1 |
[en] USING LINEAR MIXED MODELS ON DATA FROM EXPERIMENTS WITH RESTRICTION IN RANDOMIZATION / [pt] UTILIZAÇÃO DE MODELOS LINEARES MISTOS EM DADOS PROVENIENTES DE EXPERIMENTOS COM RESTRIÇÃO NA ALEATORIZAÇÃOMARCELA COHEN MARTELOTTE 04 October 2010 (has links)
[pt] Esta dissertação trata da aplicação de modelos lineares mistos em dados provenientes de experimentos com restrição na aleatorização. O experimento utilizado neste trabalho teve como finalidade verificar quais eram os fatores de controle do processo de laminação a frio que mais afetavam a espessura do material utilizado na fabricação das latas para bebidas carbonatadas. A partir do experimento, foram obtidos dados para modelar a média e a variância da espessura do material. O objetivo da modelagem era identificar quais fatores faziam com que a espessura média atingisse o valor desejado (0,248 mm). Além disso, era necessário identificar qual a combinação dos níveis desses fatores que produzia a variância mínima na espessura do material. Houve replicações neste experimento, mas estas não foram executadas de forma aleatória, e, além disso, os níveis dos fatores utilizados não foram reinicializados, nas rodadas do experimento. Devido a estas restrições, foram utilizados modelos mistos para o ajuste da média, e da variância, da espessura, uma vez que com tais modelos é possível trabalhar na presença de dados auto-correlacionados e heterocedásticos. Os modelos mostraram uma boa adequação aos dados, indicando que para situações onde existe restrição na aleatorização, a utilização de modelos mistos se mostra apropriada. / [en] This dissertation presents an application of linear mixed models on data from an experiment with restriction in randomization. The experiment used in this study was aimed to verify which were the controlling factors, in the cold-rolling process, that most affected the thickness of the material used in the carbonated beverages market segment. From the experiment, data were obtained to model the mean and variance of the thickness of the material. The goal of modeling was to identify which factors were significant for the thickness reaches the desired value (0.248 mm). Furthermore, it was necessary to identify which combination of levels, of these factors, produced the minimum variance in the thickness of the material. There were replications of this experiment, but these were not performed randomly. In addition, the levels of factors used were not restarted during the trials. Due to these limitations, mixed models were used to adjust the mean and the variance of the thickness. The models showed a good fit to the data, indicating that for situations where there is restriction on randomization, the use of mixed models is suitable.
|
2 |
[en] BOOTSTRAP IN STRUCTURAL MODELS: BUILDING CONFIDENCE INTERVALS AND HYPOTHESIS TESTS / [pt] BOOTSTRAP EM MODELOS ESTRUTURAIS: CONSTRUÇÃO DE INTERVALOS DE CONFIANÇA E TESTES DE HIPÓTESESGLAURA DA CONCEICAO FRANCO 03 July 2006 (has links)
[pt] O uso da técnica bootstrap para construção de intervalos
de confiança e testes de hipóteses vem aumentando
consideravelmente desde seu surgimento, em 1979, devido
principalmente ao rápido avanço computacional ocorrido nas
últimas décadas. Neste trabalho utilizamos o bootstrap
paramétrico e não-paramétrico para estudar o comportamento
dos hiperparametros em modelos de espaço de estados nos
casos de nível e tendência linear locais. Intervalos de
confiança baseados em quatro métodos bootstrap diferentes
são calculados e comparados quanto à probabilidade de
cobertura, produzindo resultados satisfatórios.
Constatamos também a eficiência dos testes boopstrap para
os casos em que os hiperparâmetros caem no limite do
espaço paramétrico, situação que inviabiliza o uso dos
testes clássicos por violar uma das condições de
regularidade do estimador de máxima verossimilhança. / [en] Bootstrap procedures to calculate confidence intervals and
hypotheses tests had considerable growth since its first
appearance, in 1979, mostly due to the rapid computational
developments that occurred in the last decades. In this
work we employ the parametric and nonparametric boorstrap
to study the behaviour of hyperparameters in state-space
models in the case of local level and linear trend.
