Spelling suggestions: "subject:"ácido salicílico (SA)"" "subject:"acido salicílico (SA)""
1 |
Disección genética del mecanismo de resistencia frente a patógenos biotrofos mediado por el gen CSB3 en Arabidopsis thalianaGil Morrió, María José 06 May 2008 (has links)
La comprensión de los mecanismos moleculares que controlan la resistencia de la planta frente a patógenos biotrofos es un campo de investigación complejo y en expansión donde se impone la identificación de nuevos reguladores. Previamente se había descrito en nuestro laboratorio el gen P69C que codifica una proteasa con homología a subtilisinas y cuya expresión se induce en el transcurso de la interacción planta-patógeno. Con el fin de estudiar nuevos componentes de la planta implicados en la señalización de la respuesta defensiva, se procedió al escrutinio de mutantes de Arabidopsis thaliana que de forma constitutiva y sin la existencia de ningún estímulo externo se encontrara activada la expresión del gen GUS dirigida por el promotor P69C. En la presente memoria de tesis se describe ampliamente la identificación y caracterización del mutante, csb3 (constitutive subtilisin3). Las plantas csb3 poseen elevados niveles de ácido salicílico (SA) y además expresan genes dependientes de la ruta de SA tales como PR-1, PR-2 y GST6. Por otra parte, el mutante csb3 exhibe una elevada resistencia al oomiceto patógeno Hyaloperonospora parasitica de naturaleza biotrofa y a la bacteria patógena también biotrofa Pseudomonas syringae pv.tomato DC3000 (Pst) DC3000. Sin embargo, la resistencia a patógenos necrotrofos tales como Botrytis cinerea y Plectosphaerella cucumerina permanece inalterada en las plantas csb3. Para analizar la participación de los distintos componentes de la ruta de señalización dependiente de SA en la manifestación del fenotipo de resistencia de csb3, se procedió al análisis epistático entre csb3 y pad4, sid2, eds5, nahG, npr1, dth9 y cpr1. Estos estudios indican que la elevada resistencia frente a patógenos biotrofos de las plantas csb3 requiere de todos y cada uno de los componentes de la ruta de señalización dependiente del SA estudiados. El gen CSB3 identificado por clonaje posicional codifica la 1-hidroxi-2-metil-2-butenil 4-difosfato (HDS) sin / Gil Morrió, MJ. (2005). Disección genética del mecanismo de resistencia frente a patógenos biotrofos mediado por el gen CSB3 en Arabidopsis thaliana [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1870
|
2 |
Función del ácido salicílico en la floración acelerada por estrés en Arabidopsis thalianaSegarra Manzano, Silvia 07 May 2008 (has links)
En Arabidopsis, el momento en que se produce la transición a la floración viene determinado por la interacción entre la competencia de la planta para su desarrollo interno y las señales medioambientales que determinan las condiciones favorables para el suceso reproductivo. Sin embargo, plantas expuestas a condiciones de estrés medioambiental pueden activar el programa de floración prematuramente. Algunos factores de estrés capaces de alterar el tiempo de floración, como la infección por patógenos, temperaturas extremas o altas irradiaciones, conllevan un incremento en los niveles de algunos metabolitos como etileno, ácido abcísico y ácido salicílico (SA) (Blee, 2002; Dempsey et al., 1999; Ni et al., 1996; Pastori y Foyer, 2002; Raskin, 1992).
Estudios recientes sugieren que SA pueda ser un regulador de la transición a la floración en plantas de Arabidopsis thaliana sometidas a estrés (Martínez et al., 2004). Para que se produzca un adelanto en el tiempo de floración en plantas sometidas a irradiación con luz UV-C es necesaria tanto la síntesis como la acumulación de SA, ya que no se produce en plantas transgénicas nahG, que no acumulan SA ya que lo degradan rápidamente a catecol. Sin embargo, se desconoce en gran medida el mecanismo mediante el cual el SA regula el tiempo de floración.
