• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 11
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise do desempenho numérico do Solver viscoelasticFluidFoam

Nicknich, Gustavo January 2014 (has links)
Polímeros sintéticos ocupam uma posição de grande importância no estilo de vida moderno, servindo como matérias-primas para a construção de uma variedade de utensílios. Apesar do grande número de operações de processamento e produtos disponíveis, o planejamento de produtos e a otimização dos processos de produção raramente constituem-se de tarefas triviais. Isso deve-se ao fato da maioria das operações aplicadas na indústria de processamento de polímeros envolverem geometrias e padrões de escoamento complexos, além da dificuldade intrínseca relacionada ao comportamento reológico complexo de polímeros fundidos ou soluções poliméricas. Devido a estes fatores, o desenvolvimento de técnicas de dinâmica de fluido computacional (computational fluid dynamics – CFD) para a simulação de escoamentos de fluidos poliméricos e etapas de operações de processamento tem sido assunto de numerosos estudos durante as últimas décadas. Sob esta perspectiva, o solver viscoelasticFluidFoam, merece destaque. Ele é capaz de resolver simulações de escoamentos de fluidos viscoelásticos utilizando diferentes equações constitutivas. Contudo, apesar de resultados existentes na literatura apresentarem um bom potencial de aplicação, uma análise extensiva de seu desempenho numérico ainda não foi realizada. Neste contexto, a proposta do presente trabalho é a análise da influência de parâmetros de malha, numéricos e constitutivos no comportamento do solver. As bases para os testes compreendem uma geometria simples – escoamento laminar entre duas placas paralelas – o modelo constitutivo de Oldroyd-B e respectivas soluções analíticas para os campos de velocidade e tensão. Mesmo os testes demonstrando a inegável versatilidade do solver, eles revelam limitações em lidar com algumas configurações de malha e parâmetros constitutivos, principalmente com relação ao refinamento na direção perpendicular ao escoamento, diminuição do número de Reynolds e aumento do número de Weisenberg. Estas limitações podem ser parcialmente contornadas com escolha adequada de parâmetros de relaxação das variáveis e da razão de aspecto dos volumes de controle. Tais dificuldades não estão presentes em simulações de escoamentos de fluidos newtonianos em condições semelhantes, sugerindo que trabalhos futuros devem focar em implementações mais robustas do solver viscoelasticFluidFoam. / Synthetic polymers hold a position of great importance in modern lifestyle, serving as raw materials for the construction of a wide variety of appliances. Despite the large number of processing operations and products available, product planning and optimization of production processes rarely constitute a trivial task. This is due to the fact of operations applied in polymer processing industry involve complex geometries and flow patterns, plus the intrinsic difficulty related to the molten polymers or polymer solutions complex rheological behavior. Because of these factors, the development of techniques of computational fluid dynamics (CFD) for the simulation of flows of polymeric fluids and stages of processing operations has been the subject of numerous studies during the last decades. From this perspective, the viscoelasticFluidFoam solver deserves mention. The solver is capable of resolving simulations of viscoelastic fluid flows using different constitutive equations. However, despite the existing results in the literature present a great potential for application, an extensive analysis of their numerical performance has not been performed yet. The purpose of this paper is to examine the influence of mesh, numerical and constitutive parameters in the behavior of the solver. Bases for the tests comprise a simple geometry – laminar flow between two parallel plates – the constitutive model of Oldroyd-B and its analytical solutions for the velocity and stress fields. Although the tests show the undeniable versatility of the solver, they also reveal limitations in dealing with some mesh settings and constitutive parameters, particularly with respect to refinement in the direction perpendicular to the flow, decreasing in the Reynolds number and increasing in the Weisenberg number. This limitation can be partially circumvented with proper choice of variables relaxation parameters and aspect ratio of the control volumes. Such difficulties are not present in simulations of Newtonian fluids flows under similar conditions, suggesting that future works should focus on more robust implementations of the viscoelasticFluidFoam solver.
12

Simulação numérica de escoamentos viscoelásticos multifásicos complexos / Numerical simulation of complex viscoelastic multiphase flows

