containing wastes ceramics for thermal storage of solar energy

Lambert, Julien 12 April 2013 (has links)
L’objectif de ce travail de thèse est d’établir les relations entre les propriétés structurales et les conditions d’élaboration d’un vitrifiat de déchets amiantés (nom commercial Cofalit®), dans la perspective de fabriquer un prototype de module de stockage thermique d’énergie solaire. Malgré des provenances de déchets très diverses, les variations de compositions du vitrifiat restent limitées. Les conditions d’élaboration (de refroidissement en particulier) induisent par contre d’importantes disparités dans la microstructure. L’analyse d’une carotte de Cofalit nous a permis de déterminer les mécanismes de cristallisation lors de la fabrication du Cofalit (refroidissement non contrôlé), conduisant à un mélange de phases cristallisées et vitreuse. Nous avons étudié les propriétés structurales (par DRX et RMN) et de cristallisation d’échantillons modèles représentatifs du matériau industriel. Les variations de composition observées sur celui-ci ont été simulées par des ajouts de silice ou de chaux. L’influence de la teneur en fer sur les propriétés radiatives, structurales (verres et céramiques) et de cristallisation a également été quantifiée. Le suivi de la cristallisation séquentielle des céramiques a été effectué par DRX in situ à haute température, à partir de l’état vitreux et à partir de l’état liquide lors du refroidissement. Ces essais ont montré que le Cofalit cristallise complètement pour des vitesses de refroidissement inférieures à 10 K/min. La stabilité du Cofalit (au niveau structural) lors de recuits à hautes températures a également été démontrée. / The aim of this work is to establish relationships between structural properties and production conditions of a vitrified asbestos-containing wastes ceramics (commercially named Cofalit®), with the goal of elaborating a prototype for thermal energy storage of solar energy. Despite various waste sources, the variations of composition observed for this material are limited. On the contrary, the production conditions (cooling stage in particular) induce important differences in the material microstructure. The analysis of a Cofalit core sample allowed us to determine the crystallisation mechanisms during its fabrication process (uncontrolled cooling), leading to a mixture of vitreous and crystalline phases. We propose a structural study (by XRD and NMR) and crystallization properties analyses of synthetic samples, representative of the industrial material. Observed variations of composition on the latter are simulated by additions of silica and lime. The influence of iron oxide content on radiative, structural and crystallization properties (of both glass and ceramic samples) have also been investigated. The following of the sequential crystallisation of ceramic samples has finally been performed using in situ high temperature XRD, from glassy state and during cooling from liquid state. These tests show that the Cofalit crystallizes completely for rates lower than 10 K/min. The high temperature stability on a structural level has also been demonstrated during annealings.
68

Cooling Of Electronics With Phase Change Materials Under Constant Power And Cyclic Heat Loads

