• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 103
  • 23
  • 21
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 392
  • 392
  • 100
  • 93
  • 87
  • 78
  • 70
  • 64
  • 59
  • 49
  • 48
  • 46
  • 45
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Investigação experimental em túnel de vento dos efeitos causados por dispositivos aerodinâmicos na resposta de tabuleiros de ponte frente ao desprendimento de vórtices

Vallis, Matthew Bruce January 2013 (has links)
“Estas vibrações são as primeiras do seu tipo para as pontes tipo viga….elas mostram a alta estabilidade aerodinâmica e confiabilidade da estrutura" (Anishyuk e Antonova, 2010). Esta é uma citação do porta-voz da empresa responsável pela construção da ponte, com vãos 120m e de 7 km de extensão, em Volgograd, na Rússia – que oscilou tão violentamente sob velocidades baixas do vento em maio de 2010, que os motoristas ficaram enjoados e a ponte foi fechada. As filmagens do movimento da ponte podem ser encontradas facilmente na internet, e causam uma visão perturbadora. O que é mais perturbador é que a empresa responsável pelo seu projeto e construção pôde ser tão ignorante da história das aerodinâmicas de pontes e conceitos aerodinâmicos básicos.As vibrações induzidas por vórtices que tinham atormentadas a Ponte Volgograd são agora atenuadas por um sistema avançado de dispositivos de amortecimento mecânico. Se as medidas de segurança tivessem sido tomadas durante a fase do projeto, a necessidade desses dispositivos de amortecimento poderia ter sido evitada. Uma variedade de dispositivos aerodinâmicos passivos tem apresentado ser extremamente eficaz na supressão das vibrações induzidas por vórtices em velocidades baixas do vento para um número de pontes de grande vão Investigações adequadas em túnel de vento realizadas durante a fase do projeto podem alertar os projetistas da existência de instabilidades aerodinâmicas inerente no projeto, e passos podem ser tomados para modificar o formato do tabuleiro para otimizar o seu desempenho dinâmico sob cargas de vento. Investigações experimentais da efetividade na supressão das vibrações induzidas por vórtices, por uma série de dispositivos aerodinâmicos passivos, têm sido realizadas no Túnel de Vento Prof. Joaquim Blessmann, em Porto Alegre. Dispositivos foram projetados com base nas modificações feitas a outros projetos de pontes que sofreram com as vibrações indesejadas da velocidade baixa do vento, tanto no túnel de vento durante a fase do projeto, durante a construção ou após a conclusão da ponte em grande escala. Dispositivos foram testados usando um modelo dinâmico de uma ponte da vida real, e os resultados indicaram que algumas modificações simples a geometria da seção transversal do tabuleiro podem ter um efeito significativo na sua resposta. / “These vibrations are the first of their kind for beam-type bridges….they show the high aerodynamic stability and reliability of the structure” (Anishyuk and Antonova, 2010). This is a quote taken from the spokesman of the company responsible for the construction of the 7km long reinforced concrete bridge in Volgograd, Russia – whose multiple continuous 120 meter spans oscillated so violently under low-wind speed conditions in May of 2010 that motorists became seasick and the bridge was closed. Footage of the bridge’s movement can easily be found on the internet, and makes for disturbing viewing. What is even more disturbing is that the company responsible for its design and construction could be so ignorant to the history of bridge aerodynamics and basic aerodynamic concepts. The vortex-induced vibrations which had plagued the Volgograd Bridge are now mitigated by an advanced system of mechanical damping devices. If proper precautions had been taken during the design stage of the bridge, the necessity of these damping devices could have been avoided. A variety of passive aerodynamic devices have been shown to be extremely effective in the suppression of low wind speed vortex-induced vibrations for a number of long-span bridges Proper wind-tunnel investigations undertaken during the design stage can alert designers to the existence of aerodynamic instabilities inherent to the design, and steps can be taken to modify the shape of the deck to optimise its dynamic performance under wind loads. Experimental investigations of the effectiveness of range of passive aerodynamic devices to suppress vortex-induced vibrations have been conducted at the Professor Joaquim Blessmann Wind-Tunnel, Porto Alegre. Devices were designed based on modifications made to other bridge designs which suffered from unwanted low wind speed vibrations, either in the windtunnel during the design stage, during erection or after completion of the full-scale bridge. Devices were tested using a dynamic section model of a real-life bridge deck design. Results indicate that some simple modifications to the cross-section geometry of the deck can have a substantial effect on its response.
72