Mediante el uso de plantas transgénicas en las que el promotor de BGL2, gen PR inducible por SA, está fusionado al gen reportador GUS, se determinó el espacio temporal en el que se correlacionan cambios en los niveles endógenos de SA con la activación de la expresión de genes que inducen la transición floral. Bajo nuestras condiciones de cultivo, el décimo día tras la siembra se da un aumento tanto de los niveles de tinción GUS, asociados al tejido vascular, como de la expresión del gen ICS1/SID2 que codifica la isocorismato sintasa 1 encargada de sintetizar SA en Arabidopsis (Wildermuth et al., 2001) y del gen activador de la floración FT, cuya proteína ha sido recientemente caract / Segarra Manzano, S. (2007). Función del ácido salicílico en la floración acelerada por estrés en Arabidopsis thaliana [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1965
|
3 |
Análisis funcional del gen Ep5C y su implicación en los mecanismos de defensa en plantasCoego González, Alberto 07 May 2008 (has links)
La mancha bacteriana causada por el patógeno Pseudomonas syringae pv. tomato (P. s. tomato) es una de las enfermedades más devastadoras del cultivo del tomate. En este trabajo se demuestra que la sola inhibición de la expresión del gen Ep5C, que codifica una peroxidasa catiónica extracelular, es suficiente para conferir una marcada resistencia a P.s. tomato. Esta inhibición encontrada en las plantas de tomate produce una resistencia que no requiere la activación de las rutas de defensa descritas hasta ahora, controladas por el ácido salicílico y el ácido jasmónico. Así, la inhibición de este gen constituye una nueva herramienta genética para obtener plantas transgénicas resistentes a esta enfermedad. La temprana inducción del gen Ep5C está mediada por el H2O2, una especie reactiva de oxígeno generada durante el curso de u interacciones planta-patógeno. Los mecanismos que controlan la resistencia de las plantas a patógenos necrotrofos constituye uno de los aspectos menos estudiados en la actualidad. La búsqueda de nuevos componentes genéticos que participan en la cascada de señalización de las plantas frente a patógenos constituye uno de los retos de la biología molecular moderna. En este trabajo llevamos a cabo un escrutinio, utilizando plantas transgénicas de Arabidopsis thaliana portadoras del gen de la B-glucoronidasa (GUS) como gen marcador bajo el control del promotor del gen Ep5C, en busca de mutantes alterados en la expresión de dicho gen. En el presente trabajo presentamos la identificación y caracterización de uno de los mutantes, en concreto el mutante ocp3 (overexpressor of cationic peroxidase 3), el cual presenta expresión constitutiva del gen GUS. Las plantas ocp3 muestran una elevada acumulación de H2O2, y se caracterizan por presentar expresión constitutiva de GST1 y PDF1.2, dos genes marcadores de la respuesta defensiva, pero sin embargo no muestra expresión de PR-1, un gen marcador dependiente de la ruta del ácido salicílico (SA). La característic / Coego González, A. (2006). Análisis funcional del gen Ep5C y su implicación en los mecanismos de defensa en plantas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1972
|
4 |
Metabolitos secundarios de naturaleza fenólica: papel en la respuesta defensiva de plantas de tomateCampos Beneyto, Laura 17 November 2014 (has links)
El ácido salicílico (SA) juega un papel fundamental en la respuesta defensiva de las plantas. Este compuesto se acumula en las mismas como consecuencia de infecciones patogénicas de tipo incompatible, y su aplicación exógena induce resistencia. Asimismo, plantas transgénicas incapaces de acumularlo presentan una mayor susceptibilidad a patógenos de distinta naturaleza. Por otra parte, el ácido gentísico (GA, ácido 2,5-dihidroxibenzoico) se acumula en plantas en infecciones compatibles no necrotizantes. La aplicación exógena de GA induce un conjunto de proteínas de defensa PR (Pathogenesis related) distintas a las que induce el SA, por lo que podría tener un papel complementario en la señalización frente a patógenos en plantas. Ambos compuestos se acumulan en plantas en forma de glicósidos, es decir, conjugados a una o más moléculas de azúcar. Estas reacciones de conjugación son catalizadas por proteínas denominadas glicosiltransferasas. En plantas de tomate el SA se acumula como SA 2-O-ß-glucósido, unido a una molécula de glucosa, mientras el GA lo hace en forma de GA 5-O-ß-xilósido, unido a xilosa. GAGT (Gentisic Acid Glycosyl Transferase) ha sido descrita como la proteína que conjuga GA en tomate. Dado que la glicosilación de metabolitos es una forma rápida de inactivarlos, la existencia de esta proteína con actividad conjugadora de GA refuerza la idea del ácido gentísico (GA) como molécula señal complementaria al SA en la interacción planta-patógeno. Por otra parte, la proteína Twi1 (Tomato wound inducible), descrita en tomate como una posible glicosiltransferasa debido a sus características comunes con este grupo de proteínas, presenta inducción por SA y otros compuestos de naturaleza fenólica, además de herida e interacciones de tipo incompatible. Trabajos en los que se ha llevado a cabo la sobreexpresión o el silenciamiento de una GT han puesto de manifiesto cómo ello conlleva la aparición de resistencia o susceptibilidad frente a una infección patogénica. Por tanto, las GTs tienen un papel fundamental en la respuesta defensiva de la planta, modulando los niveles de moléculas que intervienen en dicha respuesta. Por otra parte, se han realizado estudios dirigidos a elucidar la implicación de compuestos del metabolismo secundario en la interacción de plantas de tomate con distintos patógenos. Ello ha permitido detectar cambios concretos de los niveles de un número determinado de metabolitos a lo largo de las infecciones, como son cuatro amidas derivadas del ácido hidroxicinámico (HCAAs) que se acumulan en plantas de tomate infectadas con la bacteria Pseudomonas syringae pv. tomato. Las HCAAs son un conjunto de metabolitos, pertenecientes al grupo de los fenilpropanoides, de bajo peso molecular y que se caracterizan por la presencia de nitrógeno en su estructura. En su ruta de biosíntesis participan diversos enzimas tales como la fenilalanina amonio liasa (PAL), la tirosina descarboxilasa (TYDC) o la tiramina hidroxicinamoil transferasa (THT). La acumulación en tomate de las cuatro amidas como consecuencia de la infección bacteriana va acompañada de la inducción del isoenzima THT1-3. La obtención de plantas transgénicas que sobreexpresen o silencien las proteínas GAGT, Twi1 y THT1-3 permitirá llevar a cabo ensayos de resistencia frente a infecciones patogénicas que contribuyan al conocimiento del sistema defensivo de las plantas, tanto en sus aspectos de señalización como en los referidos a componentes de la respuesta final de la planta. Al mismo tiempo, esta estrategia puede constituir, en sí misma, un medio de obtención de plantas más resistentes frente a ataques patogénicos de diversa naturaleza. / Campos Beneyto, L. (2014). Metabolitos secundarios de naturaleza fenólica: papel en la respuesta defensiva de plantas de tomate [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/44236
|
Page generated in 0.045 seconds