Saha, Sandip Kumar 02 1900 (has links)
The trend in the electronic and electrical equipment industry towards denser and more powerful product requires a higher level of performance from cooling devices. In this context, passive cooling techniques such as latent heat storage systems have attracted considerable attention in recent years. Phase change materials (PCMs) have turned out to be extremely advantageous in this regard as they absorb high amount of latent heat without much rise of temperature. But unfortunately, nearly all phase change materials (PCMs) with high latent heat storage capacity have unacceptably low thermal conductivity, which makes heating and cooling processes slow during melting and solidification of PCMs. Augmentation of heat transfer in a PCM is achieved by inserting a high thermal conductivity material, known as thermal conductivity enhancer (TCE), into the PCM. The conglomeration of PCM and TCE is known as a thermal storage unit (TSU). In this thesis, detailed and systematic analyses are presented on the thermal performance of TSUs subjected to two types of thermal loading- (a) constant power loading in which a constant power level is supplied to the chip (heater) for a limited duration of time, and (b) cyclic loading. Eicosane is used as the PCM, while aluminium pin or plate fins are used as TCEs. First, a 1-D analytical model is developed to obtain a closed-form temperature distribution for a simple PCM domain (without TCE) heated uniformly from the bottom. The entire heating process is divided into three stages, viz. (a) sensible heating period before melting, during which heat is stored in the solid PCM in the form of specific heat, (b) melting period, during which a melt front progresses from the bottom to the top layer of the PCM and heat is stored in latent as well as in sensible forms, and (c) post melting period, during which energy is stored again in the form of sensible heat. For each stage, conduction energy equation is solved with a set of initial and boundary conditions. Subsequently, a resistance capacitance model of phase change process is developed for further analysis. For transient performance under constant thermal loading, experimental investigations are carried out for TSUs with different percentages of TCE. A numerical model is developed to interpret the experimental results. The thermal performance of a TSU is found to depend on a number of geometrical parameters and boundary conditions. Hence, a systematic approach is desirable for finding the best TSU design for which the chip can be operated for a longer period of time before it reaches a critical temperature (defined as the temperature above which the chip starts malfunctioning). As a first step of the approach, it is required to identify the parameters which can affect the transient process. It is found that the convective heat transfer coefficient, ‘h’ and the exposed area for heat transfer have little effect on the chip temperature during the constant power operation. A randomized search technique, Genetic Algorithm (GA), is coupled with the CFD code to find an optimum combination of geometrical parameters of TSUs based on the design criteria. First, the optimization is carried out without considering melt convection within the PCM. It is found that the optimum half-fin width remains fixed for a given heat flux and temperature difference. Assuming a quasi steady process, the results of optimization are then explained by constructing and analyzing a resistance network model. The resistance network model is then extended to include the effect of melt convection, and it is shown that the optimum pitch changes with the strength of convection. Accordingly, numerical analysis is carried out by considering the effect of melt convection, and a correlation for optimum pitch is developed. Having established the role of melt convection on the thermal performance of TSUs, rigorous computational and experimental studies are performed in order to develop correlations among different non-dimensional numbers, such as Nusselt number, Rayleigh number, Stefan number and Fourier number, based on a characteristic length scale for convection. The enclosures are classified into three types, depending on the aspect ratio of cavity, viz. shallow, rectangular and tall enclosures. For a shallow enclosure, the characteristic length is the height of cavity whereas for a tall enclosure, the characteristic length is the fin pitch. In case of rectangular enclosure, both pitch and height are the important characteristic lengths. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely solidify back during the cooling period, in order that that TSU can be operated for an unlimited number of cycles. If solidification is not complete during the cooling period, the TSU temperature will tend to rise with every cycle, thus making it un-operational after some cycles. It is found that the solidification process during the cooling period depends strongly on the heat transfer coefficient and the cooling surface area. However, heat transfer coefficient does not play any significant role during the heating period; hence a TSU optimized for transient operation may not be ideal for cyclic loading. Accordingly, studies are carried out to find the parameters which could influence the behaviour of PCM under cyclic loading. A number of parameters are identified in the process, viz. cycle period and heat transfer coefficient. It is found that the required heat transfer coefficient for infinite cyclic operation is very high and unrealistic with air cooling from the surface of the TSU. Otherwise, the required cooling period for complete re-solidification will be very high, which may not be suitable for most applications. In an effort to bring down the cooling period to a duration that is comparable to the heating period, a new design is proposed where both ‘h’ and area exposed to heat transfer can be controlled. In this new design, the gaps between the fins in a plate-fin TSU are alternately filled with PCM, such that only one side of a fin is in contact with PCM and the other side is exposed to the coolant (air). In this arrangement, the same heat flow path through the fin which is used for heating the PCM (during the heating stage) can also be used for cooling and solidifying the PCM during the cooling part of the cycle. Natural or forced air cooling through the passages can be introduced to provide a wide range of heat transfer coefficient which can satisfy the cooling requirements. With this arrangement, the enhanced area provided for cooling keeps the ‘h’ requirement within a realistic limit. This cooling method developed is categorized as a combination of active and passive cooling techniques. Analytical and numerical investigations are carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to the ones with conventional designs. It is found that, the performance of new PCM-based heat sink is superior to that of the conventional one. Experiments are performed on both the conventional and the new PCM-based heat sinks to validate the new findings.
69

Προσομοίωση τυρβωδών ροών φυσικής και μικτής συναγωγής σε ηλιακά και ενεργειακά συστήματα