Análise de pás para aerogeradores de eixo horizontal aplicados à geração de microenergia / Analysis of blades for horizontal axis wind turbines applied to microenergy generation

Oliveira, Mariana Schmidt de January 2017 (has links)
A geração de energia elétrica por meio de aerogeradores de microporte vem ganhando espaço em várias partes do mundo; porém, estudos que descrevem e analisam este artefato, ainda são restritos se comparados a aerogeradores de médio e grande porte. Países como China e Estados Unidos, por exemplo, buscam cada vez mais estudar a microgeração de energia eólica, servindo como motivação para que exista maior número de estudos neste campo, também aqui no país. Neste sentido, a presente pesquisa apresenta análise de perfis NACA com diferentes ângulos de passo visando a microgeração de energia eólica. Para tanto realizou-se levantamento das velocidades de vento na parte superior de um prédio localizado no centro de Porto Alegre durante 5 dias e os perfis aerodinâmicos foram testados no programa computacional Q-Blade. Selecionou-se 3 perfis NACA (0012, 6409, 1412), 3 ângulos de passo (15º, 30° e 45º) e 5 velocidades de vento (de 1m/s à 5 m/s). Os modelos analisados foram obtidos através de impressão 3D. Foram então realizados ensaios aerodinâmicos utilizando o túnel de vento nos quais foram medidos o número de rotação por minuto (RPM), a velocidade de vento da partida da hélice, a tensão, corrente e a potência elétrica, geradas para diferentes configurações de ensaio. O trabalho contribui no sentido de auxiliar projetos que envolvam design e tecnologia que visem à melhoria da funcionalidade prática de microgeradores eólicos de eixo horizontal para as diversas aplicações possíveis. Os resultados apontam que o ângulo de passo de 45º apresenta os maiores índices de rotação, tensão, corrente e potência elétrica para todos os perfis NACA analisados, sendo o perfil NACA 0012 o de maior destaque em relação a esses mesmos parâmetros. / Electric power generation by small scale wind turbines has been gaining space in several parts of the world, however, studies that describe and analyze this artefact, are still more restrict in comparison to medium and large scale wind turbines. Countries such as China and the United States, for example, are increasingly seek to study wind power microgeneration, working as a motivator in order to increase the number of studies in the field, even here in the country. In this matter, the present research presents an analysis of NACA profiles with different pitch angles seeking wind energy microgeneration. In order to do so, it was gathered the wind speed of the top portion of a building located in central Porto Alegre during 5 days and the aerodynamic profiles were tested in the computer program Q-Blade. 3 NACA profiles (0012, 6409, 1412), 3 pitch angles (15º, 30° e 45º) and 5 wind velocities (1m/s to 5 m/s) were selected. The analyzed models were obtained through 3D printing. Aerodynamical tests were performed using the Wind tunnel and were observed the number of rotation per minute (RPM), the wind speed start of the propeller, electric tension, current and power generated for different test configurations. The work contributes to assisting projects that involves design and technology aimed at improving the practical functionality of horizontal axis wind generators for the various possible applications. The results indicate that the 45º pitch angle presents the highest rates of rotation, electric tension, current and power for all the NACA profiles analyzed, with the NACA 0012 profile being the most prominent in relation to these same parameters.
73

