• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 33
  • 24
  • 22
  • 21
  • 21
  • 20
  • 17
  • 17
  • 16
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Word2vec modely s přidanou kontextovou informací / Word2vec Models with Added Context Information

Šůstek, Martin January 2017 (has links)
This thesis is concerned with the explanation of the word2vec models. Even though word2vec was introduced recently (2013), many researchers have already tried to extend, understand or at least use the model because it provides surprisingly rich semantic information. This information is encoded in N-dim vector representation and can be recall by performing some operations over the algebra. As an addition, I suggest a model modifications in order to obtain different word representation. To achieve that, I use public picture datasets. This thesis also includes parts dedicated to word2vec extension based on convolution neural network.
52

Clustering of Distributed Word Representations and its Applicability for Enterprise Search

Korger, Christina 18 August 2016 (has links)
Machine learning of distributed word representations with neural embeddings is a state-of-the-art approach to modelling semantic relationships hidden in natural language. The thesis “Clustering of Distributed Word Representations and its Applicability for Enterprise Search” covers different aspects of how such a model can be applied to knowledge management in enterprises. A review of distributed word representations and related language modelling techniques, combined with an overview of applicable clustering algorithms, constitutes the basis for practical studies. The latter have two goals: firstly, they examine the quality of German embedding models trained with gensim and a selected choice of parameter configurations. Secondly, clusterings conducted on the resulting word representations are evaluated against the objective of retrieving immediate semantic relations for a given term. The application of the final results to company-wide knowledge management is subsequently outlined by the example of the platform intergator and conceptual extensions.":1 Introduction 1.1 Motivation 1.2 Thesis Structure 2 Related Work 3 Distributed Word Representations 3.1 History 3.2 Parallels to Biological Neurons 3.3 Feedforward and Recurrent Neural Networks 3.4 Learning Representations via Backpropagation and Stochastic Gradient Descent 3.5 Word2Vec 3.5.1 Neural Network Architectures and Update Frequency 3.5.2 Hierarchical Softmax 3.5.3 Negative Sampling 3.5.4 Parallelisation 3.5.5 Exploration of Linguistic Regularities 4 Clustering Techniques 4.1 Categorisation 4.2 The Curse of Dimensionality 5 Training and Evaluation of Neural Embedding Models 5.1 Technical Setup 5.2 Model Training 5.2.1 Corpus 5.2.2 Data Segmentation and Ordering 5.2.3 Stopword Removal 5.2.4 Morphological Reduction 5.2.5 Extraction of Multi-Word Concepts 5.2.6 Parameter Selection 5.3 Evaluation Datasets 5.3.1 Measurement Quality Concerns 5.3.2 Semantic Similarities 5.3.3 Regularities Expressed by Analogies 5.3.4 Construction of a Representative Test Set for Evaluation of Paradigmatic Relations 5.3.5 Metrics 5.4 Discussion 6 Evaluation of Semantic Clustering on Word Embeddings 6.1 Qualitative Evaluation 6.2 Discussion 6.3 Summary 7 Conceptual Integration with an Enterprise Search Platform 7.1 The intergator Search Platform 7.2 Deployment Concepts of Distributed Word Representations 7.2.1 Improved Document Retrieval 7.2.2 Improved Query Suggestions 7.2.3 Additional Support in Explorative Search 8 Conclusion 8.1 Summary 8.2 Further Work Bibliography List of Figures List of Tables Appendix
53

Cooperative security log analysis using machine learning : Analyzing different approaches to log featurization and classification / Kooperativ säkerhetslogganalys med maskininlärning

Malmfors, Fredrik January 2022 (has links)
This thesis evaluates the performance of different machine learning approaches to log classification based on a dataset derived from simulating intrusive behavior towards an enterprise web application. The first experiment consists of performing attacks towards the web app in correlation with the logs to create a labeled dataset. The second experiment consists of one unsupervised model based on a variational autoencoder and four super- vised models based on both conventional feature-engineering techniques with deep neural networks and embedding-based feature techniques followed by long-short-term memory architectures and convolutional neural networks. With this dataset, the embedding-based approaches performed much better than the conventional one. The autoencoder did not perform well compared to the supervised models. To conclude, embedding-based ap- proaches show promise even on datasets with different characteristics compared to natural language.
54

Automatic Question Paraphrasing in Swedish with Deep Generative Models / Automatisk frågeparafrasering på svenska med djupa generativa modeller