Καλούδης, Ευστάθιος 13 January 2015 (has links)
Αντικείμενο της διατριβής είναι η προσομοίωση της ροής και της μεταφοράς θερμότητας σε ηλιακά και ενεργειακά συστήματα. Η έμφαση δόθηκε στις δεξαμενές αποθήκευσης της θερμότητας που παράγεται στα συγκεκριμένα συστήματα, με στόχο τον χαρακτηρισμό των ενεργειακών απωλειών και την βελτιστοποίηση του σχεδιασμού τους. Κύριες δραστηριότητες της διατριβής θα είναι η περαιτέρω ανάπτυξη διαθέσιμων εργαλείων προσομοίωσης ροών φυσικής και μικτής συναγωγής, με διερεύνηση των νεώτερων εξελίξεων στην μοντελοποίηση με τη μέθοδο Προσομοίωσης Μεγάλων Δινών (LES). Αρχικά γίνεται εκτεταμένη επικύρωση με πειραματικά αποτελέσματα σε απλές γεωμετρικές διατάξεις (π.χ. ορθογωνικά κανάλια ή κοιλώματα με βαθμίδα θερμοκρασίας) από την βιβλιογραφία. Στη συνέχεια η μεθοδολογία εφαρμόζεται στον υπολογισμό ροών σε πιο ρεαλιστικές γεωμετρίες, επιλεγμένες από πρακτικές εφαρμογές, όπως οι δεξαμενές αποθήκευσης νερού. Αναλύονται σε βάθος οι δυναμικές διεργασίες και τα ροϊκά φαινόμενα τόσο κατά την προσαγωγή της θερμότητας στη δεξαμενή (φόρτιση) όσο και κατά την απαγωγή της (εκφόρτιση) και η επίδραση που έχουν αυτά στην αποδοτικότητα της αποθήκευσης με βάση κατάλληλους ποσοτικούς δείκτες. Από τα αποτελέσματα αναδεικνύεται η σημασία της μοντελοποίησης σε τέτοιου είδους συστήματα ως ένα σημαντικό εργαλείο στη διερεύνηση της απόδοσης τους, του ενεργειακού χαρακτηρισμού τους και ακολούθως στην προσπάθεια επίτευξης του βέλτιστου σχεδιασμού τους. / The subject of the thesis is the Simulation of Turbulent Flow and Heat Transfer in Solar and Energy Systems. Emphasis is given in the thermal storage component of these systems, with the aim of characterizing their energy losses and improve their design. Main activities of the thesis will be the further development of available computational tools for the simulation of flows in natural and mixed convection, incorporating some of the most recent developments in modeling, particularly in the Large Eddy Simulation (LES) method. Initially, an extensive validation with experimental results in simple geometric configurations is carried out (e.g. channels or differentially heated cavities). Subsequently, the methodology is applied in the calculation of flows for more realistic geometries selected from practical applications, such as various hot water storage tanks. Analysis is conducted of the dynamic processes and relevant physical phenomena during the heat supply (charging) to and removal (discharging) from the tank and their influence on the storage effectiveness using appropriate thermodynamic indices. From the simulation results, the significance of the flow and heat transfer modeling in these systems as a practical tool for studying their performance is demonstrated, by characterizing their energy content and significantly contributing to the process of optimizing their design.
70

Procédé de stockage d'énergie solaire thermique par adsorption pour le chauffage des bâtiments : modélisation et simulation numérique / Numerical and experimental study of a solar assisted zeolite heat storage system for low-energy buildings

Tatsidjodoung, Parfait 26 May 2014 (has links)
Les systèmes de stockage de chaleur par sorption (SSCS) ouvrent de nouvelles perspectives dans l'exploitation de l'énergie solaire pour le chauffage des bâtiments résidentiels. En effet, ces systèmes sont très prometteurs dans la mesure où ils permettent un stockage de chaleur sur de longues périodes (le stockage est réalisé sous forme de potentiel chimique) et offrent des densités énergétiques importantes (jusqu'à 230 kWh/m3 de matériau en moyenne) en comparaison aux systèmes classiques comme le stockage par chaleur sensible (qui, pour le cas de l'eau, dispose d'une densité énergétique moyenne d'environ 81 kWh/m3 de matériau pour une variation de 70°C) et le stockage par chaleur latente (qui atteint des densités énergétiques de 90 kWh/m3 de matériau).La présente thèse vise à étudier les performances d'un système de stockage de chaleur par sorption à base de zéolithe 13X intégré à un bâtiment type basse consommation. Des modèles mathématiques de transferts couplés de masse et de chaleur des différents composants du système sont développés et validés par le biais de l'expérimentation. La simulation numérique dynamique, comme outil de dimensionnement, permet, à partir des résultats d'analyses de sensibilité paramétrique sur les différents composants du système, l'étude de son fonctionnement et les critères de sa faisabilité. / Sorption heat storage systems (SHSS) open new perspectives for solar heating of residential buildings. These systems allow long term heat storage (storage is done in the form of chemical potential) and offer high energy densities (up to 230 kWh/m3 of material on average) compared to conventional heat storage systems such as sensible heat storage (which, for the case of water, has an average energy density of approximately 81 kWh/m3 of material for a temperature change of 70 °C) and latent heat storage (nearly reaching energy densities of 90 kWh/m3 of material on average).This thesis aims to study the performance of a sorption solar heat storage system on zeolite 13X, integrated to low-energy building. Mathematical models of coupled heat and mass transfer of various components of the system are developed and validated through experimentation. Numerical dynamic simulations allow to study the functioning of the SHSS in specific conditions, and its design with the results from the parametric sensitivity analysis on its components.

Page generated in 0.1314 seconds