Caracterização funcional de adjuvantes em soluções aquosas /

Oliveira, Rone Batista de, 1977- January 2011 (has links)
Orientador: Ulisses Rocha Antuniassi / Banca: Otavio Jorge Gricoli Abi Saab / Banca: Marco Antonio Gandolfo / Banca: Carlos Gilberto Raetano / Banca: Paulo Roberto Arbex Silva / Resumo: A alta demanda por agrotóxicos pelos sistemas de produção agrícola, aliada ao possível uso inadequado desses produtos, torna a deriva um dos maiores problemas potenciais da agricultura atual, e a escolha correta de adjuvantes pode ser uma das alternativas para minimizar os impactos negativos causados pela deriva nas pulverizações. Este trabalho foi desenvolvido com o objetivo de avaliar o efeito proporcionado por diferentes grupos de adjuvantes nas propriedades físicas e químicas das soluções, no espectro de gotas, bem como no potencial do risco de deriva quantificado em túnel de vento, como forma de auxiliar na escolha correta desses produtos para melhor utilização nas aplicações de agrotóxicos. Foram selecionados 18 adjuvantes comumente utilizados em misturas com agrotóxicos em pulverizações agrícolas, avaliando-se as propriedades físicas e químicas dos mesmos em soluções aquosas (viscosidade, densidade, tensão superficial e condutividade elétrica), o espectro de gotas e o potencial de deriva medido em túnel de vento. O experimento foi composto de 33 tratamentos, tendo a água como testemunha adicional, resultantes da diluição dos adjuvantes em diferentes concentrações, com três repetições. Para os ensaios em túnel de vento e análise de espectro de gotas foi utilizada uma ponta de pulverização XR8003 VK na pressão de 200 kPa, gerando um padrão de gotas médias. A deriva foi coletada no túnel de vento com fluxo de ar na velocidade de 2 m s-1. O corante Azul Brilhante a 0,6% (m v-1) foi utilizado como marcador para todas as soluções pulverizadas visando a quantificação da deriva por espectrofotometria. Os resultados mostraram que a adição de adjuvantes alterou as propriedades físicas e químicas das soluções aquosas em diferentes magnitudes, dependendo da concentração utilizada. Os surfatantes organosilicones... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Due to the high demand for pesticide by the agricultural systems and the possible inadequate use of the products, drift became one of the biggest concerns of the modern agriculture, and the correct use of adjuvants may be one of the possible alternatives to minimize the negative impact of spray operations. This study was developed to evaluate the effect of different adjuvants on physical and chemical properties of spray solutions, droplets spectra as well as drift potential measured in wind tunnel, aiming the correct choice of adjuvants to improve efficiency in pesticide application. For this purpose 18 commercially available agricultural spray adjuvants were selected including products usually mixed up with pesticides in the sprayer tank. The evaluation included physical and chemical properties of spray solutions (viscosity, density, surface tension and electric conductivity), droplets spectra and drift risk potential measured in wind tunnel. The experiment was set up with 33 treatments (solutions) obtained from 18 adjuvants used in different concentrations with 3 replications, including pure water as a standard. For wind tunnel tests and droplet spectra analysis it was used a Teejet XR8003 flat fan nozzles at 200 kPa (medium droplets) and all solutions were mixed up with a food color dye (Blue FDC) at 0,6% m v-1 for spectrophotometry analysis of drift deposits on the wind tunnel. The results showed that the addition of adjuvants changed physical and chemical properties of spray solutions in different magnitudes according to the product concentration. The organosilicon surfactants (Silwet 0.1% e 0.2% and BreakThru 0,1%) had the lowest values for surface tension, while the drift retardant based polymers (Define 0,06% e 0,12%) had the highest values for viscosity and density. There was high correlation between the Volume Median Diameter (VMD) and percentage of droplets smaller... (Completo abstract click electronic access below) / Doutor
74

Ventilação por ação do vento no edifício: procedimentos para quantificação / Wind-driven ventilation in building: prediction methods

Daniel Cóstola 25 September 2006 (has links)
Este trabalho tem por objetivo formular um procedimento para a quantificação da vazão do ar promovida pela ação do vento no interior do edifício, em climas quentes. O procedimento é dividido em cinco partes: obtenção dos dados de vento, transposição dos dados de vento da estação meteorológica para a área de interesse, determinação dos coeficientes de pressão no edifício, determinação dos coeficientes de descarga das aberturas, e o cálculo da vazão no interior do edifício. Diversas ferramentas são apresentadas para a execução de cada etapa, e seu uso e parâmetros de entrada são discutidos. O uso de túnel de vento e a simulação com ferramentas de dinâmica dos fluidos computacional são apresentados em detalhes. O trabalho conclui que estão disponíveis aos projetistas um amplo conjunto de ferramentas para a predição da ventilação natural no interior do edifício, e que somente pelo seu uso criterioso, as conclusões são passiveis de uso no projeto arquitetônico. / The aim of this dissertation is to produce a procedure for wind-driven natural ventilation prediction, in hot climate building. The procedure is organized in five parts: wind data obtaining, topographic e roughness correction, pressure coefficient determination, discharge coefficient determination, and flow rate calculation inside the building. The dissertation presents some tools to execute each part of the procedure, and the specificities of those tools are discussed. Wind tunnel experiment and computation fluid dynamic simulation are presented in detail. The research conclusion is that designers have many tools avaliable to performe a natural ventilation prediction, but just concient use will produce reliable results for architectural design.
75