Figueiredo, Rafael Alves 15 September 2016 (has links)
Aplicações industriais envolvendo escoamentos multifásicos são inúmeras, sendo que, o aprimoramento de alguns desses processos pode resultar em um grande salto tecnológico com significativo impacto econômico. O estudo numérico dessas aplicações é imprescindível, pois fornece informações precisas e mais detalhadas do que a realização de testes experimentais. Um grande desafio é o estudo numérico de escoamentos viscoelásticos multifásicos envolvendo altas taxa de elasticidade, devido às instabilidades causadas por altas tensões elásticas, grandes deformações, e até mudanças topológicas na interface. Assim, a investigação numérica desse tipo de problema exige uma formulação precisa e robusta. No presente trabalho, um novo resolvedor de escoamentos bifásicos envolvendo fluidos complexos é apresentado, com particular interesse em escoamentos com altas taxas de elasticidade. A formulação proposta é baseada no método Volume-of-fluid (VOF) para representação da interface e no algoritmo Continuum Surface Force (CSF) para o balanço de forças na interface. A curvatura e advecção da interface são calculados via métodos geométricos para garantir a precisão dos resultados. Métodos de estabilização são utilizados quando números críticos de Weissenberg (Wi) são encontrados, devido ao famoso problema do alto número de Weissenberg (HWNP). O método da projeção, combinado com um método implícito para solução da equação da quantidade de movimento, são discretizados por um esquema de diferenças finitas em uma malha deslocada. Problemas de benchmarks foram resolvidos para acessar a precisão numérica da formulação em diferentes níveis de complexidade física, tal como representação e advecção da interface, influência das forças interfaciais, e características reológicas do fluido. A fim de demonstrar a capacidade do novo resolvedor, dois problemas bifásicos transientes, envolvendo fluidos viscoelásticos, foram resolvidos: o efeito de Weissenberg e o reômetro extensional (CaBER). O efeito de Weissenberg ou rod-climbing effect consiste em um bastão que gira dentro de um recipiente com fluido viscoelástico e, devido às forças elásticas, o fluido escala o bastão. Os resultados foram comparados com dados teóricos, numéricos e experimentais, encontrados na literatura para pequenas velocidades angulares. Além disso, resultados obtidos com altas velocidades angulares (alta elasticidade) são apresentados com o modelo Oldroyd-B, em que escaladas muito elevadas foram observadas. Valores críticos da velocidade angular foram identificados, e para valores acima foi observada a ocorrência de instabilidades elásticas, originadas pela combinação de tensões elásticas, curvatura interfacial, e escoamentos secundários. Até onde sabemos, numericamente, essas instabilidades nunca foram capturadas antes. O CaBER consiste no comportamento e colapso de um filamento de fluido viscoelástico, formado entre duas placas paralelas devido às forças capilares. Esse experimento envolve consideráveis dificuldades, dentre as quais podemos destacar a grande influência das forças capilares e a diferença de escalas de comprimento no escoamento. Em grande parte dos resultados encontrados na literatura, o CaBER é resolvido por modelos simplificados em uma dimensão. Resultados obtidos foram comparados com tais resultados da literatura e com soluções teóricas, apresentando admirável precisão. / Industrial applications involving multiphase flow are numerous. The improvement of some of these processes can result in a major technological leap with significant economic impact. The numerical study of these applications is essential because it provides accurate and more detailed information than conducting experiments. A challenge is the numerical study of high viscoelastic multiphase flows due to instabilities caused by the high elastic tension, large deformations and even topological changes in the interface. Thus the numerical investigation of this problem requires a robust formulation. In this study a new two-phase solver involving complex fluids is presented, with particular interest in the solution of highly elastic flows of viscoelastic fluids. The proposed formulation is based on the volume-of-fluid method (VOF) to interface representation and continuum surface force algorithm (CSF) for the balance of forces in the interface. The curvature and interface advection are calculated via geometric methods to ensure the accuracy of the results. Stabilization methods are used when critical Weissenberg numbers are found due to the famous high Weissenberg number problem (HWNP). The projection method combined with an implicit method for the solution of the momentum equation are discretized by a finite difference scheme in a staggered grid. Benchmark test problems are solved in order to access the numerical accuracy of different levels of physical complexities, such as the dynamic of the interface and the role of fluid rheology. In order to demonstrate the ability of the new resolver, two-phase transient problems involving viscoelastic fluids have been solved, theWeissenberg effect problem and the extensional rheometer (CaBER). The Weissenberg effect problem or rod-climbing effect consists of a rod that spins inside of a container with viscoelastic fluid and due to the elastic forces the fluid climbs the rod. The results were compared with numerical and experimental data from the literature for small angular velocities. Moreover results obtained for high angular velocities are presented using the Oldroyd-B model, which showed high climbing heights. Critical values of the angular speed have been identified. For values above a critical level were observed the occurrence of elastic instabilities caused by the combination of elastic tension, interfacial curvature and secondary flows. To our knowledge, numerically these instabilities were never captured before. The CaBER consists of the behavior and collapse of a viscoelastic fluid filament formed between two parallel plates due to capillary forces. This experiment involves considerable difficulties, among which we can highlight the great influence of the capillary forces and the difference of the length scales in the flow. In much of the results found in the literature, the CaBER is solved by simplified models. The results were compared with results reported in the literature and theoretical solutions, which showed remarkable accuracy.
13

