Spelling suggestions: "subject:"équations""
511 |
Optimisation de Lois de Gestion Énergétiques des Véhicules HybridesGranato, Giovanni 10 December 2012 (has links) (PDF)
L'objectif de ce travail consiste à appliquer des techniques de contrôle optimal pour améliorer la performance des lois de gestion d'énergie. Plus précisément, les techniques étudiées sont les solutions de viscosité de l'équation de Hamilton-Jacobi, des méthodes level-set pour l'étude de l'atteignabilité, la programmation dynamique stochastique, la programmation dynamique stochastique duale et les contraintes en probabilité. En premier lieu, ce document débute avec la présentation des outils techniques et modèles nécessaires à l'étude de l'optimisation des lois de gestion d'énergie au sein des véhicules hybrides. En deuxième lieu, nous regardons la synthèse des lois de gestion d'énergie en prenant compte des incertitudes dans le profil de vitesse du véhicule. Dans un premier moment, cette étude porte sur l'utilisation de la programmation dynamique stochastique. Dans un second moment, la programmation dynamique stochastique duale est analysée. Ensuite, nous introduisons une formulation du problème de contrôle optimal avec des contraintes en probabilités, visant la synthèse de lois plus flexibles. En troisième lieu, des résultats théoriques sur l'étude de l'atteignabilité des systèmes hybrides sont démontrés. L'ensemble des états atteignables est caractérisé par une fonction valeur. Nous démontrons ensuite que cette fonction valeur est l'unique solution d'un système d'inégalités quasi-variationnelles dans le sens de la viscosité. Aussi, nous montrons la convergence d'une classe de schémas numériques permettant le calcul de cette fonction valeur. Visant à approfondir l'étude sur l'atteignabilité, nous nous intéressons à une formulation de la dynamique hybride en temps discret, ce qui amène à l'utilisation d'un algorithme directement basé sur la programmation dynamique pour caractériser la fonction valeur. Finalement, nous
|
512 |
Modélisation d'un phénomène pluvieux local et analyse de son transfert vers la nappe phréatiqueGolder, Jacques 24 July 2013 (has links) (PDF)
Dans le cadre des recherches de la qualité des ressources en eau, l'étude du processus de transfert de masse du sol vers la nappe phréatique constitue un élément primordial pour la compréhension de la pollution de cette dernière. En effet, les éléments polluants solubles à la surface (produits liés aux activités humaines tels engrais, pesticides...) peuvent transiter vers la nappe à travers le milieu poreux qu'est le sol. Ce scénario de transfert de pollution repose sur deux phénomènes : la pluie qui génère la masse d'eau à la surface et la dispersion de celle-ci à travers le milieu poreux. La dispersion de masse dans un milieu poreux naturel comme le sol forme un sujet de recherche vaste et difficile aussi bien au plan expérimental que théorique. Sa modélisation constitue une préoccupation du laboratoire EMMAH, en particulier dans le cadre du projet Sol Virtuel dans lequel un modèle de transfert (modèle PASTIS) a été développé. Le couplage de ce modèle de transfert avec en entrée un modèle décrivant la dynamique aléatoire de la pluie est un des objectifs de la présente thèse. Ce travail de thèse aborde cet objectif en s'appuyant d'une part sur des résultats d'observations expérimentaux et d'autre part sur de la modélisation inspirée par l'analyse des données d'observation. La première partie du travail est consacrée à l'élaboration d'un modèle stochastique de pluie. Le choix et la nature du modèle sont basés sur les caractéristiques obtenus à partir de l'analyse de données de hauteur de pluie recueillies sur 40 ans (1968-2008) sur le Centre de Recherche de l'INRA d'Avignon. Pour cela, la représentation cumulée des précipitations sera assimilée à une marche aléatoire dans laquelle les sauts et les temps d'attente entre les sauts sont respectivement les amplitudes et les durées aléatoires entre deux occurrences d'événements de pluie. Ainsi, la loi de probabilité des sauts (loi log-normale) et celle des temps d'attente entre les sauts (loi alpha-stable) sont obtenus en analysant les lois de probabilité des amplitudes et des occurrences des événements de pluie. Nous montrons alors que ce modèle de