Design, Construction, and Characterization of the University of South Florida Wind Tunnel

Garcia, Jason S. 04 June 2018 (has links)
Much of the aerosol research completed at the University of South Florida has revolved around evaluating industrial hygiene equipment and instrumentation in environmental chambers. Data collected during these studies has provided valuable baseline data on equipment and instrument performance under calm air conditions. A newly constructed wind tunnel now allows researchers to evaluate industrial hygiene instruments under moving air conditions. Because the wind tunnel is capable of producing wind velocities that a worker could encounter in the occupational setting, researchers may gain insight into instrument performance under simulated field conditions. Because aerosols can be introduced into the new wind tunnel testing section, researchers can also challenge industrial hygiene equipment and instrumentation with aerosols in sizes ranges that are of interest in public health. The purpose of this dissertation research was to develop a new wind tunnel to be used for aerosol research at the University of South Florida. Three specific aims had to be met for this study to be successful. They included: (1) designing a wind tunnel based on best practice information outlined in scientific literature, (2) constructing an operable wind tunnel to be used for aerosol research, and (3) characterizing wind tunnel performance by examining the wind tunnel velocity profile, turbulence intensity, and aerosol introduction/collection. The actual wind tunnel was constructed to a length of approximately 20 feet, a height of approximately 2 feet at its tallest point, and includes an entrance filter housing, a settling chamber, a contraction, a testing section, a diffuser, an exit filter housing, a fan, and exhaust duct. All components were designed and constructed using guidelines and best practices reported in the scientific literature. Velocity profile measurements were the first way that this wind tunnel was characterized. In order to successfully obtain measurements, the wind tunnel cross section was divided into 16 equal quadrants. Five measurements were taken for each quadrant at each wind velocity. Target wind velocities for this research were 0.5 m/s, 1.0 m/s, and 2.0 m/s. Actual average wind velocities of 0.48 m/s, 1.00 m/s, and 2.04 m/s. All were within established limits reported in the scientific literature. Turbulence intensity measurements were the second way that this wind tunnel was characterized. In order to successfully obtain measurements, the wind tunnel cross section was divided into 16 equal quadrants. Five measurements were taken for each quadrant at each wind velocity. Wind tunnels are typically designed to have the lowest turbulence intensity possible, generally below 10%. The overall average turbulence intensities for this wind tunnel at wind velocities of 0.5 m/s, 1.0 m/s, and 2.0 m/s were 9%, 10%, and 8% respectively. Overall turbulence intensity measurements were at or below 10%. Isokinetic sampling was the final method used to characterize this wind tunnel by collecting and detecting aerosols traveling through the wind tunnel testing section. The wind tunnel was operated at wind velocities of 0.5 m/s, 1.0 m/s, and 2.0 m/s with isokinetic sampling flow rates of 15.4 L/min, 30.9 L/min, and 61.7 L/min respectively. Monodisperse fluorescent polystyrene latex spheres were used as the test aerosol because they are uniform in size and shape and can be detected by fluorometry. The Blaustein Multi-Jet Atomizer (BLAM) was used to generate monodisperse fluorescent polystyrene latex aerosol 0.5 µm and 2.0 µm particles from liquid suspensions. The Vilnius Aerosol Generator (VAG) was used to generate monodisperse fluorescent polystyrene latex aerosol of 6.0 µm and 12.0 µm particles from dry powders. Nitrogen gas was used for delivering test aerosols into the wind tunnel. Five experimental runs were completed for each particle size and wind velocity for a total of 60 experimental runs. Fluorescence was detected in all 60 samples with average mass concentrations ranging from 0.000050 ng/ml to 0.002703 ng/ml. Based on velocity profile measurements, turbulence intensity measurements, and isokinetic sampling, the performance of University of South Florida wind tunnel was found to be excellent, indicating that it was designed and constructed appropriately. The wind tunnel can now successfully be used by researchers interested in evaluating industrial hygiene sampling equipment with aerosols ranging from 0.5 µm to 12.0 µm in moving air with velocities ranging from 0.5 m/s to 2.0 m/s.
76

Aerodynamic Cooling of Automotive Disc Brakes.