Studies In Stability Of Newtonian And Viscoelastic Fluid Flow Past Rigid And Flexible Surfaces

Chokshi, Paresh P 12 1900 (has links)
The surface oscillations in a deformable wall are known to induce an instability in the adjacent flow even in the absence of inertia. This instability, if understood properly, can be exploited to generate a well-mixed flow pattern with improved transport coefficients in microfluidic systems, wherein the benefits of inertial instabilities can not be realised. In order to utilise the wall deformability in micro-devices as well as other biotechnological applications, the quantitative knowledge of the critical parameter for the on-set of instability and the nature of bifurcation in the region of transition point are essential. With this objective, a major portion of this thesis deals with the stability analysis of flow past a flexible surface. For Newtonian flow over a deformable solid medium, the analyses of hydrodynamic stability in two flow regimes are presented: the viscous mode instability in the limit of zero Reynolds number, and the wall mode instability in the limit of high Reynolds number. The flexible solid in both analyses is described as a neo-Hookean solid continuum of finite thickness. The previous work on viscous instability using the same solid model ignored the viscous dissipation in the solid. In the present study, a purely elastic neo-Hookean model is augmented to incorporate the viscous stresses accounting for the dissipative mechanism in an aqueous gel-like solid medium. The linear stability analysis for this neo-Hookean viscoelastic solid shows a dramatic influence of solid viscosity on the stability behaviour. The important parameter here is where ηr is the solid viscosity relative to the fluid viscosity and H is the solid-to-fluid thickness ratio. While the effect solid viscosity is stabilizing for a further increase in viscosity in the regime reduces the critical shear rate for transition, indicating a destabilizing influence of solid viscosity. The weakly nonlinear analysis indicates that the bifurcation is subcritical for most values of H when ηr =0. However, for non-zero solid viscosity, the analysis reveals a range of ηr for which the nature of bifurcation is supercritical. The results are in contrast to the behaviour for the Hookean (linear) elastic solid, for which the effect of solid viscosity is always stabilising and the bifurcation is subcritical for all values of H and ηr. For the wall mode instability, critical parameters for the linear and the neo-Hookean elastic solid are found to be very close. The weakly nonlinear analysis of the wall mode instability shows that the instability is driven to a supercritically stable branch, indicating the possibility of a stable complex flow pattern which is ) correction to the base flow. The amplitude of the supercritically bifurcated equilibrium state, A1e, is derived in the vicinity of the critical point, and its scaling with the flow Reynolds number is obtained. The nonlinear analysis is also carried out using the asymptotic analysis in small parameter Re−1/3. The asymptotic results are found to be in good agreement with the numerical solutions for For a polymeric flow over a deformable solid medium, the viscous instability is analysed by extending the viscous mode for the Newtonian fluid to the fluid with finite elasticity. The viscoelastic fluid is described by an Oldroyd-B model which introduces two additional parameters: the Weissenberg number, W , and β, the ratio of solvent-to-solution viscosity. The polymer viscosity parameter β is an indirect measure of polymer concentration with the extreme cases of β =1 representing the Newtonian fluid and β =0the upper convected Maxwell fluid. The analysis considers both the linearly elastic and the neo-Hookean models to describe the deformable solid. The analysis reveals the presence of two classes of modes: the finite wavelength modes and the shortwave modes. The behaviour of the finite wavelength modes is similar for both the models of solid medium. The effect of increasing fluid Weissenberg number and also increasing polymer concentration (achieved by reducing β below 1) on the finite wavelength instability is stabilising. The viscous instability ceases to exist for W larger than a certain maximum value Wmax. The behaviour of the shortwave mode is remarkably different for both the models of solid. Using the shortwave asymptotic, the differences are elucidated and it is shown that the shortwave instabilities in both the models are qualitatively different modes. For a linear elastic solid model, the shortwave mode is attributed to the normal-stresses in polymeric fluid with high Weissenberg number. This mode does not exist for the Newtonian flow and is a downstream travelling disturbance wave. On the other hand, the shortwave mode for the neo-Hookean model is attributed to the normal-stress difference in the elastic solid. Hence, this mode does exist for the Newtonian fluid and is an upstream travelling disturbance wave. The role of polymer concentration in the criticality of finite wavelength and shortwave modes is examined for a wide range of Weissenberg number. The results are condensed in a map showing the stability boundaries in parametric space covering β, W and H. The weakly nonlinear analysis reveals that the bifurcation of linear instability is subcritical when there is no dissipation in the solid. The nature of bifurcation, however, changes to supercritical when the viscous effects in the solid are taken into account. The final problem of this thesis deals with the flow past a rigid surface. Here, the stability of base profile in a plane Couette flow of dilute polymeric fluid is studied at moderate Reynolds number. Three variants of Oldroyd-B model have been analysed, viz. the classical Oldroyd-B model, the diffusive Oldroyd-B model, and the non-homogeneous Oldroyd-B model. The Newtonian wall modes are modified marginally for the polymeric fluid described by the classical Oldroyd-B model. The Oldroyd-B model with artificial diffusivity introduces the additional ‘diffusive modes’ which scale with P´eclet number. The diffusive modes become the slowest decaying modes, in comparison to the wall modes, for large wavenumber disturbances. For these two models, the polymeric flow is linearly stable. Using the equilibrium flow method, wherein the nonlinear flow is assumed to be at the transition point, the finite amplitude disturbances are analysed, and the threshold energy necessary for subcritical transition is estimated. The third variant of Oldroyd-B model accounts for non-homogeneous polymer concentration coupled with the stress field. This model exhibits an instability in the linear analysis. The ‘concentration mode’ becomes unstable when the fluid Weissenberg number exceeds a certain transition value. This instability is driven by the stress-induced fluctuations in polymer number density.
14

