561 |
Fotoluminescencija i Ramanova spektroskopija specifičnih kompleksnih organometalnih jedinjenja na bazi cinka, kobalta i bakra pogodnih za primenu u organskim svetlećim diodama / Photoluminescence and Raman spectroscopy of specific complexcompounds based on zinc, cobalt and copper suitable for application inorganic light emitting diodesJelić Miodrag 30 May 2017 (has links)
<p>U okviru doktorske disertacije predstavljene su elektronska i fononska struktura odabranih organometalnih materijala koji u svom sastavu imaju metale cink, kobalt ili bakar i organsko jedinjenje piridoksalaminogvanidin (PLAG). Predstavljene su realizacija i karakteristike organske svetleće diode zasnovane na najboljem od ispitivanih materijala. Urađena je detaljna analiza fotoluminescentnih spektara i njihovo razlaganje na proste komponente koristeći Lorencov model. Izvršeno je poređenje sa od ranije poznatim materijalom koji pokazuje visok stepen luminescencije. S obzirom da istraživanja vezana za organske svetleće diode uzimaju sve veći zamah i da ove diode postaju sve prisutnije u industrijskoj serijskoj proizvodnji, napravljena je detaljna analiza ove tehnologije i mehanizama koji se kriju iza nje. Urađeno je podrobno istraživanje kako na nivou elektrona u datim supstancama, tako i na nivou sloja organske svetleće diode. Na kraju je izvršena analiza rada diode sa integrisanim slojem sa materijalom koji u sebi sadrži cink i PLAG.</p> / <p>In this thesis electronic and phonon structure of specific organometallic<br />materials which have zinc, cobalt, copper metals and organic compound<br />pyridoxalaminoguanidin are presented. Implementation and characteristics of<br />organic light emitting diode based on the best material among examined<br />ones are also showed up. Detailed analysis of photoluminescence spectra<br />was done and its decomposition to its elementar components using<br />Lorentzian multipeak method. Comparison to well-known material that shows<br />high level of luminescence was implemented. In accordance to the fact that<br />research of organic light emitting diodes expands and that these diodes start<br />to be more present in industrial serial production, detailed analysis of this<br />technology and mechanisms behind it are made. Thorough research was<br />done both on electron level in these substances and organic light emitting<br />diode layer level. Finally, analysis of diode operation with integrated layer<br />made of material which includes zinc and pyridoxalaminoguanidin compound<br />is implemented.</p>
|
562 |
Génération et contrôle d'impulsions localisées dans les lasers à semiconducteurs / Generation and control of localized pulses in semiconductor laserCamelin, Patrice 20 December 2017 (has links)
Les Structures localisées (SLs) apparaissent dans les milieux dissipatifs nonlinéaires ayant un grand rapport d'aspect et où plusieurs solutions coexistent pour la même gamme de paramètres. Elles ont des longueurs de corrélations bien plus courtes que la taille du système ce qui en fait des objets individuellement adressables. Les SLs ont été largement étudiées dans les résonateurs optiques pour leur potentiel dans le traitement tout-optique d'information. Nous focalisons nos recherches sur les structures localisées temporelles obtenues dans un laser à blocage de modes passif. Il s'agit, plus spécifiquement, d'un laser à Cavite Verticale Émettant par la Surface (VCSEL) monté dans une cavité externe délimitée par un Miroir Semiconducteur à Absorption Saturable (SESAM). Nous montrons que les pulses émis par ce système peuvent être individuellement allumés et éteints par le biais d'impulsions électriques dans le courant de pompage. Nous étudions la possibilité de déplacer ces pulses l'un par rapport à l'autre et/ou de reconfigurer leur disposition dans la cavité à l'aide d'une modulation du paramètre de pompage. Ceci nous a permis de découvrir un nouveau paradigme pour la dynamique pour les SLs, jusqu'ici étudiées seulement dans les systèmes à symétrie de parité (systèmes spatiaux et résonateurs à Fibre de (type Kerr). En effet, dans notre système, le temps de réponse fini du milieu semiconducteur introduit la causalité dans la cavité, brisant ainsi la symétrie de parité du système. Ceci a des conséquences très importantes sur la vitesse de propagation des SLs, sur leurs formes et sur leurs interactions. Dans la partie finale de ma thèse, inspiré par le résultat obtenu dans ce système, je m'intéresser à l'implémentationdes SLs spatio-temporelle, aussi appelées Balles de Lumière (BLs). En effet, une version similaire de ce système a servi pour implémenter des SLs dans la section transverse du résonateur, ce qui en fait un bon candidat pour générer des BLs. Nous étudions donc les modifications à apporter pour atteindre ces structures. Les indications obtenues ont suggéré de remplacer le VCSEL par un dispositif similaire mais incapable de laser sans un miroir externe. Ce dispositif, appelé demi-VCSEL ou VECSEL et son SESAM compatible ont été fabriqués par l'Institut d'Electronique et des Systèmes de Montpellier. L'optimisation des caractéristiques de ces dispositifs permet d'atteindre le régime de