Confidence intervals based on four different bootstrap
methods are computed and compared using the coverage
probabilities, with satisfactory results. We also verify
the efficiency of bootstrap tests in cases where the
hyperparameters lie on the boundary of the parameter
space, situation that makes the classical tests inadequate
to use, as it violates one of the regularity conditions of
the maximum likelihood estimator.
|
3 |
[en] DYNAMIC LINEAR MODEL OF HARRISON & STEVENS APPLIED TO STATISTICAL PROCESS CONTROL AUTOCORRELATED / [pt] MODELO LINEAR DINÂMICO DE HARRISON & STEVENS APLICADO AO CONTROLE ESTATÍSTICO DE PROCESSOS AUTOCORRELACIONADOSADRIANO SIQUEIRA PYLKO 09 September 2008 (has links)
[pt] Um dos principais problemas em manufatura é como ajustar um
processo de produção que não está obtendo uma performance
desejada. O intuito é fazer com que o parâmetro do processo
volte a assumir um valor alvo requerido. As técnicas
de controle estatístico de processo (CEP) são amplamente
utilizadas na indústria para monitorar processos e,
conseqüentemente, para melhoria da qualidade. Os
gráficos de controle para variáveis mais freqüentemente
utilizados para monitorar a média e a variabilidade do
processo são os gráficos de Shewhart, os gráficos de
CUSUM e os gráficos de EWMA. Porém, as considerações
básicas para se utilizar um gráfico de Shewhart são que os
dados gerados pelo processo sejam independentes e
identicamente distribuídos (IID). Quando a hipótese de
independência dos dados não é satisfeita, tais gráficos não
funcionam bem, pois fornecerão resultados não confiáveis na
forma de excesso de alarme falsos, ou seja, conduz a
interpretações equivocadas acerca do processo e gera custos
adicionais de controle. Esta tese utiliza uma formulação
bayesiana, o Modelo Linear Dinâmico de Harrison & Stevens
(MLD-HS) para o monitoramento da média de processos cujas
observações podem ser modeladas como um processo
ARMA (1,1). O Fator de Bayes acumulado foi utilizado na
detecção de desvios na média de um dado processo.
Posteriormente, os resultados obtidos pelo modelo proposto,
que foi nomeado como MLD-CEP, são comparados aos resultados
obtidos por Lu & Reynolds (2001). Os resultados obtidos
pelo MLD-CEP sugerem bom desempenho na detecção de
alterações na média em processos de baixo a moderadamente
alto nível de autocorrelação. / [en] Monitoring a manufacturing process is an important subject
in the industries currently. Statistical process control
techniques are widely used for process monitoring and
quality improvement. Control charts for variables more
often used to control both process mean and variance are
Shewhart control charts, CUSUM charts and EWMA charts.
However, the basic assumptions to use a Shewhart
chart are: independent and identically distributed
observations (IID); but,autocorrelation may be present in
many process, and may have a strong impact nthe properties
of control charts. This thesis used a bayesian formulation,
Dynamic Linear Model of Harrison & Stevens (MLD-HS), for
monitoring the process mean for the situation in which
observations from the process can be modeled as an
ARMA(1,1). The cumulative Bayes factor has been used for
detecting shifts on the process mean. After that, the
results obtained by MLD-CEP are compared with the results
obtained by Lu & Reynolds (2001). The MLD-CEP results
indicate a good performance in detecting shifts in the
process mean.
|
4 |
[pt] ENSAIOS EM PREVISÃO DE CARGA A CURTO PRAZO / [en] ESSAYS ON SHORT-TERM LOAD FORECASTINGLACIR JORGE SOARES 26 January 2004 (has links)
[pt] A previsão de carga é considerada uma poderosa ferramenta
no controle e planejamento de sistemas elétricos. Um grande
número de pesquisadores têm sugerido, recentemente,
diversas técnicas para previsão de carga a curto prazo.
Este trabalho estuda a aplicabilidade de modelos lineares.
O trabalho pretende ser uma base para uma aplicação real de
previsão. Os modelos foram desenvolvidos e testados com
dados reais de carga de uma empresa de eletricidade situada
no sudeste de Brasil. Todos os modelos são propostos para
dados secionais, isto é, a série de carga de cada hora é
estudada separadamte como uma série única. Esta abordagem
evita a modelagem de padrões intra-dia (perfil da carga)
complexos apresentados pela série de carga, que variam
durante os dias da semana e nas estações. Três modelos são
estudados, primeiro um modelo um modelo SARIMA ajustado por
variáveis binárias DASARIMA, adotado como modelo de
referência, o segundo um modelo em duas etapas que
considera a existência de componentes determinísticos para
modelar a tendência, a sazonalidade e os efeitos do
calendário, denominado modelo autorregressivo sazonal em
dois níveis - TLSAR; e o último um modelo de de memória
longa generalizada ajustado por variáveis binárias - DAGLM.