Étude expérimentale d'un anneau tourbillonnaire en fluide newtonien et non newtonien en régime faiblement inertiel / Experimental study of a vortex ring in Newtonian and non-Newtonian fluids en régime faiblement inertiel

Bentata, Omar 20 February 2013 (has links)
Cette thèse est une étude expérimentale de la formation et de la maturation d’un anneau tourbillonnaire. Elle porte sur les écoulements faiblement inertiels (Reynolds : 5 à 500) en fluide newtonien puis non newtonien. Les anneaux sont générés par un système cylindre-piston. Ils sont analysés par visualisation et par vélocimétrie par images de particules (PIV). La dynamique en fluide newtonien à faible nombre de Reynolds se révèle plus complexe que celle à grands Reynolds avec l’apparition d’un anneau secondaire contrarotatif. Les résultats obtenus en fluide rhéofluidifiant montrent l’influence de l’indice de comportement ainsi que les zones de comportement rhéofluidifiant et newtonien. Les explorations en fluides viscoplastique et viscoélastique montrent la formation d’un ou plusieurs anneaux secondaires contrarotatifs, qui diffèrent dans leur formation et leur dynamique des anneaux observés en fluide newtonien et que l’on associe aux propriétés physiques intrinsèques du fluide. / The present work is an experimental study of the generation and the maturation of vortex rings, in order to characterize their structure and their global dynamics for small to moderate Reynolds numbers (between 5 and 500) in Newtonian and non-Newtonian fluids. The experimental set-up consists of a vertical cylindrical piston-tube system with the lower part immersed in a filled tank. Measurement campaigns have been carried out using dye visualization and Particle Image Velocimetry (PIV). A first part of the work is focussed on Newtonian fluid and allows the dynamics at low Reynolds numbers to be investigated qualitatively and quantitatively. This dynamics turns out to be more complex than the one classically observed at high Reynolds numbers, and is characterized by the production of a counter-rotating secondary vortex ring. The results obtained for shear thinning fluids show the influence of the power-law index on the development and the propagation of the ring. The computation of the shear rate field allows the results to be analyzed in terms of shear thinning and Newtonian regions. Finally a preliminary investigation for viscoplastic and viscoelastic fluids has been performed. In both cases, it is shown that one (for viscoplastic fluids) or several (for viscoelastic fluids) counter-rotating secondary vortex rings are generated, a phenomenon that can be associated with the intrinsic physical properties of the fluid. All these results provide several perspectives of study in the field of vortex rings dynamics in the weakly inertial regimes.
15

Um método numérico para o tratamento de mudanças topológicas em escoamentos viscoelásticos com superfície livre / A numerical method for the treatment of topological changes in viscoelastic free surface flows