Stephens, Arthur William, arthur.stephens.esb.ie January 2006 (has links)
Sufficient heat dissipation is crucial to the effective operation of friction based braking systems. Such cooling is generally provided by ensuring a sufficient supply of cooling air to the heated components, hence the aerodynamics in the region of the brake components is extremely important. The objective of the research was to develop an understanding of how aerodynamics could be used to improve the cooling of automotive disc brakes. Two separate sets of wind tunnel experiments were developed. Tests were performed on a vented disc (rotor) to measure the internal flow through the vents on a rotating vented disc under various conditions, including an isolated disc in still air, the disc in still air with the wheel on, the disc in moving air with the wheel on, and an on-road simulation using a ¼ car. On vehicle tests were also performed in a wind tunnel using a purpose built brake test rig. These tests measured the thermal performance of different brake discs under various operating parameters; including constant load braking, and cooling from high temperature under various speeds, wheels and disc types. It was found that airflow through vented rotors was significantly reduced during simulated on-road driving, compared to when measured in isolation, but not particularly affected by the vehicles speed. In the situations tested, vented discs offered a 40+% improvement in cooling over an equivalent sized solid rotors. However the research indicates that the greatest benefit of vented rotors over solid will be in vehicles where air entering the wheel cavity is limited, such as low drag vehicles. It was also found that the most significant improvements in brake thermal performance could be achieved by maximising the airflow into the region of the brake components; including increasing the open area of the wheel, and increasing the vehicle velocity. Other improvements can be achieved by using a wheel material with good conductive capability, and increasing the mass of the disc. Evidence of vortex shedding was also discovered in the airflow at the exit of an internal vented rotor, any reduction in this flow disturbance should lead to increased airflow with associated improvements in thermal performance.
77

Design and Testing of Flexible Aircraft Structures

Carlsson, Martin January 2004 (has links)
Methods for structural design, control, and testing offlexible aircraft structures are considered. Focus is onnonconventional aircraft con- figurations and control concepts.The interaction between analysis and testing is a central topicand all studies include validation testing and comparisonbetween computational and experimental results. The first part of the thesis is concerned with the designand testing of an aeroelastic wind-tunnel model representing aBlended Wing Body (BWB) aircraft. The investigations show thata somewhat simplified wind-tunnel model design concept isuseful and efficient for the type of investigations considered.Also, the studies indicate that well established numericaltools are capable of predicting the aeroelastic behavior of theBWB aircraft with reasonable accuracy. Accurate prediction ofthe control surface aerodynamics is however found to bedifficult. A new aerodynamic boundary element method for aeroelastictimedomain simulations and its experimental validation arepresented. The properties of the method are compared totraditional methods as well as to experimental results. Thestudy indicates that the method is capable of efficient andaccurate aeroelastic simulations. Next, a method for tailoring a structure with respect to itsaeroelastic behavior is presented. The method is based onnumerical optimization techniques and developed for efficientdesign of aeroelastic wind-tunnel models with prescribed staticand dynamic aeroelastic properties. Experimental validationshows that the design method is useful in practice and that itprovides a more efficient handling of the dynamic aeroelasticproperties compared to previous methods. Finally, the use of multiple control surfaces andaeroelastic effects for efficient roll maneuvering isconsidered. The idea is to design a controller that takesadvantage of the elasticity of the structure for performancebenefits. By use of optimization methods in combination with afairly simple control system, good maneuvering performance isobtained with minimal control effort. Validation testing usinga flexible wind-tunnel model and a real-time control systemshows that the control strategy is successful in practice.Keywords: aeroelasticity, active aeroelastic structures,aeroelastic tailoring, control, structural optimization,wind-tunnel testing. / QC 20120320
78