localisation temporelle, ce qui est un résultat prometteur vers les Balles de Lumière. / Localized Structures (LS) appear in non-linear dissipative mediums with a large aspect ratio and where several solutions coexist for the same range of parameters. They have a correlation length much shorter than the size of the system which makes them individually addressable objects. LS have been widely studied in optical resonators for their potential in all-optic informations processing. We focus our study on Temporal Localized Structures in a Passive Mode-Locked Laser. More specifically, we study a Vertical Cavity SurfaceEmitting Laser (VCSEL) coupled in an external cavity with a Semiconductor Saturable Absorber Mirror (SESAM). We show that pulses emitted by this system can be individually turned on and off using electrical pulses in the bias current. We study the possibility to move those pulses and/or to reconfigure their positions in the cavity thanks to a modulation of the bias current. We were able to discover a new paradigm for the dynamics of LS, studied until now only in system with parity symmetry (spatial system et Kerr fiber resonator). Indeed, in our system, the finite response time of the semiconductor medium brings causality in the cavity, and so breaks the parity symmetry of the system. This fact has important consequences on the LS drifting speed, on their shapes and their interactions. In the last part of my thesis, inspired by the results we obtain in this system, we focus on the implementation of spatio-temporal LS, also called Light Bullet (LB). Indeed, a similar system was used to implement LS in the transverse section of the resonator, so it can be a good candidate to generate LB. So we study the modification needed to obtain those structures. The results suggested to replace the VCESL by a similar device but that can't lase without external mirror. This device, called half-VCSEL or VECSEL, and its compatible SESAM, were design the Institut d'Electronique et des Systèmes of Montpellier. The optimization of the characteristic of those devices allows to get a regime of temporal localization, which is a promising towards the Light Bullets.
|
563 |
Architectural Approaches for the Absorption Layer and their Impact on Organic Solar CellsBeyer, Beatrice 13 December 2013 (has links)
This study focuses on the architectural modification of pin-type small-molecule organic solar cells, in particular on the absorption layer and its influence on the key solar cell parameters, such as short circuit current density, fill factor and open circuit voltage. Three different approaches have been applied to improve the match between the solar spectrum and the spectral sensitivity of organic solar cells.
In the first part, deposition parameters such as substrate temperature, gradient strength and (graded) absorption layer thickness are evaluated and compared to organic solar cells with homogeneously deposited absorption layers. Moreover, the gradient-like distribution of the absorption layer is characterized optically and morphological effects have been extensively studied. In order to isolate the origin of the efficiency improvement due to the graded architecture, voltage-dependent spectral response measurements have been performed and gave new insights.
The second part concentrates on the efficient in-coupling of converted UV light, which is usually lost because of the cut off properties of organic light in-coupling layers. Via Förster resonance energy transfer, the absorbed UV light is re-emitted as red light and contributes significantly to higher short circuit current densities. The correlation between doping concentration, simple stack architecture modifications and the performance improvement is duly presented.
In the third and last part, the impact of tri-component bulk heterojunction absorption layers is investigated, as these have potential to broaden the sensitivity spectrum of organic solar cells without chemical modification of designated absorber molecules. Along with the possibility to easily increase the photocurrent, an interesting behavior of the open circuit voltage has been observed.
Knowledge about the impact of slight modifications within the solar stack architecture is important in order to be able to improve the device efficiency for the production of cheap and clean energy.
|
564 |
Phototrophic growth of Arthrospira platensis in a respiration activity monitoring system for shake flasks (RAMOS)Socher, Maria Lisa, Lenk, Felix, Geipel, Katja, Schott, Carolin, Püschel, Joachim, Haas, Christiane, Grasse, Christiane, Bley, Thomas, Steingroewer, Juliane January 2014 (has links)
Optimising illumination is essential for optimising the growth of phototrophic cells and their production of desired metabolites and/or biomass. This requires appropriate modulation of light and other key inputs and continuous online monitoring of their metabolic activities. Powerful non-invasive systems for cultivating heterotrophic organisms include shake flasks in online monitoring units, but they are rarely used for phototrophs because they lack the appropriate illumination design and necessary illuminatory power.