França, Hugo Leonardo 10 September 2018 (has links)
Submitted by Hugo Leonardo França (franca.hugo1@gmail.com) on 2018-10-04T18:04:35Z No. of bitstreams: 1 Dissertacao-HugoFranca.pdf: 3793817 bytes, checksum: 12fb2ae28a169e9a5f6d50a5bce46b71 (MD5) / Approved for entry into archive by ALESSANDRA KUBA OSHIRO ASSUNÇÃO (alessandra@fct.unesp.br) on 2018-10-04T18:51:54Z (GMT) No. of bitstreams: 1 franca_hl_me_prud.pdf: 3820297 bytes, checksum: dafdb7b68a6401f200440004051ffa37 (MD5) / Made available in DSpace on 2018-10-04T18:51:54Z (GMT). No. of bitstreams: 1 franca_hl_me_prud.pdf: 3820297 bytes, checksum: dafdb7b68a6401f200440004051ffa37 (MD5) Previous issue date: 2018-09-10 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho é apresentado o estudo de um método numérico para resolver as equações de Navier-Stokes incompressíveis em escoamentos que possuem superfícies livres e mudanças topológicas. As equações governantes são resolvidas por um método de projeção que desacopla as incógnitas velocidade e pressão. A discretização é feita através de aproximações por diferenças finitas aplicadas a uma malha computacional não-uniforme. O método numérico é aplicado para a solução de problemas envolvendo fluidos Newtonianos e não-Newtonianos. Em particular, os efeitos viscoelásticos são descritos pelo modelo Oldroyd-B, utilizando a formulação Cartesiana clássica e uma forma alternativa para a decomposição da parte polimérica do tensor tensão extra. Esta estratégia alternativa de decomposição, conhecida como Formulação Tensão Natural, é muito atual e resultados numéricos são originalmente discutidos neste trabalho. O novo código com malha nãouniforme é testado nos seguintes problemas: escoamento na cavidade (lid-driven cavity), escoamento no cross-slot, e escoamento no canal com contração. A representação da superfície livre é feita através do método Front-Tracking, que descreve a interface de forma explícita através de partículas marcadoras. O algoritmo de mudanças topológicas é baseado em uma técnica que detecta e desfaz embaraçamentos presentes na interface. Este algoritmo é testado em simulações numéricas como: o impacto entre uma gota e uma camada de fluido, o impacto entre gotas e uma parede rígida, e o alongamento de um jato pela tensão superficial. / This work presents the study of a numerical method for solving the incompressible Navier-Stokes equations for free-surface flows that undergo topological changes. The governing equations are solved through a projection method that decouples the velocity and pressure fields. The discretization is performed via finite differences approximations applied to a non-uniform mesh. The numerical scheme is applied for solving Newtonian and non-Newtonian fluid flows. In particular, the viscoelastic effects are described by the Oldroyd-B model, using the classic Cartesian formulation and also an alternative approach for the decomposition of the polimeric part of the extra stress tensor. This alternative decomposition strategy is known as Natural Stress Formulation, and numerical results are originally discussed in this work. The new code with a non-uniform mesh is tested in the following problems: the lid-driven cavity, the cross-slot problem, and the flow through a channel with contraction. In order to represent the free-surface, a Front-Tracking method that describes the interface explicitly using marker particles is used. The algorithm for topological changes is based in a technique that detects when the interface is tangled and untangles it. This algorithm is tested in numerical simulations such as: the impact between a drop and a layer of fluid, the impact between drops and a solid wall, and the jetting break-up process under the effect of surface tension. / FAPESP: 2016/00456-2
16

Simulação numérica de escoamentos viscoelásticos multifásicos complexos / Numerical simulation of complex viscoelastic multiphase flows

