1 |
[en] SINGLE MACHINE SCHEDULING PROBLEM WITH SEQUENCE DEPENDENT SETUP TIMES, WITH EARLINESS AND TARDINESS PENALTIES: A CASE STUDY IN A MACHINING PROCESS / [pt] O PROBLEMA DO SEQUENCIAMENTO EM UMA ÚNICA MÁQUINA, COM TEMPOS DE PREPARAÇÃO DEPENDENTES DA SEQUÊNCIA E PENALIDADES POR ANTECIPAÇÃO E ATRASO: ESTUDO DE CASO DE UM PROCESSO DE FABRICAÇÃO POR USINAGEMGUSTAVO SIMAO RODRIGUES 20 June 2012 (has links)
[pt] A dissertação estuda o problema do sequenciamento de uma única máquina
com tempos de preparação dependentes da sequência da produção e penalidades
por antecipação e atraso. Ilustra um método com uma aplicação a um exemplo de
processo de fabricação por usinagem. Dessa forma, pretende-se reunir as
metodologias de resolução e os trabalhos existentes na literatura sobre o Problema
do Sequenciamento e aplicar ao caso específico de um dos Processos de
Fabricação mais comuns existentes na indústria. / [en] The dissertation studies the single machine scheduling problem with
sequence dependent setup times, with earliness and tardiness penalties, applied to
an example of Machining Process Manufacturing. Thus, it is intended to collect
the methodologies of resolution and main studies in the literature about the
Problem of Sequencing and apply to the specific case of one of the most common
manufacturing processes existing in the industry.
|
2 |
[en] APPLYING GENETIC ALGORITHMS TO THE PRODUCTION SCHEDULING OF A PETROLEUM / [es] PROGRAMACIÓN AUTOMÁTICA DE LA PRODUCCIÓN EN REFINERÍAS DE PETRÓLEO UTILIZANDO ALGORITMOS GENÉTICOS / [pt] PROGRAMAÇÃO AUTOMÁTICA DA PRODUÇÃO EM REFINARIAS DE PETRÓLEO UTILIZANDO ALGORITMOS GENÉTICOSMAYRON RODRIGUES DE ALMEIDA 19 July 2001 (has links)
[pt] O objetivo desta dissertação é desenvolver um método de
solução baseado em Algoritmos Genéticos (GAs) aliado a um
Sistema Baseado em Regras para encontrar e otimizar as
soluções geradas para o problema de programação da produção
de Óleos Combustíveis e Asfalto na REVAP (Refinaria do Vale
do Paraíba). A refinaria é uma planta multiproduto, com
dois estágios de máquinas em série - um misturador e um
conjunto de tanques, com restrição de recursos e operando
em regime contínuo. Foram desenvolvidos neste trabalho dois
modelos baseados em algoritmos genéticos que são utilizados
para encontrar a seqüência e os tamanhos dos lotes de
produção dos produtos finais. O primeiro modelo proposto
utiliza uma representação direta da programação da produção
em que o horizonte de programação é dividido em intervalos
discretos de um hora. O segundo modelo proposto utiliza uma
representação indireta que é decodificada para formar a
programação da produção. O Sistema Baseado em Regras é
utilizado na escolha dos tanques que recebem a produção e os
tanques que atendem à demanda dos diversos centros
consumidores existentes. Um novo operador de mutação -
Mutação por Vizinhança - foi proposto para minimizar o
número de trocas operacionais na produção. Uma técnica para
agregação de múltiplos objetivos, baseado no Método de
Minimização de Energia, também foi incorporado aos
Algoritmos Genéticos. Os resultados obtidos confirmam que
os Algoritmos Genéticos propostos, associados com o Método
de Minimização de Energia e a Mutação por Vizinhança, são
capazes de resolver o problema de programação da produção,
otimizando os objetivos operacionais da refinaria. / [en] The purpose of this dissertation is to develop a method,
based on Genetics Algorithms and Rule Base Systems, to
optimize the production scheduling of fuel oil and asphalt
area in a petroleum refinery. The refinery is a multi-
product plant, with two machine stages - one mixer and a
set of tanks - with no setup time and with resource
constrains in continuous operation. Two genetic algorithms
models were developed to establish the sequence and the lot-
size of all production shares. The first model proposed has