Characterizing Vertical Mass Flux Profiles in Aeolian Saltation Systems

Farrell, Eugene 2012 May 1900 (has links)
This dissertation investigates characteristics of the vertical distributions of mass flux observed in field and laboratory experiments. Thirty vertical mass flux profiles were measured during a field experiment in Jericoacoara, Brazil from October to November, 2008. These data were supplemented with 621 profiles gathered from an extensive review of the aeolian literature. From the field experiment, the analysis of the grain-size statistics for the flux caught in each trap shows that a reverse in grain-size trends occurs at an inflection zone located 0.05 ? 0.15 m above the bed. Below this inflection, mean grain-size decreases steeply with elevation in the near bed region dominated by reptation and saltation modes of transport. Above the inflection there is a coarsening of grain size with elevation; as saltation becomes the dominant transport mode. These results indicate that the coarsest grains are found close to and farthest from the bed. Using a data set comprising 274 vertical flux profiles, the performance of the exponential, power and logarithmic functions were tested to see which provided the best fit to the vertical flux distributions. The exponential function performed best 88% of the time. The average r2 value for the grouped exponential, logarithmic, and power function fits are 0.98, 0.85 and 0.91, respectively. The populations of the exponent coefficients, representing the relative rate of decrease with height above the surface, or slope of the vertical mass flux profiles, are statistically different in wind tunnels and field experiments. The slopes of the vertical flux profiles observed in wind tunnel experiments are steeper compared to field environments, which infers that saltation is suppressed in wind tunnels. These differences are magnified in wind tunnels with small working cross section areas, and in wind tunnel experiments that use extreme environmental conditions, such as very high shear velocities. The Rouse concentration model, widely used in water studies, was tested to see if it could replicate the observed vertical flux distributions and transport rates. A fall velocity (w0) equation for particles falling in air was derived using a grain size (d) dependency: w0 (in m/s) = 4.23d (in mm) + 0.1956 (r^2=0.88). The Rouse model performs poorly when the value of the beta (a form of the Schmidt number in the Rouse number exponent) is assumed to be unity. The values of beta were modeled using a relationship derived from a dependency of beta on the w0/u* ratio: beta = 3.2778(w0/u*) - 0.4133 (r^2=0.65). The values of beta ranged from 6.11 ? 17.83 for all the experiments. The Rouse profiles calculated using this approach predict very similar vertical distributions to the observed data and predicted 86% and 81% of the observed transport rate in field and wind tunnel experiments respectively. The Rouse approach is more physically meaningful than current approaches that use standard curve fitting functions to represent the vertical flux data but do not provide any explanatory power for the shape or magnitude of the profile.
79

The performance of an iced aircraft wing

Andersson, Daniel January 2011 (has links)
The goal of this thesis work has been to develop and manufacture an ice layer which was to be mounted on the tip of a scaled down wing model. The iced wing should be tested in a wind tunnel and aerodynamic comparisons should be made to the same wing without ice.The development of the ice was carried out as a modified product development process. The main differences are that there is no costumer and that the actual shape and functions of the product are more or less predetermined. The challenge was to find the best way to create the ice layer and how to mount it to the wing without damaging it or covering any pressure sensors. Product development methods such as pros and cons lists and prototypes were used to solve problems before printing the plastic ice layer in a rapid prototyping machine.Wind tunnel experiments were then conducted on the wing with and without the manufactured ice. Raw data from the wind tunnel were processed and lift and drag coefficients were calculated using mathematical equations. Finally, conclusions were drawn by comparing the results from the wind tunnel tests with theory, other works as well as CFD simulations.The ice layer was successfully manufactured and it met the target specifications. The aerodynamic performance of an iced aircraft wing proved to be considerably worse compared to a blank wing. The maximum achievable lift force decreased by 22% and an increased drag force will require more thrust from the airplane.
80

The Effect of Wing Damage on Aeroelastic Behavior

Conyers, Howard J. January 2009 (has links)
<p>Theoretical and experimental studies are conducted in the field of aeroelasticity. Specifically, two rectangular and one cropped delta wings with a hole are analyzed in this dissertation for their aeroelastic behavior.</p><p>The plate-like wings are modeled using the finite element method for the structural theory. Each wing is assumed to behave as a linearly elastic and isotropic, thin plate. These assumptions are those of small-deflection theory of bending which states that the plane sections initially normal to the midsurface remain plane and normal to that surface after bending. The wings are modeled in low speed flows according to potential flow theory. The potential flow is governed by the aerodynamic potential equation, a linear partial differential equation. The aerodynamic potential equation is solved using a distribution of doublets that relates pressure to downwash in the doublet lattice method. A hole in a wing-like structure is independently investigated theoretically and experimentally for its structural and aerodynamic behavior.</p><p>The aeroelastic model couples the structural and aerodynamic models using Lagrange's equations. The flutter boundary is predicted using the V-g method. Linear theoretical models are capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests. Along with flutter prediction, a brief survey on gust response and the addition of stores(missile or fuel tanks) are examined.</p> / Dissertation

Page generated in 0.0393 seconds