Rafael Alves Figueiredo 15 September 2016 (has links)
Aplicações industriais envolvendo escoamentos multifásicos são inúmeras, sendo que, o aprimoramento de alguns desses processos pode resultar em um grande salto tecnológico com significativo impacto econômico. O estudo numérico dessas aplicações é imprescindível, pois fornece informações precisas e mais detalhadas do que a realização de testes experimentais. Um grande desafio é o estudo numérico de escoamentos viscoelásticos multifásicos envolvendo altas taxa de elasticidade, devido às instabilidades causadas por altas tensões elásticas, grandes deformações, e até mudanças topológicas na interface. Assim, a investigação numérica desse tipo de problema exige uma formulação precisa e robusta. No presente trabalho, um novo resolvedor de escoamentos bifásicos envolvendo fluidos complexos é apresentado, com particular interesse em escoamentos com altas taxas de elasticidade. A formulação proposta é baseada no método Volume-of-fluid (VOF) para representação da interface e no algoritmo Continuum Surface Force (CSF) para o balanço de forças na interface. A curvatura e advecção da interface são calculados via métodos geométricos para garantir a precisão dos resultados. Métodos de estabilização são utilizados quando números críticos de Weissenberg (Wi) são encontrados, devido ao famoso problema do alto número de Weissenberg (HWNP). O método da projeção, combinado com um método implícito para solução da equação da quantidade de movimento, são discretizados por um esquema de diferenças finitas em uma malha deslocada. Problemas de benchmarks foram resolvidos para acessar a precisão numérica da formulação em diferentes níveis de complexidade física, tal como representação e advecção da interface, influência das forças interfaciais, e características reológicas do fluido. A fim de demonstrar a capacidade do novo resolvedor, dois problemas bifásicos transientes, envolvendo fluidos viscoelásticos, foram resolvidos: o efeito de Weissenberg e o reômetro extensional (CaBER). O efeito de Weissenberg ou rod-climbing effect consiste em um bastão que gira dentro de um recipiente com fluido viscoelástico e, devido às forças elásticas, o fluido escala o bastão. Os resultados foram comparados com dados teóricos, numéricos e experimentais, encontrados na literatura para pequenas velocidades angulares. Além disso, resultados obtidos com altas velocidades angulares (alta elasticidade) são apresentados com o modelo Oldroyd-B, em que escaladas muito elevadas foram observadas. Valores críticos da velocidade angular foram identificados, e para valores acima foi observada a ocorrência de instabilidades elásticas, originadas pela combinação de tensões elásticas, curvatura interfacial, e escoamentos secundários. Até onde sabemos, numericamente, essas instabilidades nunca foram capturadas antes. O CaBER consiste no comportamento e colapso de um filamento de fluido viscoelástico, formado entre duas placas paralelas devido às forças capilares. Esse experimento envolve consideráveis dificuldades, dentre as quais podemos destacar a grande influência das forças capilares e a diferença de escalas de comprimento no escoamento. Em grande parte dos resultados encontrados na literatura, o CaBER é resolvido por modelos simplificados em uma dimensão. Resultados obtidos foram comparados com tais resultados da literatura e com soluções teóricas, apresentando admirável precisão. / Industrial applications involving multiphase flow are numerous. The improvement of some of these processes can result in a major technological leap with significant economic impact. The numerical study of these applications is essential because it provides accurate and more detailed information than conducting experiments. A challenge is the numerical study of high viscoelastic multiphase flows due to instabilities caused by the high elastic tension, large deformations and even topological changes in the interface. Thus the numerical investigation of this problem requires a robust formulation. In this study a new two-phase solver involving complex fluids is presented, with particular interest in the solution of highly elastic flows of viscoelastic fluids. The proposed formulation is based on the volume-of-fluid method (VOF) to interface representation and continuum surface force algorithm (CSF) for the balance of forces in the interface. The curvature and interface advection are calculated via geometric methods to ensure the accuracy of the results. Stabilization methods are used when critical Weissenberg numbers are found due to the famous high Weissenberg number problem (HWNP). The projection method combined with an implicit method for the solution of the momentum equation are discretized by a finite difference scheme in a staggered grid. Benchmark test problems are solved in order to access the numerical accuracy of different levels of physical complexities, such as the dynamic of the interface and the role of fluid rheology. In order to demonstrate the ability of the new resolver, two-phase transient problems involving viscoelastic fluids have been solved, theWeissenberg effect problem and the extensional rheometer (CaBER). The Weissenberg effect problem or rod-climbing effect consists of a rod that spins inside of a container with viscoelastic fluid and due to the elastic forces the fluid climbs the rod. The results were compared with numerical and experimental data from the literature for small angular velocities. Moreover results obtained for high angular velocities are presented using the Oldroyd-B model, which showed high climbing heights. Critical values of the angular speed have been identified. For values above a critical level were observed the occurrence of elastic instabilities caused by the combination of elastic tension, interfacial curvature and secondary flows. To our knowledge, numerically these instabilities were never captured before. The CaBER consists of the behavior and collapse of a viscoelastic fluid filament formed between two parallel plates due to capillary forces. This experiment involves considerable difficulties, among which we can highlight the great influence of the capillary forces and the difference of the length scales in the flow. In much of the results found in the literature, the CaBER is solved by simplified models. The results were compared with results reported in the literature and theoretical solutions, which showed remarkable accuracy.
17