marche aléatoire tend vers un mouvement brownien géométrique subordonné en temps (quand les pas d'espace et de temps de la marche tendent simultanément vers zéro tout en gardant un rapport constant) dont la loi de densité de probabilité est régie par une équation de Fokker Planck fractionnaire (FFPE). Deux approches sont ensuite utilisées pour la mise en œuvre du modèle. La première approche est de type stochastique et repose sur le lien existant entre le processus stochastique issu de l'équation différentielle d'Itô et la FFPE. La deuxième approche utilise une résolution numérique directe par discrétisation de la FFPE. Conformément à l'objectif principal de la thèse, la seconde partie du travail est consacrée à l'analyse de la contribution de la pluie aux fluctuations de la nappe phréatique. Cette analyse est faite sur la base de deux relevés simultanées d'observations de hauteurs de pluie et de la nappe phréatique sur 14 mois (février 2005-mars 2006). Une étude statistique des liens entre les signaux de pluie et de fluctuations de la nappe est menée comme suit : Les données de variations de hauteur de nappe sont analysées et traitées pour isoler les fluctuations cohérentes avec les événements de pluie. Par ailleurs, afin de tenir compte de la dispersion de masse dans le sol, le transport de la masse d'eau pluviale dans le sol sera modélisé par un code de calcul de transfert (modèle PASTIS) auquel nous appliquons en entrée les données de hauteurs de pluie mesurées. Les résultats du modèle permettent entre autre d'estimer l'état hydrique du sol à une profondeur donnée (ici fixée à 1.6m). Une étude de la corrélation entre cet état hydrique et les fluctuations de la nappe sera ensuite effectuée en complément à celle décrite ci-dessus pour illustrer la possibilité de modéliser l'impact de la pluie sur les fluctuations de la nappe
|
513 |
Dynamique et contrôle de systèmes quantiques ouvertsChenel, Aurélie 16 July 2014 (has links) (PDF)
L'étude des effets quantiques, comme les cohérences quantiques, et leur exploitation en contrôle par impulsion laser constituent encore un défi numérique pour les systèmes de grande taille. Pour réduire la dimensionnalité du problème, la dynamique dissipative se focalise sur un sous-espace quantique dénommé 'système', qui inclut les degrés de liberté les plus importants. Le système est couplé à un bain thermique d'oscillateurs harmoniques. L'outil essentiel de la dynamique dissipative est la densité spectrale du bain, qui contient toutes les informations sur le bain et sur l'interaction entre le système et le bain. Plusieurs stratégies complémentaires existent. Nous adoptons une équation maîtresse quantique non-markovienne pour décrire l'évolution de la matrice densité associée au système. Cette approche, développée par C. Meier et D.J. Tannor, est perturbative en fonction du couplage entre le système et le bain, mais pas en fonction de l'interaction avec un champ laser. Le but est de confronter cette méthodologie à des systèmes réalistes calibrés par des calculs de structure électronique ab initio. Une première étude porte sur la modélisation du transfert d'électron ultrarapide à une hétérojonction oligothiophène-fullerène, présente dans des cellules photovoltaïques organiques. La description du problème en fonction d'une coordonnée brownienne permet de contourner la limitation du régime perturbatif. Le transfert de charge est plus rapide mais moins complet lorsque la distance R entre les fragments oligothiophène et fullerène augmente. La méthode de dynamique quantique décrite ci-dessus est ensuite combinée à la Théorie du Contrôle Optimal (OCT), et appliquée au contrôle d'une isomérisation, le réarrangement de Cope, dans le contexte des réactions de Diels-Alder. La prise en compte de la dissipation dès l'étape d'optimisation du champ permet à l'algorithme de contrôle de contrer la décohérence induite par l'environnement et conduit à un meilleur rendement. La comparaison de modèles à une et deux dimensions montre que le contrôle trouve un mécanisme adapté au modèle utilisé. En deux dimensions, il agit activement sur les deux coordonnées du modèle. En une dimension, le décohérence est minimisée par une accélération du passage par les états délocalisés situés au-dessus de la barrière de potentiel.