a direct representation of the production scheduling which
the time interval of scheduling is shared in one hour
discrete intervals. The second model proposed has a indirect
representation that need to be decoded in order to make the
real production scheduling. The Rule Base Systems were
developed to choice the tanks that receive the production
and the tanks that provide the demand of the several
consumer centers. A special mutation operator -
Neighborhood Mutation - was proposed to minimize the number
of changes in the production. A Multi-objective Fitness
Evaluation technique, based on a Energy Minimization
Method, was also incorporated to the Genetic Algorithm
models. The results obtained confirm that the proposed
Genetic Algorithm models, associated with the Multi-
objective Energy Minimization Method and the Neighborhood
Mutation, are able to solve the scheduling problem,
optimizing the refinery operational objectives. / [es] El objetivo de esta disertación es desarrollar un método de
solución utilizando Algoritmos Genéticos (GAs) aliado a un
Sistema Basado en Reglas para encontrar y optimizar las
soluciones generadas para el problema de programación de la
producción de Aceites Combustibles y Asfalto en la REVAP
(Refinería del Valle de Paraíba). La refinería es una
planta multiproducto, con dos estados de máquinas en serie -
un mezclador y un conjunto de tanques, con restricción de
recursos y operando en régimen contínuo. En este trabajo se
desarrollaron dos modelos basados en algoritmos genéticos
que son utilizados para encontrar la secuencia y los
tamaños de los lotes de producción de los productos
finales. El primer modelo propuesto utiliza una
representación directa de la programación de la producción
en la cuál el horizonte de programación se divide en
intervalos discretos de un hora. El segundo modelo, utiliza
una representación indirecta que es decodificada para
formar la programación de la producción. EL Sistema Basado
en Reglas se utiliza en la selección de los tanques que
reciben la producción y los tanques que atienden a la
demanda de los diversos centros consumidores. Un nuevo
operador de mutación - Mutación por Vecindad - fue
propuesto para minimizar el número de cambios operacionales
en la producción. le fue incorporado a los Algoritmos
Genéticos una técnica para la agregación de múltiples
objetivos, basado en el Método de Minimización de Energía.
Los resultados obtenidos confirman que los Algoritmos
Genéticos propuestos, asociados al Método de Minimización
de Energía y la Mutación por Vecindad, son capazes de
resolver el problema de programación de la producción,
optimizando los objetivos operacionales de la refinería. Read more
|
3 |
[en] UNDERSTANDING COMPETENCE IN PRODUCTION SCHEDULING ROUTINES / [pt] A COMPREENSÃO DAS COMPETÊNCIAS NAS ROTINAS DE PROGRAMAÇÃO DA PRODUÇÃOLEANDRO SCHOEMER JARDIM 28 May 2018 (has links)
[pt] Nas organizações industriais contemporâneas, a competição global e o avanço
das tecnologias de informação tornam os produtos e processos cada vez mais
semelhantes. O desempenho operacional passa, então, a ser um dos principais
mecanismos de diferenciação. Nesse cenário, a área de planejamento e programação
da produção ganha um inédito papel estratégico. O presente estudo se propôs a
investigar esse novo papel com um olhar centrado nas rotinas organizacionais e nas
pessoas que exercem a função. Mais especificamente, a partir de uma abordagem
qualitativa e interpretativa, o trabalho utilizou o método fenomenográfico para
compreender como os programadores concebem a competência nas suas rotinas
organizacionais. A análise das entrevistas identificou três diferentes concepções. A
primeira está associada à tarefa de alocação eficiente de recursos e materiais. A segunda
vê a programação como um processo de mediação entre as diferentes áreas da empresa.