This study presents the design and characterisation of a photosynthetic shake flask unit, illuminated from below by warm white light-emitting diodes with variable light intensities up to 2300 μmol m-2 s-1. The photosynthetic unit was successfully used, in combination with online monitoring of oxygen production, to cultivate Arthrospira platensis.
In phototrophic growth under continuous light and a 16 h light/8 h dark cycle (light intensity: 180 μmol m-2 s-1), the oxygen transfer rate and biomass-related oxygen production were - 1.5 mmol L-1 h-1 and 0.18 mmol O2 gx-1 h-1, respectively. The maximum specific growth rate was 0.058 h-1, during the exponential growth phase, after which the biomass concentration reached 0.75 g L-1.
|
565 |
Novel Concepts For Alternating Current Operated Organic Light-Emitting DevicesFröbel, Markus 03 March 2017 (has links)
Inorganic alternating current electroluminescent devices (AC-ELs) are known for their ruggedness and extreme long-term reliability, which is why they can often been found in industrial and medical equipment as well as in applications in the military sector. In contrast to the inorganic phosphors used in AC-ELs, organic materials offer a number of advantages, in particular a significantly higher efficiency, easier processibility, and a wide selection of emitter materials spanning the entire visible spectrum. Several efforts towards alternating current driven organic light-emitting devices have recently been made, however, important operating mechanism are still not well understood. In the first part of this theses, alternating current driven, capacitively coupled, pin-based organic light-emitting devices are investigated with respect to the influence of the thickness of the insulating layer and the intrinsic organic layer on the driving voltage. A three-capacitor model is employed to predict the basic behavior of the devices and good agreement with the experimental values is found. The proposed charge regeneration mechanism based on Zener tunneling is studied in terms of field strength across the intrinsic organic layers. A remarkable consistency between the measured field strength at the onset point of light emission (3–3.1 MV/cm) and the theoretically predicted breakdown field strength of around 3 MV/cm is obtained. The latter value represents the field required for Zener tunneling in wide band gap organic materials according to Fowler-Nordheim theory. In a second step, asymmetric driving of capacitively coupled OLEDs is investigated. It is found that different voltages and/or pulse lengths for positive and negative half-cycle lead to significant improvements in terms of brightness and device efficiency.
Part two of this work demonstrates a device concept for highly efficient organic light-emitting devices whose emission color can be easily adjusted from, e.g., deep-blue through cold-white and warm-white to saturated yellow. The presented approach exploits the different polarities of the positive and negative half-cycles of an alternating current driving signal to independently address a fluorescent blue emission unit and a phosphorescent yellow emission unit vertically stacked on top of each other. The electrode design is optimized for simple fabrication and driving and allows for two-terminal operation by a single source. The presented approach for color-tunable OLEDs is versatile in terms of emitter combinations and meets application requirements by providing a high device efficiency of 36.2 lm/W, a color rendering index of 82 at application relevant brightness levels of 1000 cd/m², and warm-white emission color coordinates.
The final part demonstrates an approach for full-color OLED pixels that are fabricated by vertical stacking of a red-, green-, and blue-emitting unit. Each unit can be addressed separately which allows to efficiently generate every color that is a superposition of spectra of the individual emission units. The device is built in a top-emission geometrywhich is highly desirable for display fabrication as the pixel can be directly deposited onto the back-plane electronics. Furthermore, the presented device design requires only three independently addressable electrodes which simplifies fabrication and electrical driving.