|
514 |
La dynamique des difféomorphismes du cercle selon le point de vue de la mesureTriestino, Michele 21 May 2014 (has links) (PDF)
Les travaux de ma thèse s'articulent en trois parties distinctes.Dans la première partie j'étudie les mesures de Malliavin-Shavguldize sur les difféomorphismes du cercle et de l'intervalle. Il s'agit de mesures de type " Haar " pour ces groupes de dimension infinie : elles furent introduites il a une vingtaine d'années pour permettre une étude de leur théorie des représentations. Un premier chapitre est dédié à recueillir les résultats présents dans la littérature et et les représenter dans une forme plus étendue, avec un regard particulier sur les propriétés de quasi-invariance de ces mesures. Ensuite j'étudie de problèmes de nature plus dynamique : quelle est la dynamique qu'on doit s'attendre d'un difféomorphisme choisi uniformément par rapport à une mesure de Malliavin-Shavguldize ? Je démontre en particulier qu'il y a une forte présence des difféomorphismes de type Morse-Smale.La partie suivante vient de mon premier travail publié, obtenu en collaboration avec Andrés Navas. Inspirés d'un théorème récent de Avila et Kocsard sur l'unicité des distributions invariantes par un difféomorphisme lisse minimal du cercle, nous analysons le même problème en régularité faible, avec des argument plus géométriques.La dernière partie est constituée des résultats récemment obtenus avec Mikhail Khristoforov et Victor Kleptsyn. Nous abordons les problèmes reliés à la gravité quantique de Liouville en étudiant des espaces auto-similaires qui sont la limite de graphes finis. Nous démontrons qu'il est possible de trouver des distances aléatoires non-triviales sur ces espaces qui sont compatibles avec la structure auto-similaire.
|
515 |
Modélisations mathématiques de l'hématopoïèse et des maladies sanguinesDemin, Ivan 11 December 2009 (has links) (PDF)
Cette thèse est consacrée à la modélisation mathématique de l'hématopoïèse et des maladies sanguines. Plusieurs modèles traitant d'aspects différents et complémentaires de l'hématopoïèse y sont étudiés.Tout d'abord, un modèle multi-échelle de l'érythropoïèse est analysé, dans lequel sont décrits à la fois le réseau intracellulaire, qui détermine le comportement individuel des cellules, et la dynamique des populations de cellules. En utilisant des données expérimentales sur les souris, nous évaluons les rôles des divers mécanismes de retro-contrôle en réponse aux situations de stress.Ensuite, nous tenons compte de la distribution spatiale des cellules dans la moelle osseuse, question qui n'avait pas été étudiée auparavant. Nous décrivons l'hématopoïèse normale à l'aide d'un système d'équations de réaction-diffusion-convection et nous démontrons l'existence d'une distribution stationnaire des cellules. Puis, nous introduisons dans le modèle les cellules malignes. Pour certaines valeurs des paramètres, la solution "disease-free" devient instable et une autre solution, qui correspond à la leucémie, apparaît. Cela mène à la formation d'une tumeur qui se propage dans la moelle osseuse comme une onde progressive. La vitesse de cette propagation est étudiée analytiquement et numériquement. Les cellules de la moelle osseuse échangent des signaux qui régulent le comportement cellulaire. Nous étudions ensuite une équation integro-différentielle qui décrit la communication cellulaire et nous prouvons l'existence d'une solution du type onde progressive en utilisant la théorie du degré topologique et la méthode de Leray et Schauder. L'approche multi-agent est utilisée afin d'étudier la distribution des différents types de cellules dans la moelle osseuse.Finalement, nous étudions un modèle de type "Physiologically Based Pharmacokinetics-Pharmacodynamics" du traitement de la leucémie par l'AraC. L'AraC agit comme chimiothérapie et induit l'apoptose de toutes les cellules proliférantes, saines et malignes. La pharmacocinétique donne accès à la concentration intracellulaire d'AraC. Cette dernière, à son tour, détermine la dynamique des populations cellulaires et, par conséquent, l'efficacité de différents protocoles de traitement.
|
516 |
Contrôle non destructif par courants de Foucault de milieux ferromagnétiques : De l'expérience au modèle d'interactionZorni, Chiara 28 February 2012 (has links) (PDF)
La problématique étudiée est le contrôle non destructif par courants de Foucault de matériaux ferromagnétiques à l'aide d'un capteur à magnétorésistance géante (GMR). Durant ces travaux deux aspects complémentaires ont été abordés : l'un concerne la mesure expérimentale pour essayer de quantifier et de s'affranchir du bruit de structure et du champ magnétique rémanent, l'autre le développement d'un modèle numérique d'interaction. En ce qui concerne la partie expérimentale plusieurs études avec un capteur GMR qui présente un intérêt particulier en raison de sa bonne sensibilité à basses fréquences, de sa dynamique et de la relative simplicité de mise en œuvre ont été conduites et ont permis d'identifier et quantifier les phénomènes d'artefacts spécifiques aux matériaux ferromagnétiques : le bruit de structure et le champ magnétique rémanent. Une solution basée sur une combinaison linéaire des données expérimentales obtenues à plusieurs fréquences est appliquée pour atténuer le bruit dû à la structure du matériau. Le champ magnétique rémanent a été analysé expérimentalement et un circuit d'asservissement permettant de fixer un point de polarisation dans la zone de fonctionnement linéaire de la GMR et ainsi d'atténuer les perturbations dues aux champs magnétiques rémanents est mis en place. En parallèle et dans l'optique de développer des outils de simulation permettant de mieux comprendre les phénomènes physiques et ainsi d'optimiser les procédés de contrôle, un modèle numérique d'interaction simulant le cas du contrôle d'une pièce plane ferromagnétique d'une ou plusieurs couches pouvant contenir un ou plusieurs défauts est développé. Il étend un modèle déjà existant dans un cas non-ferromagnétique déjà intégré dans la plateforme de simulation CIVA développé par le CEA-LIST et permettant la simulation du Contrôle Non Destructif par Courants de Foucault. Il est basé sur une méthode d'intégrales de volume (VIM) et l'utilisation des tenseurs ou dyades de Green. La solution est obtenue après la discrétisation du volume de calcul et l'application d'une variante de Galerkin de la Méthode des Moments (MoM). La réponse de la sonde est ensuite calculée en appliquant le théorème de réciprocité de Lorentz. Des collaborations avec deux laboratoires universitaires (le Laboratoire de Génie Électrique de Paris (LGEP) et l'Université de Cassino (Italie)) ont permis de comparer les résultats issus des trois différents modèles sur un cas de la littérature. Les résultats se sont révélés satisfaisants et plusieurs études de convergence ont permis d'analyser la stabilité du modèle.