E a terceira atribui ao programador de produção a reponsabilidade de fazer a gestão
estratégica da operação. Além disso, foram identificadas seis dimensões do fenômeno
que explicam e diferenciam as concepções, são elas: Raciocínio lógico, Conhecimento
técnico (do processo produtivo), Conhecimento sistêmico (de outras áreas), Estratégia
de negociação, Aspecto manifesto da rotina e Envolvimento com a estratégia
corporativa. Os achados sugerem, por fim, que a dimensão estratégica da programação
é verificável, em diferentes graus, nas suas rotinas. Além disso, ao revelar a concepção
competência como sendo a mediação entre as diferentes áreas da empresa, o estudo
traz as estratégias de negociação para o centro do debate sobre a realização competente
das rotinas de programação da produção. / [en] In contemporary industrial organizations, global competition and the
advancement of information technologies make products and processes increasingly
similar. Operational performance then becomes one of the main differentiation
mechanisms. In this scenario, the area of production planning and scheduling gains an
unprecedented strategic role. The present study aimed to investigate this new role with
a focus on the organizational routines and the people who perform them. More
specifically, from a qualitative and interpretative approach, this study used
phenomenography method to understand how schedulers conceive competence in their
organizational routines. The analysis of the interviews identified three different
conceptions. The first is associated with the task of efficient allocation of resources and
materials. The second sees scheduling as a process of mediation between the different
areas of the company. And the third assigns to the production planner the responsibility
to do the strategic management of the enterprise operations. In addition, six dimensions
of the phenomenon that explain and differentiate the conceptions are identified: Logical
reasoning, Technical knowledge (of the productive process), Systemic knowledge (of
other areas), Negotiation strategy, Manifested aspect of the routine and Involvement
with corporate strategy. The findings suggest that the strategic dimension of scheduling
is verifiable, to different degrees, in production planning routines. In addition, by
revealing the concept of competence as being the mediation between the different areas
of the company, the study brings negotiation strategies to the center of the debate on
the competent realization of production planning routines. Read more
|
4 |
[en] REFINERY SCHEDULING OPTIMIZATION USING GENETIC ALGORITHMS AND COOPERATIVE COEVOLUTION / [pt] OTIMIZAÇÃO DA PROGRAMAÇÃO DA PRODUÇÃO EM REFINARIAS DE PETRÓLEO UTILIZANDO ALGORITMOS GENÉTICOS E CO-EVOLUÇÃO COOPERATIVALEONARDO MENDES SIMAO 28 February 2005 (has links)
[pt] Esta dissertação investiga a aplicação de Algoritmos
Genéticos e de Co-Evolução Cooperativa na otimização da
programação da produção em refinarias de petróleo.
Refinarias de petróleo constituem um dos mais importantes
exemplos de plantas contínuas multiproduto, isto é, um
sistema de processamento contínuo gerador de múltiplos
produtos simultâneos. Uma refinaria, em geral, processa
um
ou mais tipos de petróleo, produzindo uma série de
produtos derivados, como o GLP (gás liquefeito de
petróleo), a nafta, o querosene e o óleo diesel. Trata-
se
de um problema complexo de otimização, devido ao número
e
diversidade de atividades existentes e diferentes
objetivos. Além disso, neste problema, algumas
atividades
dependem de que outras atividades já tenham sido
planejadas para que possam então ser planejadas. Um caso
típico é o das retiradas de produtos de uma unidade de
processo, que dependem de que a carga já tenha sido
planejada, assim como em qual campanha a unidade estará
naquele instante. Por isso, o uso de modelos
revolucionários convencionais, como os baseados em
ordem,
pode gerar muitas soluções inválidas, que deverão ser
posteriormente corrigidas ou descartadas, comprometendo
o
desempenho e a viabilidade do algoritmo. O objetivo do
trabalho foi, então, desenvolver um modelo evolucionário
para otimizar a programação da produção (scheduling),
segundo objetivos bem definidos, capaz de lidar com as
restrições do problema, gerando apenas soluções viáveis.
O trabalho consistiu em três etapas principais: um
estudo
sobre o refino de petróleo e a programação da produção
em
refinarias; a definição de um modelo usando algoritmos
genéticos e co-evolução cooperativa para otimização da
programação da produção e a implementação de uma
ferramenta para estudo de caso. O estudo sobre o refino
e
a programação da produção envolveu o levantamento das
várias etapas do processamento do petróleo em uma
refinaria, desde o seu recebimento, destilação e
transformação em diversos produtos acabados, que são
então
enviados a seus respectivos destinos. Neste estudo,
também
foi levantada a estrutura de tomada de decisão em uma
refinaria e seus vários níveis, diferenciando os
objetivos
destes níveis e explicitando o papel da programação da
produção nesta estrutura. A partir daí, foram estudadas
em
detalhes todas as atividades que normalmente ocorrem na
refinaria e que são definidas na programação, e seus
papéis na produção da refinaria. A decisão de quando e
com
que recursos executar estas atividades é o resultado
final
da programação e, portanto, a saída principal do
algoritmo.