The electrical performance of each individual unit is on par with standard pin single emission unit OLEDs, showing very low leakage currents and achieving high brightness levels at moderate voltages of around 3–4 V.
|
566 |
Caractérisation thermique et lumineuse de diodes électroluminescentes en charge par méthodes locales non intrusives : influence du luminophore / Thermal and luminous characterization of charged light emitting diodes (LED) by local non-intrusive methods : effect of phosphorLacourarie, Fiona 17 July 2015 (has links)
Le marché des diodes électroluminescentes (LEDs) de puissance est en perpétuelle croissance depuis une vingtaine d’années. Le marché de l’éclairage évolue car les besoins ont changé : nous souhaitons, par exemple, aujourd’hui réduire la consommation électrique, ou avoir des éclairages plus flexibles (couleur, cycle d’allumage, encombrement, …). Les LEDs de puissance permettent d’apporter des solutions où les autres éclairages font défauts. Une étude comparative est menée entre les LEDs et les autres sources d’éclairages. Une LED de puissance émettant une lumière blanche est constituée d’une puce semi-conductrice, d’un substrat, d’un PAD et d’une optique primaire. Différentes méthodes permettent d’obtenir de la lumière blanche avec des LEDs : plusieurs puces, une puce avec un ou des luminophores, ou la méthode PRS-LED. Le luminophore a un rôle optique important et un rôle thermique non négligeable. Après avoir été excité par la lumière émise de la puce, il réémet de la lumière dans une longueur d’onde supérieure. L’efficacité de ce processus dépend de nombreux paramètres, comme la mise en oeuvre du luminophore ou le type de luminophore utilisé. L’étude et la caractérisation des propriétés optiques et thermiques sont faites pour des LEDs commerciales, composées d’une même puce émettant de la lumière bleue, avec et sans luminophore jaune. Afin de maitriser le maximum de facteurs, nous avons mené une étude et un dimensionnement du circuit imprimé (PCB) sur lequel va être implanté nos LEDs. Dans le but d’évaluer les matériaux constituant les LEDs, des analyses au microscope à balayage électronique et par microsonde ont été menées. Ces travaux ont permis de révéler, notamment, la position de la jonction p-n dans la puce et la composition de la couche de luminophore par deux types différents. De plus, afin d’améliorer notre compréhension, une étude comparative a été menée sur trois luminophores jaunes. Ensuite, les deux types de LEDs, puce nue et puce avec luminophore, ont été testés dans le but d’obtenir le flux lumineux et le rendement des LEDs. La caractérisation optique nous a amené à créer un banc pour obtenir la luminance énergétique spectrale sur une partie minime de la puce. D’autre part, nous nous intéressons à la température de jonction de la puce nue, que nous mesurons par différentes méthodes, dont la thermographie infrarouge. Pour cela, l’émissivité a été estimée pour la puce nue et la puce avec luminophore. Puis nous comparons aussi ces différentes méthodes pour le calcul de la résistance thermique Rth j-PAD entre la jonction et le PAD. Le maillage de fils conducteurs implanté sur la surface de la puce est modélisé électriquement. Cette étude, qui est composée de niveaux progressifs de modélisation, permet de comprendre la répartition du courant électrique qui traverse la jonction, et ainsi d’appréhender la répartition du flux lumineux et de la température au niveau de la surface de la puce. Après, un modèle thermo-optique décrit les phénomènes présents au niveau de la jonction d’une puce nue : la conversion de la puissance électrique en lumière bleue et en chaleur, et les transferts de chaleur. Nous complétons ce premier modèle pour obtenir un modèle d’une puce avec le luminophore. Ce dernier modèle prend en compte la photo-conversion du luminophore avec le calcul de flux lumineux à la sortie du luminophore et le calcul de la chaleur due à la photo-conversion. La résolution de ce modèle nous permet d’obtenir la température de jonction d’une puce avec luminophore. La conservation d’énergie du modèle est aussi vérifiée. Le modèle thermo-optique est appliqué à une cartographie de température de surface afin d’obtenir une cartographie de la température de jonction. Ces cartographies sont regroupées avec les clichés de thermographie infrarouge et de luminance énergétique. / The high brightness LED market is constantly growing last twenty years. The lighting market is changing as needs have changed: we would like, for example, reduce power consumption, or have more flexible lighting (color, lighting cycle, dimensions ...). High brightness LEDs help provide solutions where others are lighting defects. A comparative study is conducted between the LEDs and other lighting sources.The operation of a high brightness LED emitting white light is explained with the description of each element: chip, substrate, the PAD and optics. Then the different methods of obtaining white light with LEDs are compared: several chips, a chip with one or more phosphors, or PRS-LED method. The phosphor has a significant optical role and an important thermal role. After being excited by the light emitted from the chip, it re-emits light in a greater wavelength. The effectiveness of this process depends on many parameters, such as the implementation of the phosphor, or the type of phosphor