Os resultados dos ensaios mostraram que os modelos horários
são bem apropriados para uma aplicação de previsão. Os
erros de previsão, das duas últimas abordagens, são menores
que os do modelo de referência, DASARIMA. O trabalho sugere
que este tipo de modelos horários devem ser testados mais
completamente a fim de fornecer uma opinião final sobre sua
aplicabilidade. / [en] Load forecasting has been considered a powerful tool in
managing and planning power systems. Several tecniques have
been recently suggested for short-term load forecasting by
a large number of researchers. This work studies the
applicability of linear models in the area is intended to
be a basis for a real forecasting application. The models
were developed and tested on the real load data of a
utility company located in the southeast of Brazil. All
models are proposed for sectional data, that is, each
hour's load is studied separately as a single series. This
approach avoids modeling the intricate intra-day pattern
(load profile) displayed by the load, wich varies
throughout days of the week and seasons. Three models are
studied, the first one a Dummy-Adjusted Seasonal Integrated
Autoregressive Moving Average model - DASARIMA, acting as a
benchmark, the second a two-step modeling that makes use of
deterministic components to model trend, seasonality and
calendar effects, called Two-Level Seasonal Autoregressive
model - TLSAR; and the last one a Dummy-Adjusted
Generalized Long Memory model - DAGLM. The test results
showed that the hourly models are well suitable for
forecasting application. The forecasting errors of the last
two approaches were smaller than those of the DASARIMA
benchmark. The work suggests that this kind of hourly
models should be implemented in a through on-line testing
in order to provide a final opinion on its applicability.
|
5 |
[en] COREFERENCE RESOLUTION FOR THE ENGLISH LANGUAGE / [pt] RESOLUÇÃO DE CO-REFERÊNCIA PARA A LÍNGUA INGLESAADRIEL GARCIA HERNANDEZ 28 July 2017 (has links)
[pt] Um dos problemas encontrados nos sistemas de processamento de linguagem natural é a dificuldade em identificar elementos textuais que se referem à mesma entidade. Este fenômeno é chamado de correferência. Resolver esse problema é parte integrante da compreensão do discurso, permitindo que os usuários da linguagem conectem as partes da informação de fala relativas à mesma entidade. Por conseguinte, a resolução de correferência é um importante foco de atenção no processamento da linguagem natural.Apesar da riqueza das pesquisas existentes, o desempenho atual dos sistemas de resolução de correferência ainda não atingiu um nível satisfatório. Neste trabalho, descrevemos um sistema de aprendizado estruturado para resolução de correferências em restrições que explora duas técnicas: árvores de correferência latente e indução automática de atributos guiadas por entropia. A modelagem de árvore latente torna o problema de aprendizagem computacionalmente viável porque incorpora uma estrutura escondida relevante. Além disso, utilizando um método automático de indução de recursos, podemos construir eficientemente modelos não-lineares, usando algoritmos de aprendizado de modelo linear como, por exemplo, o algoritmo de perceptron estruturado e esparso.Nós avaliamos o sistema para textos em inglês, utilizando o conjunto de dados da CoNLL-2012 Shared Task. Para a língua inglesa, nosso sistema obteve um valor de 62.24 por cento no score oficial dessa competição. Este resultado está abaixo do desempenho no estado da arte para esta tarefa que é de 65.73 por cento. No entanto, nossa solução reduz significativamente o tempo de obtenção dos clusters dos documentos, pois, nosso sistema leva 0.35 segundos por documento no conjunto de testes, enquanto no estado da arte, leva 5 segundos para cada um. / [en] One of the problems found in natural language processing systems, is the difficulty to identify textual elements referring to the same entity, this task is called coreference. Solving this problem is an integral part of discourse comprehension since it allows language users to connect the pieces of speech information concerning to the same entity. Consequently, coreference resolution is a key task in natural language processing.Despite the large efforts of existing research, the current performance of coreference resolution systems has not reached a satisfactory level yet. In this work, we describe a structure learning system for unrestricted coreferencere solution that explores two techniques: latent coreference trees and automatic entropy-guided feature induction. The latent tree modeling makes the learning problem computationally feasible,since it incorporates are levant hidden structure. Additionally,using an automatic feature induction method, we can efciently build enhanced non-linear models using linear model learning algorithms, namely, the structure dandsparse perceptron algorithm. We evaluate the system on the CoNLL-2012 Shared Task closed track data set, for the English portion. The proposed system obtains a 62.24 per cent value on the competition s official score. This result is be low the 65.73 per cent, the state-of-the-art performance for this task. Nevertheless, our solution significantly reduces the time to obtain the clusters of adocument, since, our system takes 0.35 seconds per document in the testing set, while in the state-of-the-art, it takes 5 seconds for each one.