A modelagem do algoritmo genético consistiu inicialmente
em um estudo de representações utilizadas para problemas
de scheduling. O modelo coevolucionário adotado
considera
a decomposição do problema em duas partes e,portanto,
emprega duas populações com responsabilidades
diferentes:
uma é responsável por indicar quando uma atividade deve
ser planejada e a outra é responsável por indicar com
quais recursos essa mesma atividade deve ser realizada.
A
primeira população teve sua representação baseada em um
modelo usado para problemas do tipo Dial-A-Ride (Moon et
al, 2002), que utiliza um grafo para indicar à função de
avaliação a ordem na qual o planejamento deve ser
construído. Esta representação foi elaborada desta forma
para que fosse levada em conta a existência de
restrições
de precedência (atividades que devem ser planejadas
antes
de outras), e assim não fossem geradas soluções
inválidas
pelo algoritmo. A segunda população, que se
responsabiliza
pela alocação dos recursos para a execução das
atividades,
conta com uma representação onde os operadores genéticos
podem atuar na ordem de escolha dos recursos que podem
realizar cada uma das atividades. Finalmente, des / [en] This work investigates the use of Genetic Algorithms and
Cooperative Coevolution in refinery scheduling
optimization. Oil refineries are one of the most important
examples of multiproduct continuous plants, that is, a
continuous processing system that generates a number of
products simultaneously. A refinery processes various
crude oil types and produces a wide range of products,
including LPG (liquefied petroleum gas), gasoline,
kerosene and diesel. It is a complex optimization problem,
mainly due to the number of different tasks involved and
different objective criteria. In addition, some of the
tasks have precedence constraints that require other tasks
to be scheduled first. For example, in order to schedule a
task that transfers one of the yields of a certain crude
distillation unit, both the task that feeds the crude oil
into the unit and the task that sets the unit`s current
operation mode must already be scheduled. Therefore,
applying traditional evolutionary models, like the order-
based ones, can create many infeasible solutions that will
have to be corrected or rejected later on, thereby
jeopardizing the algorithm performance and feasibility.
The main goal was the development an evolutionary model
satisfying well-defined objectives, which would optimize
production scheduling and address the various constraints
entailed in the problem, thus generating only feasible
solutions. This work consisted on three main steps: a
survey on crude oil refining and refinery scheduling; the
development of a cooperative coevolutionary model to
optimize the refinery scheduling and the development of a
software tool for case studies. The study about refining
and scheduling involved gathering information about the
existent processes in a refinery, starting from the
arrival of crude oil, its distillation and transformation
into several products and, finally, the delivery of these
products to their respective destination. The levels of
decision making in a refinery were surveyed too, in order
to identify the main goals for each one, and how the
scheduling level fits into the structure as whole. Then,
all the routine scheduling tasks and their roles in a
refinery were carefully studied. The decision of when and
how to assign those tasks is the final output of the
scheduling task, so it must be the main output of the
algorithm too. The development of the evolutionary model
consisted of a survey on some of the most common
evolutionary approaches to scheduling. The adopted
coevolutionary model breaks the problem down into two
parts, thus using two species with different
responsibilities: One is responsible for deciding when a
task should be scheduled, while the other is responsible
for assigning a resource for this task. The first species
representation was based on a model used for the Dial-a-
Ride (Moon et al, 2002) kind of problems, and uses a graph
to help the fitness evaluation function find the right
order in which to schedule the tasks. This representation
was devised in such a way that the precedence constraints
were satisfied and no infeasible solutions were generated.
The representation of the second species, which assigns
resources for the tasks, let genetic operators change the
selection order when picking a resource for a task.