used. The study and characterization of optical and thermal properties are made for commercial LEDs, composed of a single chip emitting blue light with and without yellow phosphor. To master the maximum factors, we conducted a study and design of the printed circuit board (PCB) on which will be implanted our LEDs. In order to evaluate the materials constituting the LEDs, analyzes made at scanning electron microscope, and by microprobe were conducted. This work has revealed in particular the position of the p-n junction in the chip, and the composition of the phosphor layer of two different types. Moreover, to improve our understanding, a comparative study will be conducted on three yellow phosphors. Then the two types of LEDs, bare chip and chip with phosphor, were tested in order to obtain the luminous flux and efficiency of LEDs. The optical characterization has led us to create a bench for spectral radiance over a small portion of the chip. Furthermore, we are interested in the junction temperature of the bare chip, which we measure by various methods, including infrared thermography. For this, the emissivity was estimated for the bare chip and the chip with phosphor. Then we also compare these different methods to calculate the thermal resistance Rth j-PAD between the junction and the PAD. The mesh of conductive wires, implanted on the surface of the chip, is electrically modeled. The study, which is composed of three progressive levels of modeling, provides an understanding of distribution of the electric current through the junction, and thus to understand the distribution of the light flow and temperature at the surface of the chip. Afterwards, an optical-thermal model describes the phenomena present at the junction of a bare chip: converting electrical power into blue light and heat, and heat transfer. We complete this first model for a model of a chip with the phosphor. This model takes into account the photo-conversion of the phosphor with the calculation of the luminous flux at the output of the phosphor and the calculation of the heat due to the photo-conversion. The resolution of this model allows us to obtain the junction temperature of a chip with phosphor. The model of energy conservation is also verified. The optical-thermal model is applied to a surface temperature mapping in order to obtain a mapping of the junction temperature. These maps are combined with pictures of infrared thermography and radiance.
|
567 |
Triimine Complexes of Divalent Group 10 Metals for Use in Molecular Electronic DevicesChen, Wei-Hsuan 08 1900 (has links)
This research focused on the development of new metal triimine complexes of Pt(II), Pd(II), and Ni(II) for use in three types of molecular electronic devices: dye sensitized solar cells (DSSCs), organic light-emitting diodes (OLEDs), and organic field effect transistors (OFETs). Inorganic complexes combine many advantages of their chemical and photophysical properties and are processable on inexpensive and large area substrates for various optoelectronic applications. For DSSCs, a series of platinum (II) triimine complexes were synthesized and evaluated as dyes for nanocrystalline oxide semiconductors. Pt (II) forms four coordinate square planar complexes with various co-ligands and counterions and leads to spanning absorption across a wide range in the UV-Vis-NIR regions. When those compounds were applied to the oxide semiconductors, they led to photocurrent generation thus verifying the concept of their utility in solar cells. In the OLEDs project, a novel pyridyl-triazolate Pt(II) complex, Pt(ptp)2 was synthesized and generated breakthrough OLEDs. In the solution state, the electronic absorption and emission of the square planar structure results in metal-to-ligand charge transfer (MLCT) and an aggregation band. Tunable photoluminescence and electroluminescence colors from blue to red wavelengths have been attained upon using Pt(ptp)2 under different experimental conditions and OLED architectures. In taking advantage of these binary characteristics for both monomer and excimer emissions, cool and warm white OLEDs suitable for solid-state lighting have been fabricated. The OFETs project represented an extension of the study of pyridyl-triazolate d8 metal complexes due to their electron-transporting behavior and n-type properties. A prescreening step by using thermogravimetric calorimetry has demonstrated the stability of all three M(ptp)2 and M(ptp)2(py)2 compounds and their amenability to sublimation. Preliminary current-voltage measurements from simple diodes has achieved unidirectional current from a Pt(ptp)2 neat layer and demonstrated its n-type semiconducting behavior.
|
568 |
Advances in Organic Microcavities: Electrical Tunability and High Current Density ExcitationSlowik, Irma 24 May 2022 (has links)
There is a huge demand for low-cost and compact laser devices in particular for point-of-care diagnostic, sensing, or optical communication. Organic solid-state lasers (OSLs) have a great potential to fill that gap due to their specific properties such as high optical gain, low lasing threshold, and spectral tunability. To miniaturize OSLs for micro-optical circuits two aspects are required: The spectrum of the laser should be easily tunable, and the pumping energy should be provided in a simple and compact method, in the best case electrically.