Lindqvist, Niklas January 2021 (has links)
Paraphrase generation refers to the task of automatically generating a paraphrase given an input sentence or text. Paraphrase generation is a fundamental yet challenging natural language processing (NLP) task and is utilized in a variety of applications such as question answering, information retrieval, conversational systems etc. In this study, we address the problem of paraphrase generation of questions in Swedish by evaluating two different deep generative models that have shown promising results on paraphrase generation of questions in English. The first model is a Conditional Variational Autoencoder (C-VAE) and the other model is an extension of the first one where a discriminator network is introduced into the model to form a Generative Adversarial Network (GAN) architecture. In addition to these models, a method not based on machine-learning was implemented to act as a baseline. The models were evaluated using both quantitative and qualitative measures including grammatical correctness and equivalence to source question. The results show that the deep generative models outperformed the baseline across all quantitative metrics. Furthermore, from the qualitative evaluation it was shown that the deep generative models outperformed the baseline at generating grammatically correct sentences, but there was no noticeable difference in terms of equivalence to the source question between the models. / Parafrasgenerering syftar på uppgiften att, utifrån en given mening eller text, automatiskt generera en parafras, det vill säga en annan text med samma betydelse. Parafrasgenerering är en grundläggande men ändå utmanande uppgift inom naturlig språkbehandling och används i en rad olika applikationer som informationssökning, konversionssystem, att besvara frågor givet en text etc. I den här studien undersöker vi problemet med parafrasgenerering av frågor på svenska genom att utvärdera två olika djupa generativa modeller som visat lovande resultat på parafrasgenerering av frågor på engelska. Den första modellen är en villkorsbaserad variationsautokodare (C-VAE). Den andra modellen är också en C-VAE men introducerar även en diskriminator vilket gör modellen till ett generativt motståndarnätverk (GAN). Förutom modellerna presenterade ovan, implementerades även en icke maskininlärningsbaserad metod som en baslinje. Modellerna utvärderades med både kvantitativa och kvalitativa mått inklusive grammatisk korrekthet och likvärdighet mellan parafras och originalfråga. Resultaten visar att de djupa generativa modellerna presterar bättre än baslinjemodellen på alla kvantitativa mätvärden. Vidare, visade the kvalitativa utvärderingen att de djupa generativa modellerna kunde generera grammatiskt korrekta frågor i större utsträckning än baslinjemodellen. Det var däremot ingen större skillnad i semantisk ekvivalens mellan parafras och originalfråga för de olika modellerna.
55

Distributionella representationer av ord för effektiv informationssökning : Algoritmer för sökning i kundsupportforum / Distributional Representations of Words for Effective Information Retrieval : Information Retrieval in Customer Support Forums

Lachmann, Tim, Sabel, Johan January 2017 (has links)
I takt med att informationsmängden ökar i samhället ställs högre krav på mer förfinade metoder för sökning och hantering av information. Att utvinna relevant data från företagsinterna system blir en mer komplex uppgift då större informationsmängder måste hanteras och mycket kommunikation förflyttas till digitala plattformar. Metoder för vektorbaserad ordinbäddning har under senare år gjort stora framsteg; i synnerhet visade Google 2013 banbrytande resultat med modellen Word2vec och överträffade äldre metoder. Vi implementerar en sökmotor som utnyttjar ordinbäddningar baserade på Word2vec och liknande modeller, avsedd att användas på IT-företaget Kundo och för produkten Kundo Forum. Resultaten visar på potential för informationssökning med markant bättre täckning utan minskad precision. Kopplat till huvudområdet informationssökning genomförs också en analys av vilka implikationer en förbättrad sökmotor har ur ett marknads- och produktutvecklingsperspektiv. / As the abundance of information in society increases, so does the need for more sophisticated methods of information retrieval. Extracting information from internal systems becomes a more complex task when handling larger amounts of information and when more communications are transferred to digital platforms. Recent years methods for word embedding in vector space have gained traction. In 2013 Google sent ripples across the field of Natural Language Processing with a new method called Word2vec, significantly outperforming former practices. Among different established methods for information retrieval, we implement a retrieval method utilizing Word2vec and related methods of word embedding for the search engine at IT company Kundo and their product Kundo Forum. We demonstrate the potential to improve information retrieval recall by a significant margin without diminishing precision. Coupled with the primary subject of information retrieval we also investigate potential market and product development implications related to a different kind of search engine.
56

