• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 17
  • 2
  • Tagged with
  • 46
  • 46
  • 21
  • 18
  • 17
  • 15
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Linear and Nonlinear Rogue Waves in Optical Systems / Vagues scélérates linéaire et non-linéaire dans les systèmes optiques

Toenger, Shanti 27 June 2016 (has links)
Ces travaux de thèse présentent l’étude des différentes classes d’effets linéaires et non-linéaires en optiquequi génèrent des événements extrêmes dont les propriétés sont analogues à celles des « vagues scélérates » destructrices qui apparaissent à la surface des océans. La thèse commence avec un bref aperçu de l’analogie physique entre la localisation d’onde dans les systèmes hydrodynamique et les systèmes optique, pour lesquels nous décrivons les mécanismes de génération de vagues scélérates linéaire et non-linéaire. Nous présentons ensuite quelques résultats numérique et expérimentaux de la génération de vagues scélérates dans un système optique linéaire dans le cas d’une propagation spatiale d’un champ optique qui présenteune phase aléatoire, où nous interprétons les résultats obtenus en terme de caustiques optiques localisées.Nous considérons ensuite les vagues scélérates obtenues dans des systèmes non-linéaires qui présentent une instabilité de modulation décrite par l’équation de Schrödinger non-linéaire (ESNL). Nous présentons une étude numérique détaillée comparant les caractéristiques spatio-temporelles des structures localisées obtenues dans les simulation numérique avec les différentes solutions analytiques obtenues à partir de l’ESNL.Deux études expérimentales d’instabilités de modulation sont ensuite effectuées. Dans la première, nous présentons des résultats expérimentaux qui étudient les propriétés d’instabilité de modulation en utilisant un système d’agrandissement temporel par lentille temporelle; dans la deuxième, nous rapportons des résultats expérimentaux sur les propriétés des instabilités de modulation dans le domaine fréquentiel en utilisant une technique de mesure spectrale en temps-réel. Cette dernière étude examine l’effet sur la bande spectrale et surla stabilité d’un faible champ perturbateur. Tous les résultats expérimentaux sont comparés avec la simulation d’ESNL et abordés en termes des propriétés qualitatives d’instabilité de modulation. Dans toutes ces études,différentes propriétés statistiques sont analysées en rapport avec l’apparition des vagues scélérates. / This thesis describes the study of several different classes of linear and nonlinear effects in optics that generatelarge amplitude extreme events with properties analogous to the destructive “rogue waves” on the surface of theocean. The thesis begins with a brief overview of the analogous physics of wave localisation in hydrodynamicand optical systems, where we describe linear and nonlinear rogue wave generating mechanisms in bothcases. We then present numerical and experimental results for rogue wave generation in a linear opticalsystem consisting of free space propagation of a spatial optical field with random phase. Computed statisticsbetween experiment and modelling are in good agreement, and we interpret the results obtained in termsof the properties of localised optical caustics. We then consider rogue waves in the nonlinear system ofmodulation instability described by the Nonlinear Schrodinger Equation (NLSE), and a detailed numericalstudy is presented comparing the spatio-temporal characteristics of localised structures seen from numericalsimulations with different known analytic solutions to the NLSE. Two experimental studies of modulationinstability are then reported. In the first, we present experimental results studying the properties of modulationinstability using a time-lens magnifier system; in the second, we report experimental results studying thefrequency-domain properties of modulation instability using real-time spectral measurements. The latter studyexamines the effect of a weak seed field on spectral bandwidth and stability. All experimental results arecompared with the NLSE simulations and discussed in terms of the qualitative properties of modulationinstability, in order to gain new insights into the complex dynamics associated with nonlinear pulse propagation.In all of these studies, different statistical properties are analised in relation to the emergence of rogue waves.
42

Sur certains systèmes hamiltoniens liés à l’équation de Szegő cubique / On certain Hamiltonian systems related to the cubic Szegő equation