In this work, we developed a simple, compact, easy to manufacture, and electrically tunable laser resonator using electroactive polymers. The cavity is formed between a highly reflecting distributed Bragg reflector (DBR) and a highly reflecting silver layer sandwiching a soft elastomer layer. A transparent electrode made by indium tin oxide is placed on the glass substrate below the DBR. If an external voltage between the transparent bottom electrode and the metal layer is applied, the elastomer layer is compressed by the electrostatic pressure, which leads to a blue shift of the optical modes of the microcavity. If an active material with a broad emission spectrum, such as organic molecules, is included inside the cavity layer, it enables the development of an electrically tunable OSL. Hence, we demonstrate a cost-effective approach towards an electrically tunable organic
laser source particularly suitable for easily processable lab-on-chip devices.
In the second part, a novel organic light emitting diode (OLED) architecture is realized enabling high current densities with low optical losses in the prospect of the realization of an electrically driven OSL. For this purpose, an additional highly conductive lateral transport layer (LTL) is introduced to achieve expansion of the charge recombination to the electrode-free area. Simulations by equivalent circuit approach allow for an analysis of the lateral distribution of the vertical current density to predict the lateral current density distribution in the high excitation regime (current densities ≈ 1 kA/cm² ). Moreover, the Joule heating of the device is reduced by restructuring the OLED layer stack. Thus, high current densities close to the predicted lasing threshold of 1 kA/cm² could be achieved. The results of the thesis presenting a significant step towards the development of an
electrical pumped OSL.:1 Introduction
2 Theoretical Background
2.1 Optical Cavities
2.1.1 Fabry-Perot Resonator
2.1.2 Transfer Matrix Algorithm
2.1.3 Distributed Bragg Reflector
2.1.4 Optical Microcavities
2.1.5 Tunable Optical Cavities
2.2 Organic Semiconductors
2.2.1 Properties
2.2.2 Electronic Structure
2.2.3 Absorption and Emission Spectra
2.2.4 Electrical Current
2.2.5 Doping
2.3 Organic Light Emitting Diodes
2.3.1 Basic OLED
2.3.2 Pin-OLED
2.3.3 OLEDs at High Excitation
2.4 Organic Lasers
2.4.1 Fundamentals of a Laser
2.4.2 Organic Molecules as Active Medium
2.4.3 Electrical Pumping of Organic Lasers
2.5 Dielectric Elastomer Actuators
2.5.1 Principle of Operation
2.5.2 Silicone-Based Materials
2.5.3 Compliant Electrodes
3 Experimental Methods
3.1 Sample Fabrication
3.1.1 Dielectric Elastomer Actuators
3.1.2 Organic Light Emitting Diodes
3.2 Characterization Techniques
3.2.1 Optical Characterization
3.2.2 Electrical Characterization
4 Tunable Optical Cavities with Dielectric Elastomer Actuators
4.1 Design of the Tunable Optical Microcavity
4.1.1 Tunable Cavity with Thin Metal Electrode .
4.1.2 Compliant Metal Electrodes on Dielectric Elastomer Films
4.1.3 Actuator Performance of Thick Metal Electrode
4.1.4 Electro-mechanical Characteristic
4.2 Tunable Emission of Optical Elastomer Cavities
4.2.1 Incorporation of Organic Laser Dyes in the Elastomer
4.2.2 Tunable Photoluminescence Spectra
4.2.3 Lasing in Elastomer Cavities
5 Novel Architecture for OLEDs at High Excitation
5.1 OLEDs at High Excitations Using Emission from Metal-free Area