|
517 |
Analyse complexe et problèmes de Dirichlet dans le plan : équation de Weinstein et autres conductivités non-bornéesChaabi, Slah 02 December 2013 (has links) (PDF)
L'équation de Weinstein á coefficients complexes est une équation régissant les Potentiels á Symétrie Axiale (PSA) qui s'écrit $L_m[u]=\Delta u+\left(m/x\right)\d_x u =0$, oú $m\in\C$. Cette équation intervient notamment pour la modélisation du bord du plasma dans un Tokamak pour $m=-1$, ou encore elle est, lorsque $m=1$, appelée équation de Ernst linéarisée (équation permettant de donner explicitement des solutions aux équations d'Einstein). Ici, on généralise des résultats connus pour $m\in \R$ au cas $m\in\C$ (on donne des expressions explicites de solutions fondamentales aux opérateurs de Weinstein et leurs estimations au voisinage des singularités, puis on démontre une formule de Green pour les PSA dans le demi-plan droit $\H^+$ pour Re $m< 1$). On prouve un nouveau théoréme de décomposition des PSA dans des domaines annulaires quelconques pour $m\in\C$ et dans une géométrie annulaire particuliére faisant intervenir les coordonnées bipolaires, on prouve toujours pour $m\in\C$ qu'une famille de solutions des PSA en termes de fonctions de Legendre Associées de premiére et seconde espéce forme une famille compléte (par une méthode de quasi-séparabilité des variables et par une analyse de Fourier) permettant d'exprimer les PSA sous forme de série et lorsque $m\in \R$, on montre que cette famille est même une base de Riesz dans certains anneaux á bord circulaire non concentrique. Dans une deuxiéme partie, par une méthode qui est due á A. S. Fokas, on donne, sous forme intégrale explicite, des formules des PSA dans un domaine circulaire du demi-plan droit $\H^+$, dans le cas oú le paramétre $m$ est un entier relatif. Ces représentations sont obtenues par la résolution d'un probléme de Riemann-Hilbert sur le plan complexe ou sur une surface de Riemann á deux feuillets selon la parité du coefficient $m$. Ces formules font intervenir de façon explicites les données Dirichlet et Neumann des PSA. On montre aussi que cette méthode s'applique á tous les domaines simlement connexe de $\H^+$ á bord régulier. Dans la derniére partie, on étudie une classe de fonctions qui englobe les PSA, ce sont les fonctions pseudo-holomorphes, {\it i. e.} les solutions de l'équation $\bar\d w=\alpha\overline{w}$. avec $\alpha\in L^r$, $2\leq r<\infty$. Un résultat qui semble être le tout premier de son genre a été obtenu, c'est une extension de la régularité du principe de similarité (décomposition des fonction pseudo-holomorphe sous la forme $e^s F$ sous certaines hypothéses de régularités et oú $F$ est une fonction holomorphe) et une réciproque de ce principe qui conduit á un paramétrage analytique de cette classe de fonctions dans le cas critique $r=2$. Puis en utilisant la connexion entre les fonctions pseudo-holomorphes et les solutions de l'équation de Beltrami conjuguée, on résoud un probléme de Dirichlet á données $L^p$ pondérées sur des domaines lisses pour des équations du type conductivité á coefficient dont le log appartient á l'espace de Sobolev $W^{1,2}$.