|
6 |
[en] INTEREST RATE AS AN ADDITIONAL FACTOR TO EXPLAIN STOCKS RETURNS / [pt] JUROS COMO VARIÁVEL EXPLICATIVA PARA O RETORNO DE AÇÕESCONRADO DE GODOY GARCIA 02 March 2018 (has links)
[pt] Este trabalho tem como objetivo explorar o benefício da inclusão de um novo fator relacionado a juros aos principais modelos de análise do cross-section dos retornos de ações, como o CAPM e o modelo de 3 fatores de Fama & French. O foco em especial é sobre a anomalia dos maiores retornos ajustados ao risco das estratégias de spread entre ações de baixo e alto beta de mercado, que também pode ser visto nos spreads entre ações de baixa e alta volatilidade. A motivação para inclusão deste fator vem da teoria de que o bom desempenho destas estratégias é simplesmente uma exposição a taxa de juros, não capturada pelos modelos usuais. Apesar da literatura apontar que as taxas de juros afetam diversas variáveis econômicas, a maior parte dos trabalhos de análise do cross-section dos retornos de ações é conduzida através de modelos de fatores compostos apenas por ações, sem fatores ou ativos diretamente relacionados a mudança da taxa de juros. A análise é feita com modelos lineares de fatores para o mercado acionário norte-americano entre 1976 até 2015. / [en] The literature shows that interest rates influence different economic variables such as consumption willingness, investment or expected asset returns. Notwithstanding, most works dealing with cross-sectional analysis of stock returns use only stock-based factor models disregarding the effects of interest rate movements. In this work, we explore the benefits of incrementing the traditional cross-sectional analysis (CAPM and Fama-French 3-factor model) with a new factor characterizing interest rate evolution over time. With this new factor, our model aims at better explaining stock return dispersion as well as a known anomaly of high risk-adjusted returns for low-volatility stock portfolios. Empirical analysis of linear factor models are carried out using US stock data using the Kenneth French database and the new factor is constructed using the US Aggregate do Barclays index that measures the return of low-risk assets.
|
7 |
[pt] MODELAGEM EM EXPERIMENTOS FATORIAIS REPLICADOS PARA MELHORIA DE PROCESSOS INDUSTRIAIS TÊXTEIS / [en] MODELING IN REPLICATED FACTORIAL EXPERIMENTS FOR IMPROVEMENT OF TEXTILE INDUSTRIAL PROCESSES07 April 2015 (has links)
[pt] Esta dissertação descreve a aplicação de Modelos Lineares Generalizados (MLGs) à análise de um experimento visando identificar a combinação dos níveis das variáveis independentes: concentração de hidróxido de sódio (A), volume de hipoclorito de sódio (B) e sua interação (AB), que minimiza a variável resposta: proporção de itens com defeitos, em um processo de beneficiamento numa indústria têxtil de pequeno porte. A variável resposta encontra-se na forma de proporção, violando os pressupostos básicos do Modelo Linear Clássico e com isso as estimativas dos coeficientes pelo método de Mínimos Quadrados Ordinários (MQO) é menos confiável. O planejamento utilizado foi o fatorial completo 22 com ponto central e replicado. Após o planejamento, a modelagem pelo MLG é aplicada, só então é possível identificar uma subdispersão dos dados, verificar que o modelo empregado está correto e que o volume de hipoclorito de sódio (B) é o único fator significativo, no processo de alvejamento industrial da empresa. Portanto, como a finalidade é minimizar a resposta, utiliza-se o nível inferior (-1) desta variável. Consequentemente, como o intuito é reduzir os custos com insumos químicos pode-se utilizar o nível mínimo da concentração de hidróxido de sódio (A) e o nível máximo da interação entre os fatores (AB), já que eles não são significativos ao modelo. / [en] This dissertation describes the application of Generalized Linear Models (GLMs) to the analysis of an experiment with the purpose identify the levels combination of independent variables: concentration of sodium hydroxide (A) volume of sodium hypochlorite (B) and their interaction (AB), that minimizes the response variable: proportion of defective items, in a process in a small plant of the textile industry. The response variable takes the form of a proportion, that violates the basic assumptions of the Classic Linear Model and, as a result, the estimates of the coefficients by Ordinary Least Squares method is less reliable. The design employed was a replicated complete 22 factorial design with central point. After doing the planning, the modeling by MLG is applied, and then it is possible to identify a underdispersion data; to verify that the model used is correct and that the volume of sodium hypochlorite (B) is the only significant factor in the industrial process of bleaching the company. Therefore, as the purpose is to minimize the response, it is used the lower level (-1) of this variable. Consequently, as the aim is to reduce costs of chemical inputs can use the minimum level of concentration of hydroxide sodium (A) and the maximum level of interaction between factors (AB), since they are not significant to the model.