Automatic Pronoun Resolution for Swedish / Automatisk pronomenbestämning på svenska

Ahlenius, Camilla January 2020 (has links)
This report describes a quantitative analysis performed to compare two different methods on the task of pronoun resolution for Swedish. The first method, an implementation of Mitkov’s algorithm, is a heuristic-based method — meaning that the resolution is determined by a number of manually engineered rules regarding both syntactic and semantic information. The second method is data-driven — a Support Vector Machine (SVM) using dependency trees and word embeddings as features. Both methods are evaluated on an annotated corpus of Swedish news articles which was created as a part of this thesis. SVM-based methods significantly outperformed the implementation of Mitkov’s algorithm. The best performing SVM model relies on tree kernels applied to dependency trees. The model achieved an F1-score of 0.76 for the positive class and 0.9 for the negative class, where positives are pairs of pronoun and noun phrase that corefer, and negatives are pairs that do not corefer. / Rapporten beskriver en kvantitativ analys som genomförts för att jämföra två olika metoder för automatisk pronomenbestämning på svenska. Den första metoden, en implementation av Mitkovs algoritm, är en heuristisk metod vilket innebär att pronomenbestämningen görs med ett antal manuellt utformade regler som avser att fånga både syntaktisk och semantisk information. Den andra metoden är datadriven, en stödvektormaskin (SVM) som använder dependensträd och ordvektorer som särdrag. Båda metoderna utvärderades med hjälp av en annoterad datamängd bestående av svenska nyhetsartiklar som skapats som en del av denna avhandling. Den datadrivna metoden överträffade Mitkovs algoritm. Den SVM-modell som ger bäst resultat bygger på trädkärnor som tillämpas på dependensträd. Modellen uppnådde ett F1-värde på 0.76 för den positiva klassen och 0.9 för den negativa klassen, där de positiva datapunkterna utgörs av ett par av pronomen och nominalfras som korefererar, och de negativa datapunkterna utgörs av par som inte korefererar.
57