Xu, Haiyan 14 September 2015 (has links)
Cette thèse est principalement consacrée à l’étude du comportement en temps long de solutions de certaines équations aux dérivées partielles hamiltoniennes, du type i∂_t u=X_H (u), en particulier l’existence globale, la croissance des normes de Sobolev, la diffusion et l’approximation par la dynamique résonante.Dans ce contexte, nous considérons d’abord une perturbation de l’équation de Szegő cubique par un potentiel linéaire, i∂_t u=∏ |u|² u+α∫ u,α∈R, (α-Szegő) où ∏▒ désigne le projecteur de Szegő sur les fréquences positives. Pour α=0, cette équation est l’équation de Szegő cubique, étudiée récemment par Gérard et Grellier comme modèle mathématique d’équation non linéaire et non dispersive. Pour l’équation (α–Szegő), nous établissons le caractère bien posé et la complète intégrabilité, et étudions la dynamique des valeurs singulières des opérateurs de Hankel associés. En outre, nous montrons les propriétés suivantes pour cette équation, sur une classe de sous–variétés invariantes de dimensions finies arbitrairement grandes : si α<0, toute trajectoire est relativement compacte, et toute norme de Sobolev est bornée le long de cette trajectoire. Siα>0, il existe des trajectoires le long desquelles toutes les normes de Sobolev de régularité plus grande que ½ tendent exponentiellement vers l’infini en temps.Dans une seconde partie, nous étudions un système mixte Schrödinger–ondes sur le cylinder (x,y)∈R×T , i∂_t U+∂_xx U-|D_y |U=|U|² U,(WS)En adaptant une idée de Hani–Pausader–Tzvetkov–Visciglia, nous établissons une théorie du scattering modifiée reliant les petites solutions de cette équation et les petites solutions de l’équation de Szegő cubique. En combinant cette théorie du scattering avec un résultat récent de Gérard–Grellier, nous en déduisons l’existence de solutions globales de (WS) qui sont non bornées dans l’espace L_x² H_y^s (R×T) pour tout s>½ . / The main purpose of this Ph.D. thesis is to study the long time behavior of solutionsto some Hamiltonian PDEs, i∂_t u=X_H (u), including global existence, growth of high Sobolev norms, scattering and long time approximation by resonant dynamics.In this context, at first we consider the Szegő equation on the circle S1 perturbed bya linear potential, i∂_t u=∏ |u|² u+α∫ u,α∈R, (α-Szegő) where ∏ is the projector onto the non-negative frequencies. For α=0, it turns out tobe the cubic Szegő equation, which was recently introduced by Gérard and Grellier as amathematical toy model of a non-linear totally non dispersive equation.We study the global well-posedness, the integrability and the dynamics of the singularvalues of the related Hankel operators of the α –Szegő equation. Moreover, we establishthe following properties for this equation on a class of invariant submanifolds, with anarbitrary large dimension. For α<0, any trajectory is relatively compact, and all theSobolev norms are bounded on it. For α>0, there exist trajectories on which everySobolev norm of regularity s>½ , exponentially tends to infinity in time.Second, we study the wave-guide Schrödinger equation posed on the spatial domain(x,y)∈R×T ,i∂_t U+∂_xx U-|D_y |U=|U|² U,(WS)Adapting an idea by Hani–Pausader–Tzvetkov–Visciglia, we establish a modified scattering theory between small solutions to this equation and small solutions to the cubic Szegő equation. Combining this scattering theory with a recent result by Gérard–Grellier, we infer existence of global solutions to (WS) which are unbounded in the space L_x^2 H_y^s (R×T) for every s>½ .
43

Étude de la dynamique plasma dans la filamentation laser induite dans les verres de silice en présence de rétrodiffusion Brillouin stimulée et dans les cristaux de KDP / Study of a dynamical plasma response in laser filamentation induced in silica glasses in presence of stimulated Brillouin scattering and in KDP crystals