|
8 |
[pt] APRENDIZADO ESTRUTURADO COM INDUÇÃO E SELEÇÃO INCREMENTAIS DE ATRIBUTOS PARA ANÁLISE DE DEPENDÊNCIA EM PORTUGUÊS / [en] STRUCTURED LEARNING WITH INCREMENTAL FEATURE INDUCTION AND SELECTION FOR PORTUGUESE DEPENDENCY PARSINGYANELY MILANES BARROSO 09 November 2016 (has links)
[pt] O processamento de linguagem natural busca resolver várias tarefas de complexidade crescente que envolvem o aprendizado de estruturas complexas, como grafos e sequências, para um determinado texto. Por exemplo, a análise de dependência envolve o aprendizado de uma árvore que descreve a estrutura sintática de uma sentença dada. Um método amplamente utilizado para melhorar a representação do conhecimento de domínio em esta tarefa é considerar combinações de atributos usando conjunções lógicas que codificam informação útil com um padrão não-linear. O número total de todas as combinações possíveis para uma conjunção dada cresce exponencialmente no número de atributos e pode resultar em intratabilidade computacional. Também, pode levar a overfitting. Neste cenário, uma técnica para evitar o superajuste e reduzir o conjunto de atributos faz-se necessário. Uma abordagem comum para esta tarefa baseia-se em atribuir uma pontuação a uma árvore de dependência, usando uma função linear do conjunto de atributos. Sabe-se que os modelos lineares esparsos resolvem simultaneamente o problema de seleção de atributos e a estimativa de um modelo linear, através da combinação de um pequeno conjunto de atributos. Neste caso, promover a esparsidade ajuda no controle do superajuste e na compactação do conjunto de atributos. Devido a sua exibilidade, robustez e simplicidade, o algoritmo de perceptron é um método linear discriminante amplamente usado que pode ser modificado para produzir modelos esparsos e para lidar com atributos não-lineares. Propomos a aprendizagem incremental da combinação de um modelo linear esparso com um procedimento de indução de variáveis não-lineares, num cénario de predição estruturada. O modelo linear esparso é obtido através de uma modificação do algoritmo perceptron. O método de indução é Entropy-Guided Feature Generation. A avaliação empírica é realizada usando o conjunto de dados para português da CoNLL 2006 Shared Task. O analisador resultante alcança 92,98 por cento de precisão, que é um desempenho competitivo quando comparado com os sistemas de estado- da-arte. Em sua versão regularizada, o analizador alcança uma precisão de 92,83 por cento , também mostra uma redução notável de 96,17 por cento do número de atributos binários e, reduz o tempo de aprendizagem em quase 90 por cento, quando comparado com a sua versão não regularizada. / [en] Natural language processing requires solving several tasks of increasing
complexity, which involve learning to associate structures like graphs and
sequences to a given text. For instance, dependency parsing involves learning
of a tree that describes the dependency-based syntactic structure of a
given sentence. A widely used method to improve domain knowledge
representation in this task is to consider combinations of features, called
templates, which are used to encode useful information with nonlinear
pattern. The total number of all possible feature combinations for a given
template grows exponentialy in the number of features and can result in
computational intractability. Also, from an statistical point of view, it can
lead to overfitting. In this scenario, it is required a technique that avoids
overfitting and that reduces the feature set. A very common approach to
solve this task is based on scoring a parse tree, using a linear function
of a defined set of features. It is well known that sparse linear models
simultaneously address the feature selection problem and the estimation
of a linear model, by combining a small subset of available features. In
this case, sparseness helps control overfitting and performs the selection
of the most informative features, which reduces the feature set. Due to
its
exibility, robustness and simplicity, the perceptron algorithm is one of
the most popular linear discriminant methods used to learn such complex