Advanced techniques for domain adaptation in Statistical Machine Translation

Chinea Ríos, Mara 04 March 2019 (has links)
[ES] La Traducción Automática Estadística es un sup-campo de la lingüística computacional que investiga como emplear los ordenadores en el proceso de traducción de un texto de un lenguaje humano a otro. La traducción automática estadística es el enfoque más popular que se emplea para construir estos sistemas de traducción automáticos. La calidad de dichos sistemas depende en gran medida de los ejemplos de traducción que se emplean durante los procesos de entrenamiento y adaptación de los modelos. Los conjuntos de datos empleados son obtenidos a partir de una gran variedad de fuentes y en muchos casos puede que no tengamos a mano los datos más adecuados para un dominio específico. Dado este problema de carencia de datos, la idea principal para solucionarlo es encontrar aquellos conjuntos de datos más adecuados para entrenar o adaptar un sistema de traducción. En este sentido, esta tesis propone un conjunto de técnicas de selección de datos que identifican los datos bilingües más relevantes para una tarea extraídos de un gran conjunto de datos. Como primer paso en esta tesis, las técnicas de selección de datos son aplicadas para mejorar la calidad de la traducción de los sistemas de traducción bajo el paradigma basado en frases. Estas técnicas se basan en el concepto de representación continua de las palabras o las oraciones en un espacio vectorial. Los resultados experimentales demuestran que las técnicas utilizadas son efectivas para diferentes lenguajes y dominios. El paradigma de Traducción Automática Neuronal también fue aplicado en esta tesis. Dentro de este paradigma, investigamos la aplicación que pueden tener las técnicas de selección de datos anteriormente validadas en el paradigma basado en frases. El trabajo realizado se centró en la utilización de dos tareas diferentes de adaptación del sistema. Por un lado, investigamos cómo aumentar la calidad de traducción del sistema, aumentando el tamaño del conjunto de entrenamiento. Por otro lado, el método de selección de datos se empleó para crear un conjunto de datos sintéticos. Los experimentos se realizaron para diferentes dominios y los resultados de traducción obtenidos son convincentes para ambas tareas. Finalmente, cabe señalar que las técnicas desarrolladas y presentadas a lo largo de esta tesis pueden implementarse fácilmente dentro de un escenario de traducción real. / [CA] La Traducció Automàtica Estadística és un sup-camp de la lingüística computacional que investiga com emprar els ordinadors en el procés de traducció d'un text d'un llenguatge humà a un altre. La traducció automàtica estadística és l'enfocament més popular que s'empra per a construir aquests sistemes de traducció automàtics. La qualitat d'aquests sistemes depèn en gran mesura dels exemples de traducció que s'empren durant els processos d'entrenament i adaptació dels models. Els conjunts de dades emprades són obtinguts a partir d'una gran varietat de fonts i en molts casos pot ser que no tinguem a mà les dades més adequades per a un domini específic. Donat aquest problema de manca de dades, la idea principal per a solucionar-ho és trobar aquells conjunts de dades més adequades per a entrenar o adaptar un sistema de traducció. En aquest sentit, aquesta tesi proposa un conjunt de tècniques de selecció de dades que identifiquen les dades bilingües més rellevants per a una tasca extrets d'un gran conjunt de dades. Com a primer pas en aquesta tesi, les tècniques de selecció de dades són aplicades per a millorar la qualitat de la traducció dels sistemes de traducció sota el paradigma basat en frases. Aquestes tècniques es basen en el concepte de representació contínua de les paraules o les oracions en un espai vectorial. Els resultats experimentals demostren que les tècniques utilitzades són efectives per a diferents llenguatges i dominis. El paradigma de Traducció Automàtica Neuronal també va ser aplicat en aquesta tesi. Dins d'aquest paradigma, investiguem l'aplicació que poden tenir les tècniques de selecció de dades anteriorment validades en el paradigma basat en frases. El treball realitzat es va centrar en la utilització de dues tasques diferents. D'una banda, investiguem com augmentar la qualitat de traducció del sistema, augmentant la grandària del conjunt d'entrenament. D'altra banda, el mètode de selecció de dades es va emprar per a crear un conjunt de dades sintètiques. Els experiments es van realitzar per a diferents dominis i els resultats de traducció obtinguts són convincents per a ambdues tasques. Finalment, cal assenyalar que les tècniques desenvolupades i presentades al llarg d'aquesta tesi poden implementar-se fàcilment dins d'un escenari de traducció real. / [EN] La Traducció Automàtica Estadística és un sup-camp de la lingüística computacional que investiga com emprar els ordinadors en el procés de traducció d'un text d'un llenguatge humà a un altre. La traducció automàtica estadística és l'enfocament més popular que s'empra per a construir aquests sistemes de traducció automàtics. La qualitat d'aquests sistemes depèn en gran mesura dels exemples de traducció que s'empren durant els processos d'entrenament i adaptació dels models. Els conjunts de dades emprades són obtinguts a partir d'una gran varietat de fonts i en molts casos pot ser que no tinguem a mà les dades més adequades per a un domini específic. Donat aquest problema de manca de dades, la idea principal per a solucionar-ho és trobar aquells conjunts de dades més adequades per a entrenar o adaptar un sistema de traducció. En aquest sentit, aquesta tesi proposa un conjunt de tècniques de selecció de dades que identifiquen les dades bilingües més rellevants per a una tasca extrets d'un gran conjunt de dades. Com a primer pas en aquesta tesi, les tècniques de selecció de dades són aplicades per a millorar la qualitat de la traducció dels sistemes de traducció sota el paradigma basat en frases. Aquestes tècniques es basen en el concepte de representació contínua de les paraules o les oracions en un espai vectorial. Els resultats experimentals demostren que les tècniques utilitzades són efectives per a diferents llenguatges i dominis. El paradigma de Traducció Automàtica Neuronal també va ser aplicat en aquesta tesi. Dins d'aquest paradigma, investiguem l'aplicació que poden tenir les tècniques de selecció de dades anteriorment validades en el paradigma basat en frases. El treball realitzat es va centrar en la utilització de dues tasques diferents d'adaptació del sistema. D'una banda, investiguem com augmentar la qualitat de traducció del sistema, augmentant la grandària del conjunt d'entrenament. D'altra banda, el mètode de selecció de dades es va emprar per a crear un conjunt de dades sintètiques. Els experiments es van realitzar per a diferents dominis i els resultats de traducció obtinguts són convincents per a ambdues tasques. Finalment, cal assenyalar que les tècniques desenvolupades i presentades al llarg d'aquesta tesi poden implementar-se fàcilment dins d'un escenari de traducció real. / Chinea Ríos, M. (2019). Advanced techniques for domain adaptation in Statistical Machine Translation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117611
58