Rolle, Jérémie 26 September 2014 (has links)
Dans cette thèse, nous étudions l’influence d’un plasma non-stationnaire produit par des impulsions laser en régime d’auto-focalisation. Cette auto-focalisation est couplée à des non-linéarités Brillouin pour des impulsions nanosecondes dans les verres de silice. Elle excite différents canaux d’ionisation dans les cristaux de KDP irradiées par des impulsions femtosecondes. Tout d’abord, nous dérivons les équations de propagation des ondes optiques laser et Stokes sujettes à la filamentation due à l’effet Kerr, la rétrodiffusion Brillouin et à la génération de plasma. Dans une deuxième partie, nous présentons des résultats numériques sur la propagation non-linéaire de faisceaux LIL. Ceux-ci révèlent l’importance de la distribution temporelle de l’impulsion pompe dans la compétition entre auto-compression Kerr et la rétrodiffusion Brillouin stimulée. Ces simulations préliminaires permettent de valider le système anti-Brillouin opté pour le LMJ sur la base de faisceaux millimétriques.Dans une troisième partie, nous présentons des résultats théoriques et numériques sur la filamentation d’impulsions nanosecondes opérant dans l’ultraviolet et l’infrarouge. L’influence d’un plasma inertiel sur la dynamique de couplage de deux ondes en contre-propagation est examinée. Dans une configuration à une onde, une analyse variationnelle reproduit les caractéristiques globales d’un équilibre quasi-stationnaire entre auto-compression Kerr et défocalisation plasma. Toutefois, cet équilibre cesse pour faire place à des instabilités modulationnelles induites par rétroaction du plasma sur l’onde de pompe. Nous montrons que des modulations de phase supprimant la rétrodiffusion Brillouin permettent d’inhiber ces instabilités plasma. La robustesse de ces modulations de phase est testée en présence d’un bruit aléatoire dans le profil de  l’impulsion laser.Enfin, nous étudions numériquement la dynamique non-linéaire d’impulsions femtosecondes se propageant dans la silice et le KDP. Premièrement, nous montrons que la présence de défauts impliquant moins de photons pour exciter un électron de la bande de valence à la bande de conduction promeut des intensités de filamentation plus élevées. Ensuite, nous comparons la dynamique de filamentation dans la silice avec celle dans un cristal KDP. Le modèle d’ionisation pour le KDP prend en compte la présence de défauts et la dynamique électrons-trous. Nous montrons que la dynamique de propagation dans la silice et le KDP présente des analogies remarquables pour des rapports de puissance incidente sur puissance critique équivalents.La conclusion nous permet de résumer les résultats originaux obtenus dans le cadre de cette thèse et d’en discuter des développements ultérieurs possibles. / In this thesis, we study the role of an inertial plasma reponse produced by laser pulses in self-focusing regime. Self-focusing is coupled with Brillouin nonlinearities for nanosecond pulses in silica glasses. For femtosecond pulses propagating in KDP crystals, self-focusing excites various ionization chanels. First of all, we derive the propagation equations for the pump and Stokes waves, subjected to filamentation due to optical Kerr effect, stimulated Brillouin scattering and plasma generation. In the second part, we present numerical results on the nonlinear propagation of LIL laser beams. These results show that temporal distribution of the pump pulse play a key role in the competition between self-focusing and stimulated Brillouin scattering. These preliminary results valide the anti-Brillouin system opted on the MegaJoule laser (LMJ) on the basis of milimetric-size laser beam.In a third part, we present numerical and theoretical results on the filamentation in fused silica of nanosecond light pulses operating in ultraviolet and infrared range. Emphasis is put on the action of a dynamical plasma reponse on two counterpropagating waves. For a single wave, we develop a variational analysis which reproduces global propagation features for a quasistationary balance between self-focusing and plasma defocusing. However, such a quasistionary balance ceases to clean up modulational instabilites induced by plasma retroaction on the pump wave. We show that phase modulations supress both simulated Brillouin scattering and plasma instabilities. The robustness of phase modulations is evaluated in presence of random fluctuations in the input pump pulse profile.Finally, we study numerically the nonlinear propagation of femtosecond pulses in fused silica and KDP. First, we show that the presence of defects involving less photons for exciting electrons from the valence band to the conduction band promotes higher filamentation intensity levels. Then, we compare the filamentation dynamic in silica and KDP crystal. The ionization model for KDP crystal takes into account the presence of defects and the electron-hole dynamics. We show that the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power self-focusing.The summary of this thesis recalls the original results obtained and discusses the possibility of future developments.
44

Systèmes quantiques à grand nombre de particules :<br />une perspective mathématique et numérique

Lewin, Mathieu 09 June 2009 (has links) (PDF)
Ce mémoire est consacré à l'étude mathématique de divers modèles variationnels permettant la description de systèmes quantiques, en particulier infinis. Les outils mathématiques utilisés sont ceux de l'analyse non linéaire, du calcul des variations, des équations aux dérivées partielles, de la théorie spectrale et du calcul scientifique. <br /><br />Une première partie contient quelques résultats pour des systèmes finis. Nous étudions des approximations de l'équation de Schrödinger pour N électrons dans une molécule ou un atome, puis le modèle de Hartree-Fock-Bogoliubov pour un système de fermions interagissant avec une force de type gravitationnelle.<br /><br />Dans une seconde partie nous proposons une nouvelle méthode pour démontrer l'existence de la limite thermodynamique pour des systèmes quantiques interagissant avec la force de Coulomb.<br /><br />Ensuite, nous construisons deux modèles de type Hartree-Fock pour des systèmes infinis. Le premier est un modèle relativiste, déduit de l'électrodynamique quantique, et qui permet de décrire le comportement d'électrons, couplés avec celui du vide de Dirac qui peut se polariser. Le second modèle décrit l'état d'un cristal non relativiste en présence d'un défaut chargé ; il est complété par une nouvelle approche numérique.<br /><br />La dernière partie du mémoire est consacrée au problème de pollution spectrale, un phénomène observé lorsque l'on cherche à calculer des valeurs propres au milieu du spectre essentiel, par exemple pour des opérateurs de Dirac ou de Schrödinger périodique.
45