Finally, a software tool was developed to be used for
implement this model and for performing a case study. This
case study should comprise all the needed characteristics,
in order to test the quality of the representation as well
as evaluate the results. A simple refinery was designed,
containing all equipment types, tasks and constraints
found in a real-world refinery. The constraints mentioned
are the precedence constraints, handled by the graph used
by the first species, plus other operational constraints
found in refinery scheduling. It was possible, then, to
see the decoding of chromosomes into feasible solutions,
always satisfying all the constraints. Several tests Read more
|
5 |
[en] PETROLEUM SCHEDULING MULTIOBJECTIVE OPTIMIZATION FOR REFINERY BY GENETIC PROGRAMMING USING DOMAIN SPECIFIC LANGUAGE / [pt] OTIMIZAÇÃO MULTIOBJETIVO DA PROGRAMAÇÃO DE PETRÓLEO EM REFINARIA POR PROGRAMAÇÃO GENÉTICA EM LINGUAGEM ESPECÍFICA DE DOMÍNIOCRISTIANE SALGADO PEREIRA 26 November 2018 (has links)
[pt] A programação de produção em refinaria (scheduling) pode ser compreendida como uma sequência de decisões que buscam otimizar a alocação de recursos, o sequenciamento de atividades e a realização temporal dessas atividades, respeitando um conjunto de restrições de diferentes naturezas e visando o atendimento de múltiplos objetivos onde fatores como atendimento à demanda de produção e minimização de variações operacionais nos equipamentos coexistem na mesma função. Este trabalho propõe o uso da técnica de Programação Genética para automatizar a criação de programas que representem uma solução completa de programação de petróleo em uma refinaria dentro de um horizonte de tempo. Para a evolução destes programas foi desenvolvida uma linguagem específica para o domínio de problemas de scheduling de petróleo e aplicada de forma a representar as principais atividades do estudo de caso. Para tal, a primeira etapa consistiu da avaliação de alguns cenários de programação de produção de forma a selecionar as atividades que devessem ser representadas e como fazê-lo. No modelo proposto, o
cromossomo quântico guarda a superposição de estados de todas as soluções possíveis e, através do processo evolutivo e observação dos genes quânticos, o cromossomo clássico é criado como uma sequencia linear de instruções a serem executadas. As instruções executadas representam o scheduling. A orientação
deste processo é feita através de uma função de aptidão multiobjetivo que hierarquiza as avaliações sobre o tempo de operação das unidades de destilação, o prazo para descarregamento de navios, a utilização do duto que movimenta óleo entre terminal e refinaria, além de fatores como número de trocas de tanques e uso de tanques de injeção nas unidades de destilação. No desenvolvimento deste trabalho foi contemplado um estudo sobre o conjunto de parâmetros para o modelo desenvolvido com base em um dos cenários de
programação selecionados. A partir desta definição, para avaliação do modelo proposto, foram executadas diversas rodadas para cinco cenários de programação de petróleo. Os resultados obtidos foram comparados com estudo desenvolvido usando algoritmos genéticos cujas atividades, no cromossomo, possuem representação por ordem. A programação genética apresentou percentual de soluções aceitas variando entre 25 por cento e 90 por cento dependendo da complexidade do cenário, sendo estes valores superiores ao obtido usando Algoritmos Genéticos em todos os cenários, com esforço computacional menor. / [en] Refinery scheduling can be understood as a sequence of decisions that targets the optimization of available resources, sequencing and execution of activities on proper timing; always respecting restrictions of different natures. The final result must achieve multiple objectives guaranteeing co-existence of different factors in the same function, such as production demand fullfillment and minimize operational variation. In this work it is proposed the use of the genetic programming technique to automate the building process of programs that represent a complete oil scheduling solution within a defined time horizon. For the evolution of those programs, it was developed a domain specific language to translate oil scheduling instructions that was applied to represent the most relevant activities for the proposed case studies. For that, purpose first step was to evaluate a few real scheduling scenarios to select which activities needed to be represented and how to do that. On the proposed model, each quantum chromosome represents the overlapping of all solutions and by the evolutionary process (and quantum gene measurement) the classic chromosome is created as a linear sequence of scheduling instructions to be executed. The orientation for this process is performed through a multi-object fitness function that prioritizes the evaluations according to: the operating time of the atmospheric distillation unities, the oil unloading time from the ships, the oil pipeline operation to transport oil to the refinery and other parameters like the number of charge tanks switchover and injection tank used for the distillation unities. The scope of this work also includes a study about tuning for the developed model based in one of the considered scenarios. From this set, an evaluation of other different scheduling scenarios was performed to test the model. The obtained results were then compared with a developed model that uses genetic algorithms with order representation for the activities. The proposed model showed between 25 percent - 90 percent of good solutions depending on the scenario complexity. Those results exhibit higher percentage of good solutions requiring less computational effort than the ones obtained with the genetic algorithms. Read more
|
Page generated in 0.0357 seconds