Discovering Implant Terms in Medical Records

Jerdhaf, Oskar January 2021 (has links)
Implant terms are terms like "pacemaker" which indicate the presence of artifacts in the body of a human. These implant terms are key to determining if a patient can safely undergo Magnetic Resonance Imaging (MRI). However, to identify these terms in medical records is time-consuming, laborious and expensive, but necessary for taking the correct precautions before an MRI scan. Automating this process is of great interest to radiologists as it ideally saves time, prevents mistakes and as a result saves lives. The electronic medical records (EMR) contain the documented medical history of a patient, including any implants or objects that an individual would have inside their body. Information about such objects and implants are of great interest when determining if and how a patient can be scanned using MRI. This information is unfortunately not easily extracted through automatic means. Due to their sparse presence and the unusual structure of medical records compared to most written text, makes it very difficult to automate using simple means. By leveraging the recent advancements in Artificial Intelligence (AI), this thesis explores the ability to identify and extract such terms automatically in Swedish EMRs. For the task of identifying implant terms in medical records a generally trained Swedish Bidirectional Encoder Representations from Transformers (BERT) model is used, which is then fine-tuned on Swedish medical records. Using this model a variety of approaches are explored two of which will be covered in this thesis. Using this model a variety of approaches are explored, namely BERT-KDTree, BERT-BallTree, Cosine Brute Force and unsupervised NER. The results show that BERT-KDTree and BERT-BallTree are the most rewarding methods. Results from both methods have been evaluated by domain experts and appear promising for such an early stage, given the difficulty of the task. The evaluation of BERT-BallTree shows that multiple methods of extraction may be preferable as they provide different but still useful terms. Cosine brute force is deemed to be an unrealistic approach due to computational and memory requirements. The NER approach was deemed too impractical and laborious to justify for this study, yet is potentially useful if not more suitable given a different set of conditions and goals. While there is much to be explored and improved, these experiments are a clear indication that automatic identification of implant terms is possible, as a large number of implant terms were successfully discovered using automated means.
59

L’usage des codons régule la présentation des peptides associés aux molécules du CMH-I

Daouda, Tariq 01 1900 (has links)
No description available.
60

Dynamic Student Embeddings for a Stable Time Dimension in Knowledge Tracing

Tump, Clara January 2020 (has links)
Knowledge tracing is concerned with tracking a student’s knowledge as she/he engages with exercises in an (online) learning platform. A commonly used state-of-theart knowledge tracing model is Deep Knowledge Tracing (DKT) which models the time dimension as a sequence of completed exercises per student by using a Long Short-Term Memory Neural Network (LSTM). However, a common problem in this sequence-based model is too much instability in the time dimension of the modelled knowledge of a student. In other words, the student’s knowledge on a skill changes too quickly and unreliably. We propose dynamic student embeddings as a stable method for encoding the time dimension of knowledge tracing systems. In this method the time dimension is encoded in time slices of a fixed size, while the model’s loss function is designed to smoothly align subsequent time slices. We compare the dynamic student embeddings to DKT on a large-scale real-world dataset, and we show that dynamic student embeddings provide a more stable knowledge tracing while retaining good performance. / Kunskapsspårning handlar om att modellera en students kunskaper då den arbetar med uppgifter i en (online) lärplattform. En vanlig state-of-the-art kunskapsspårningsmodell är Deep Knowledge Tracing (DKT) vilken modellerar tidsdimensionen som en sekvens av avslutade uppgifter per student med hjälp av ett neuronnät kallat Long Short-Term Memory Neural Network (LSTM). Ett vanligt problem i dessa sekvensbaserade modeller är emellertid en för stor instabilitet i tidsdimensionen för studentens modellerade kunskap. Med andra ord, studentens kunskaper förändras för snabbt och otillförlitligt. Vi föreslår därför Dynamiska Studentvektorer som en stabil metod för kodning av tidsdimensionen för kunskapsspårningssystem. I denna metod kodas tidsdimensionen i tidsskivor av fix storlek, medan modellens förlustfunktion är utformad för att smidigt justera efterföljande tidsskivor. I denna uppsats jämför vi de Dynamiska Studentvektorer med DKT i en storskalig verklighetsbaserad dataset, och visar att Dynamiska Studentvektorer tillhandahåller en stabilare kunskapsspårning samtidigt som prestandan bibehålls.

Page generated in 0.0583 seconds