Analýza neustáleného proudění nestlačitelné tepelně vodivé viskoelastické tekutiny rychlostního typu s napěťovou difuzí / Analysis of unsteady flows of incompressible heat-conducting rate-type viscoelastic fluids with stress-diffusion

Bathory, Michal January 2020 (has links)
We prove a global-in-time and large-data existence of a suitable weak solution to a system of partial differential equations describing an unsteady flow of homogeneous incom- pressible viscoelastic rate-type fluid. The material parameters are continuous functions of temperature and, in particular, the dependence of the shear modulus is assumed to be linear. It is shown that studied models obey the fundamental laws of thermodynamics. The key step towards the existence proof is derivation of the balance of entropy. This in- equality is paramount in the analysis and as its consequence, we obtain sufficient a priori estimates, positivity of temperature and also regularity of the elastic deformation. The second part of the thesis deals with the existence analysis for the isothermal case, however using a completely different method, which is of independent interest. 1
18

Simulation of blood flows in a stenosed and bifurcating artery using finite volume methods and OpenFOAM

Nagarathnam, Sunitha 30 August 2022 (has links) (PDF)
Numerical simulations of the complex flows of complex (viscoelastic) fluids are investigated. The primary fluid investigated in this thesis is human blood, a complex fluid which can be modelled via viscoelastic constitutive models. The most commonly used constitutive models for viscoelastic fluids include the OldroydB, Giesekus, Johnson-Segalman, Finitely Extensible Non-Linear Elastic (FENE), Phan-Thein-Tanner (PTT) models etc. Our Numerical approach is based on the finite volume methods implemented on the OpenFOAM platform. We employ the Giesekus, Oldroyd-B, and Generalized Oldroyd-B viscoelastic constitutive models in this thesis, depending on the underlying context. Numerical validation of our results is conducted via the most used benchmark flow problems for viscoelastic fluid flow. The robust and efficient numerical methodologies are then deployed to investigate the flow characteristics, and hence illustrate various novel behavior, for blood flow in stenosed and bifurcated arteries. The present work took advantage of the availability of a reasonable set of viscoelastic constitutive model solvers within OpenFOAM, specifically the viscoelasticFluidFoam solver which we modified and developed to suit our focused needs for blood flow computations. The modified computational algorithms were successfully validated against well-known benchmark flow problems in the literature. Noting that the Giesekus viscoelastic constitutive model is a generalization of both the Oldroyd-B and Generalized Oldroyd-B models, the validation of results is carried out via the Giesekus model enabling us to develop a general-purpose code capable of simulating several viscoelastic constitutive models. The main results were otherwise presented for the Oldroyd-B and Generalized Oldroyd-B models as these are the most applicable to blood flow modelling. The results demonstrate that the velocity spurt through the stenosis is directly proportional to the constriction caused by the stenosis. The higher the blockage from the constriction, the higher the corresponding velocity spurt through the constriction. This velocity behavior, as the constriction blockage increases, correspondingly increase the wall shear stresses. High wall shear stresses significantly increase the possibility of rupture of the stenosis/blockage. This can lead to catastrophic consequences in the usual case where the stenosis is caused by tumor growth.
19