5.1.1 Simulation of the Lateral Distribution of the Vertical Current Density
5.1.2 Investigation of the Lateral Emission
5.1.3 Organic Zener Junction
5.1.4 Simulation of High Excitation Behavior
5.2 Reduction of Self-heating for OLEDs at High Excitation
5.2.1 Crossbar-OLED at High Current Densities
5.2.2 Change in Layer Structure
5.3 Fully Transparent Metal-free OLEDs
5.3.1 Highly doped C 60 as a Transparent Electrode
5.3.2 Investigation of the External Quantum Efficiency
6 Conclusion and Outlook / Insbesondere durch die wachsende Nachfrage in Point-of-Care-Diagnostik, Sensorik oder optischer Kommunikationstechnologie wird eine große Anzahl von günstigen und kompakten Laserbauteilen benötigt. Aufgrund ihrer spezifischen Eigenschaften, wie hoher optische Verstärkung, niedriger Laserschwelle und spektrale Durchstimmbarkeit, sind organische Festkörperlaser geeignete Kandidaten, um diese Lücke zu schließen. Für die Anwendung als mikrooptische Systeme werden zwei wesentliche Komponenten benötigt: Die spektrale Durchstimmbarkeit sowie das Pumpen des Lasers sollten mit einem einfachen und kompakten Verfahren realisiert werden, im besten Fall durch Anlegen einer elektrischen Spannung. In der vorliegenden Arbeit wurde ein kompakter, elektrisch durchstimmbarer Laserresonator entwickelt, welcher mittels eines dielektrischen Elastomeraktuators in wenigen Prozessschritten realisiert werden kann. Der Resonator besteht aus zwei hochreflektierenden Spiegeln, einem dielektrischen Bragg-Spiegels und einem Metallspiegel, die eine Resonatorschicht aus einem weichen, verformbaren Elastomer umschließen. Für die elektrische Aktuation wird eine Spannung zwischen einer transparenten Bodenelektrode aus Indiumzinnoxid unterhalb des Bragg-Spiegel und der Metallschicht angelegt. Durch die elektrostatische Anziehung beider Elektroden wird die Elastomerschicht zusammengedrückt, wodurch die optischen Moden des Resonators eine Blauverschiebung der Wellenlänge erfahren. Durch die Integration einens Fluoreszenzfarbstoffes mit einem breiten Emissionsspektrum innerhalb der Resonatorschicht, wird die Umsetzung eines elektrisch durchstimmbaren, organischen Festkörperlasers ermöglicht.
Im zweiten Teil der Arbeit wird ein neuartiges Design für organische Leuchtdioden (OLED) vorgestellt, um diese bei hohen Stromdichten zu betreiben und gleichzeitig die optischen Verluste, die beim Einbau in einen optischen Mikroresonator auftreten, zu minimieren. Hierfür wird eine zusätzliche hoch leitfähige, organische Schicht, die laterale Transportschicht, in den Schichtaufbau der OLED integriert. Aufgrund des verstärkten lateralen Ladungsträgertransports wird die Rekombinationszone bis außerhalb der Elektroden bedeckten Fläche ausgeweitet. Mithilfe einer Simulation, welche die organischen Schichten mittels eines Ersatzschaltbildes beschreibt, war es möglich, die laterale Verteilung der vertikalen Stromdichte zu bestimmen und damit Vorhersagen über die Stromdichtenverteilung bei hohen Anregungen (≈ 1 kA/cm² ) zu treffen. Darüber hinaus ermöglicht eine geänderte Schichtreihenfolge der OLED, die Joulesche Erwärmung des Bauteils zu reduzieren. Dadurch ist es möglich, hohe Stromdichten überhalb der vorherge sagten Laserschwelle von 1 kA/cm² zu erreichen. Diese Ergebnisse stellen eine wichtige Voraussetzung für die Entwicklung eines elektrisch gepumpten, organischen Festkörperlasers dar.:1 Introduction