Contrôle en temps optimal et nage à bas nombre de Reynolds

Lohéac, Jérôme 06 December 2012 (has links) (PDF)
Cette thèse est divisée en deux parties, le fil directeur étant la contrôlabilité en temps optimal. Dans la première partie, après un rappel du principe du maximum de Pontryagin dans le cas des systèmes de dimension finie, nous mettrons en œuvre ce principe sur le cas d'un intégrateur non-holonome connu sous le nom de système de Brockett pour lequel nous imposons des contraintes sur l'état. La difficulté de cette étude provient du fait que l'on considère un problème de contrôle avec des contraintes sur l'état. Après cet exemple, nous nous intéressons à une extension du principe du maximum de Pontryagin au cas des systèmes de dimension infinie. Plus précisément, l'extension que nous considérons s'applique au cas de systèmes exactement contrôlables en tout temps. Typiquement, ce résultat s'applique à l'équation de Schrödinger avec contrôle interne. Pour de tels systèmes, sous une condition de contrôlabilité approchée, depuis un ensemble de temps non négligeable, nous montrons l'existence d'un contrôle bang-bang. Dans la seconde partie, nous étudions le problème de la nage à bas nombre de Reynolds. Une modélisation physique convenable nous permet de le formaliser comme un problème de contrôle. Nous obtenons alors un résultat de contrôlabilité sur ce problème. Plus précisément, nous montrons que quelque soit la forme du nageur, celui-ci peut se déformer légèrement pour suivre une trajectoire imposée. Nous étudions ensuite le cas d'un nageur à symétrie axiale. Les résultats de la première partie permettent alors la recherche d'un contrôle en temps optimal.
46

Etudes expérimentales et numériques des instabilités non-linéaires et des vagues scélérates optiques / Experimental and numerical studies of nonlinear instabilities and optical rogue waves

Wetzel, Benjamin 06 December 2012 (has links)
Ces travaux de thèse rapportent l’étude des instabilités non-linéaires et des évènements extrêmesse développant lors de la propagation guidée d’un champ électromagnétique au sein de fibresoptiques. Après un succinct rappel des divers processus linéaires et non-linéaires menant à lagénération de super continuum optique, nous montrons que le spectre de celui-ci peut présenterde larges fluctuations, incluant la formation d’événements extrêmes, dont les propriétés statistiqueset l’analogie avec les vagues scélérates hydrodynamiques sont abordées en détail. Nous présentonsune preuve de principe de l’application de ces fluctuations spectrales à la génération de nombres etde marches aléatoires et identifions le phénomène d’instabilité de modulation, ayant lieu lors de laphase initiale d’expansion spectrale du super continuum, comme principale contribution à la formationd’événements extrêmes. Ce mécanisme est étudié numériquement et analytiquement, en considérantune catégorie de solutions exactes de l’équation de Schrödinger non-linéaire présentant descaractéristiques de localisations singulières. Les résultats obtenus sont vérifiés expérimentalement,notamment grâce à un système de caractérisation spectrale en temps réel et à l’utilisation conjointede métriques statistiques innovantes (ex : cartographie de corrélations spectrales). L’excellent accordentre simulations et expériences a permis de valider les prédictions théoriques et d’accéder àune meilleure compréhension des dynamiques complexes inhérentes à la propagation non-linéaired’impulsions optiques. / This thesis reports the study of nonlinear instabilities and extreme events occurring during the guidedpropagation of an electromagnetic field into optical fibers. After a short overview of the various linearand nonlinear processes leading to optical supercontinuum generation, we show that its spectrumcan exhibit large fluctuations, including the formation of extreme events, whose statistical propertiesas well as hydrodynamic rogue waves analogy are studied in detail. We provide a proof of principle ofusing these spectral fluctuations for random number and random walk generation and identify modulationinstability, associated with the onset phase of supercontinuum spectral broadening, as themain phenomenon leading to extreme event formation. This mechanism is studied both numericallyand analytically, considering a class of exact solutions of nonlinear Schrödinger equation which exhibitsingular localization characteristics. The results are experimentally verified, especially througha real-time spectral characterization system along with the use of innovative statistical metrics (e.g.spectral correlation maps). The excellent agreement between simulations and experiments allowedus to validate the theoretical predictions and get further insight into the complex dynamics associatedto nonlinear optical pulse propagation.

Page generated in 0.1354 seconds