representations. This algorithm can be modified to produce sparse models
and to handle nonlinear features. We propose the incremental learning of
the combination of a sparse linear model with an induction procedure of
non-linear variables in a structured prediction scenario. The sparse linear
model is obtained through a modifications of the perceptron algorithm. The
induction method is the Entropy-Guided Feature Generation. The empirical
evaluation is performed using the Portuguese Dependency Parsing data set
from the CoNLL 2006 Shared Task. The resulting parser attains 92.98 per cent of
accuracy, which is a competitive performance when compared against the
state-of-art systems. On its regularized version, it accomplishes an accuracy
of 92.83 per cent, shows a striking reduction of 96.17 per cent in the number of binary
features and reduces the learning time in almost 90 per cent, when compared to
its non regularized version.
|
9 |
[en] BAYESIAN STOCHASTIC EXTENSION OF DETERMINISTIC BOTTOM-UP APPROACH FOR THE LONG TERM FORECASTING OF ENERGY CONSUMPTION / [pt] EXTENSÃO ESTOCÁSTICA BAYESIANA DA ABORDAGEM BOTTOM-UP DETERMINÍSTICA PARA A PREVISÃO DE LONGO PRAZO DO CONSUMO DE ENERGIAFELIPE LEITE COELHO DA SILVA 16 February 2018 (has links)
[pt] O comportamento do consumo de energia elétrica do setor industrial tem sido amplamente investigado ao longo dos últimos anos, devido a sua importância econômica, social e ambiental. Mais especificamente,
o consumo de eletricidade dos subsetores da indústria brasileira exerce grande importância para o sistema energético brasileiro. Neste contexto, as projeções de longo prazo do seu consumo de energia elétrica para um país ou uma região são informações de grande relevância na tomada de decisão de órgãos e entidades que atuam no setor energético. A abordagem bottom-up determinística tem sido utilizada para obter a previsão de longo prazo em diversas áreas de pesquisa. Neste trabalho, propõe-se uma metodologia
que combina a abordagem bottom-up com os modelos lineares hierárquicos para a previsão de longo prazo considerando os cenários de eficiência energética. Além disso, foi utilizada a inferência bayesiana para a estimação dos parâmetros do modelo, permitindo a incorporação de incerteza nessas previsões. Os resultados utilizando os dados de consumo de eletricidade de subsetores da indústria brasileira mostraram que a metodologia proposta consegue capturar a tajetória do consumo de eletricidade, em particular,
dos subsetores de papel e celulose, e de metais não-ferrosos e outros de metalurgia. Por exemplo, os intervalos de credibilidade de 95 por cento construídos a partir do modelo estocástico contemplam os valores reais observados nos anos de 2015 e 2016. / [en] The electricity consumption behaviour in the Brazilian industry has been extensively investigated over the past years due to its economic, social and environmental importance. Specifically, the electricity consumption of the subsectors of Brazilian industry have great importance for the Brazilian energy system. In this context, the long-term projections of energy consumption of a country or region are highly relevant information to decision-making of organs and entities operating in the energy sector. The deterministic bottom-up approach has been used for the long-term forecast in several areas of research. In this paper, we propose a methodology that combines the bottom-up approach with hierarchical linear models for
long-term forecasting considering energy efficiency scenarios. In addition, Bayesian inference was used to estimate the parameters of the model, allowing the uncertainty incorporation in these forecasts. The results using the electricity consumption data from subsectors of the Brazilian industry showed that the proposed methodology is able to capture the trajectory of their electricity consumption, in particular of the pulp and paper, and of non-ferrous metals and other metallurgical subsectors. For example, the 95 percent credibility intervals constructed from the stochastic model contemplate the actual values observed in the years 2015 and 2016.
|
Page generated in 0.0423 seconds