2 Theoretical Background
2.1 Optical Cavities
2.1.1 Fabry-Perot Resonator
2.1.2 Transfer Matrix Algorithm
2.1.3 Distributed Bragg Reflector
2.1.4 Optical Microcavities
2.1.5 Tunable Optical Cavities
2.2 Organic Semiconductors
2.2.1 Properties
2.2.2 Electronic Structure
2.2.3 Absorption and Emission Spectra
2.2.4 Electrical Current
2.2.5 Doping
2.3 Organic Light Emitting Diodes
2.3.1 Basic OLED
2.3.2 Pin-OLED
2.3.3 OLEDs at High Excitation
2.4 Organic Lasers
2.4.1 Fundamentals of a Laser
2.4.2 Organic Molecules as Active Medium
2.4.3 Electrical Pumping of Organic Lasers
2.5 Dielectric Elastomer Actuators
2.5.1 Principle of Operation
2.5.2 Silicone-Based Materials
2.5.3 Compliant Electrodes
3 Experimental Methods
3.1 Sample Fabrication
3.1.1 Dielectric Elastomer Actuators
3.1.2 Organic Light Emitting Diodes
3.2 Characterization Techniques
3.2.1 Optical Characterization
3.2.2 Electrical Characterization
4 Tunable Optical Cavities with Dielectric Elastomer Actuators
4.1 Design of the Tunable Optical Microcavity
4.1.1 Tunable Cavity with Thin Metal Electrode .
4.1.2 Compliant Metal Electrodes on Dielectric Elastomer Films
4.1.3 Actuator Performance of Thick Metal Electrode
4.1.4 Electro-mechanical Characteristic
4.2 Tunable Emission of Optical Elastomer Cavities
4.2.1 Incorporation of Organic Laser Dyes in the Elastomer
4.2.2 Tunable Photoluminescence Spectra
4.2.3 Lasing in Elastomer Cavities
5 Novel Architecture for OLEDs at High Excitation
5.1 OLEDs at High Excitations Using Emission from Metal-free Area
5.1.1 Simulation of the Lateral Distribution of the Vertical Current Density
5.1.2 Investigation of the Lateral Emission
5.1.3 Organic Zener Junction
5.1.4 Simulation of High Excitation Behavior
5.2 Reduction of Self-heating for OLEDs at High Excitation
5.2.1 Crossbar-OLED at High Current Densities
5.2.2 Change in Layer Structure
5.3 Fully Transparent Metal-free OLEDs
5.3.1 Highly doped C 60 as a Transparent Electrode
5.3.2 Investigation of the External Quantum Efficiency
6 Conclusion and Outlook
|
569 |
Wireless Power Transfer and Power Management Unit Integrated with Low-Power IR-UWB Transmitter for Neuromodulation and Self-Powered Sensor ApplicationsBiswas, Dipon Kumar 05 1900 (has links)
This dissertation is particularly focused on a novel approach of a wirelessly powered neuromodulation system for chronic patients. The inductively coupled transmitter (TX) and receiver (RX) coils are designed through optimization to achieve maximum efficiency. A power management unit (PMU) consisting of a voltage rectifier, voltage regulator along with a stimulation circuitry is also designed to provide pulse stimulation to genetically modified neurons. For continuous health monitoring purposes, the response from the brain due to stimulation needs to be recorded and transmitted wirelessly outside the brain for analysis. A low-power high-data duty-cycled impulse-radio ultra-wideband (IR-UWB) transmitter is designed and implemented using the standard CMOS process. Another focus of this dissertation is the design of a reverse electrowetting-on-dielectric (REWOD) based energy harvesting circuit for wearable sensor applications which is capable of generating a very low-frequency signal from motion activity such a walking, running, jogging, etc. A commercial off-the-shelf (COTS) based and on-chip based energy harvesting circuit is designed for very low-frequency signals. The experimental results show promising progress towards the advancement in the wirelessly powered neuromodulation system and building the self-powered wearable sensor.
|
570 |
Simulation Study of Epitaxially Regrown Vertical-Cavity Surface-Emitting LasersWu, Xiaoyue January 2011 (has links)
The vertical-cavity surface-emitting laser or VCSEL is a special type of diode laser, which has established itself in optoelectronic applications asa low-cost, high-quality miniaturized light source. The development of VCSELs can be largely promoted with support from computer simulations. In this study, we have used such simulations, on one hand to understand and improve the VCSEL performance, and on the other hand to prepare for analyzing new device concepts such as transistor-VCSELs. This thesis starts with a background introduction to the principle idea of VCSELs and then states the significance of this simulation work.Then it briefly introduces the previously used simulation workbench Sentaurus and explains the mathematical approach and the computation methods of the finally chosen simulator PICS3D. The case study of a fabricated and characterized epitaxially regrown VCSEL is the major component of this work. First the device configuration is demonstrated with detailed discussion on several design features. Second the physical models of electrical, optical and thermal phenomena along with their key parameters are presented and so are the advanced models for the active region. The main results of simulation, including steady-state characteristics and small-signal modulation, show good agreement with the experimental results and reveal some imperfections of the device design and processing, such as the overestimated stability of the regrown junction and the variation of cavity length caused by over-etch. This work is also treated as an evaluation of the simulator PICS3D, and two problems are identified: one is the troublesome way to construct a 3D device by coupling several 2D layer structures together, requiring the mesh for each layer structure to be compatible; the other would be the tricky boundary setting for the adopted method, Effective Index Method (EIM), for the transverse field calculation when only a weak index guiding effect exits in the cavity. Finally, we summarize this work and suggest some tasks for further simulations.
|
Page generated in 0.0743 seconds