Simulation of individual cells in flow

Zhu, Lailai January 2014 (has links)
In this thesis, simulations are performed to study the motion ofindividual cells in flow, focusing on the hydrodynamics of actively swimming cells likethe self-propelling microorganisms, and of passively advected objects like the red bloodcells. In particular, we develop numerical tools to address the locomotion ofmicroswimmers in viscoelastic fluids and complex geometries, as well as the motion ofdeformable capsules in micro-fluidic flows. For the active movement, the squirmer is used as our model microswimmer. The finiteelement method is employed to study the influence of the viscoelasticity of fluid on theperformance of locomotion. A boundary element method is implemented to study swimmingcells inside a tube. For the passive counterpart, the deformable capsule is chosen as the modelcell. An accelerated boundary integral method code is developed to solve thefluid-structure interaction, and a global spectral method is incorporated to handle theevolving cell surface and its corresponding membrane dynamics. We study the locomotion of a neutral squirmer with anemphasis on the change of swimming kinematics, energetics, and flowdisturbance from Newtonian to viscoelastic fluid. We also examine the dynamics of differentswimming gaits resulting in different patterns of polymer deformation, as well as theirinfluence on the swimming performance. We correlate the change of swimming speed withthe extensional viscosity and that of power consumption with the phase delay of viscoelasticfluids. Moreover, we utilise the boundary element method to simulate the swimming cells in astraight and torus-like bent tube, where the tube radius is a few times the cell radius. Weinvestigate the effect of tube confinement to the swimming speed and power consumption. Weanalyse the motions of squirmers with different gaits, which significantly affect thestability of the motion. Helical trajectories are produced for a neutralsquirmer swimming, in qualitative agreement with experimental observations, which can beexplained by hydrodynamic interactions alone. We perform simulations of a deformable capsule in micro-fluidic flows. We look atthe trajectory and deformation of a capsule through a channel/duct with a corner. Thevelocity of capsule displays an overshoot as passing around the corner, indicating apparentviscoelasticity induced by the interaction between the deformable membrane and viscousflow. A curved corner is found to deform the capsule less than the straight one. In addition, we propose a new cell sorting device based on the deformability of cells. Weintroduce carefully-designed geometric features into the flow to excite thehydrodynamic interactions between the cell and device. This interaction varies andclosely depends on the cell deformability, the resultant difference scatters the cellsonto different trajectories. Our high-fidelity computations show that the new strategy achievesa clear and robust separation of cells. We finally investigate the motion of capsule in awall-bounded oscillating shear flow, to understand the effect of physiological pulsation to thedeformation and lateral migration of cells. We observe the lateral migration velocity of a cellvaries non-monotonically with its deformability. / <p>QC 20140313</p>
20

Imagerie ultrasonore dans les matériaux mous / Ultrasonic imaging in soft materials

Perge, Christophe 03 July 2014 (has links)
La matière molle se consacre à l'étude des propriétés de fluides complexes. Ces fluides diffèrent des fluides simples à cause de l'existence d'une microstructure qui provient de l'arrangement particulier des éléments mésoscopiques constitutifs du matériau (agrégats de particules de noir de carbone, enchevêtrements de polymères, micelles de molécules tensioactives). C'est le couplage entre microstructure et déformation qui confère aux fluides complexes des comportements singuliers et qui engendre des écoulements hétérogènes. Comprendre ces états hors-équilibre et les dynamiques associées présente un intérêt à la fois industriel et fondamental. La rhéologie en cellule de Taylor-Couette est une technique très répandue pour l'étude de la déformation et de l'écoulement de fluides complexes. Cependant, cette méthode n'est pas adaptée à l'étude des écoulements hétérogènes car elle ne fournit qu'une description globale de l'écoulement. Pour pallier ce problème, une technique de vélocimétrie ultrasonore à deux dimensions a été couplée à la rhéologie classique. Cette visualisation locale nous a permis d'étudier l'instabilité inertielle de Taylor-Couette dans les fluides newtoniens, les instabilités élastiques de fluides viscoélastiques (polymères et solutions micellaires), la fluidification de fluides à seuil (gels de noir de carbone, microgels de carbopol et émulsions) et enfin la rupture de gels de protéine soumis à une contrainte de cisaillement. Tous ces exemples montrent des coexistences entre différents états induits par l'écoulement et permettent de revisiter les approches rhéologiques à partir de caractérisations locales des champs de déformation et de vitesse. / Soft matter scientists are dedicated to studying the properties of complex fluids. Complex fluids differ from simple fluids in that they possess a microstructure resulting from the particular arrangement of mesoscopic elements which constitute the material (aggregates of carbon black particles, entangled polymers, micelles of surfactant molecules, etc.). Peculiar flow behaviors in complex fluids, such as heterogeneous flows, arise from the coupling between microstructure and flow. Understanding these non-equilibrium states and the associated dynamics is both of industrial and fundamental interest. Rheology in a Taylor-Couette cell is a wide-spread technique for investigating the deformation and flow of complex fluids. However, this method is mostly blind to heterogeneous flows as it only provides a global description of the flow. To overcome this problem, an ultrasonic imaging technique has been combined with classical rheology. This local visualisation has allowed us to study the inertial Taylor-Couette instability in Newtonian fluids, elastic instabilities in viscoelastic fluids (polymers and micellar solutions), the fluidisation of yield stress fluids (carbon black gels, carbopol microgels and emulsions) and finally the failure of protein gels under stress. In all these cases we evidence a coexistence between different flow-induced states and revisit global rheological approaches through local characterizations of deformation and velocity fields.

Page generated in 0.0713 seconds