|
518 |
Construction d'un montage de condensation de Bose--Einstein de rubidium et étude théorique d'un superfluide en rotation dans un anneauLiennard, Thomas 09 December 2011 (has links) (PDF)
Cette thèse décrit la construction d'une nouvelle expérience de condensation de Bose-Einstein visant à obtenir un condensat de rubidium 87 et à le confiner dans un piège en anneau. Une première partie est consacrée à la description du montage. Le design de l'enceinte à vide est présenté, ainsi que le système laser qui comporte une nouvelle source basée sur le doublement de fréquence d'un laser télécom. Le refroidissement des atomes dans ce montage se fait en deux parties. Un piège magnéto optique 3D est chargé par un piège magnéto-optique 2D dans une première partie de l'enceinte, puis les atomes sont transférés dans une petite cellule de verre dans laquelle a lieu le refroidissement évaporatif et la condensation. L'étape de transfert est assurée par le transport mécanique des bobines qui génèrent le champ magnétique de piégeage, et qui sont montées sur une platine de translation motorisée. Le piège final est un piège magnétique quadrupolaire bouché par un faisceau laser à 532~nm. Le montage permet d'obtenir $2\times 10^5$ atomes de rubidium dans un condensat pur en une trentaine de secondes. La seconde partie traite de l'étude théorique d'un superfluide dans un anneau 2D au moyen de simulations numériques. On y calcule d'abord la vitesse critique de rotation par l'étude du spectre des excitations de Bogolyubov du superfluide dans l'anneau, puis on utilise une simulation de l'équation de Gross-Pitaevskii pour étudier l'établissement d'un courant permanent au moyen d'un potentiel en rotation, et la stabilité d'un tel courant en présence d'une barrière de potentiel.
|
519 |
CONTRÔLE DU PROFIL DE FACTEUR DE SECURITE DANS LES PLASMAS DE TOKAMAK EN DIMENSION INFINIEGaye, Oumar 04 December 2012 (has links) (PDF)
Les besoins énergétiques croissants de la population mondiale requièrent le développement, la maîtrise et la fourniture de nouvelles formes d'énergie. Dans ce contexte, la fusion nucléaire est une piste de recherche extrêmement prometteuse. Le projet mondial ITER est destiné à démontrer la faisabilité scientifique et technique de la fusion nucléaire comme nouvelle source d'énergie. Un des nombreux verrous tient à la maîtrise de la distribution spatiale du profil de courant dans les plasmas de tokamak, paramètre clé pour la stabilité et la performance des expériences. L'évolution spatiotemporelle de ce courant est décrite par un ensemble d'équations aux dérivées partielles non linéaires. Ce document traite de la stabilisation par un contrôle robuste de la distribution spatiale du profil de courant en dimension infinie. Deux approches sont proposées : la première s'inspire d'une approche de type mode glissant et la seconde (de type proportionnelle et proportionnelle intégrale) est basée sur les fonctions de Lyapunov en dimension infinie. La conception des lois de contrôle est basée sur l'équation 1D de la diffusion résistive du flux magnétique. Les lois de contrôle sont calculées en dimension infinie sans discrétisation spatiale préalables
|
520 |
ÉQUATION DES ONDES SUR LES ESPACES SYMÉTRIQUES RIEMANNIENS DE TYPE NON COMPACT.Hassani, Ali 06 June 2011 (has links) (PDF)
Ce mémoire porte sur l'étude des équations d'évolution sur des variétés à coubure non nulle, plus particulièrement l'équation des ondes sur les espaces symétriques riemanniens de type non compact. Des propriétés de dispersion des solutions du problème de Cauchy homogène sont démontrées. Ces propriétés sont ensuite utilisées pour établir des estimations dites estimations de Strichartz. L'examen de ces estimées permet de déduire que le problème de Cauchy non linéaire avec des non-linéarités de type puissance est globalement bien posé pour des données initiales petites et localement bien posé pour des données arbitraires. Après un chapitre introductif dédié aux définitions, propriétés algébriques et géométriques des espaces symétriques et à quelques aspects élémentaires d'analyse harmonique sphérique sur ces espaces, un article est présenté : Wave equation on Riemannian symmetric spaces. Cet article contient nos résultats principaux. Dans le dernier chapitre nous présentons en détail deux problèmes ouverts qui prolongent nos travaux. Il s'agit respectivement d'établir le lien entre le comportement asymptotique des estimées et les orbites nilpotentes, et l'étude de l'équation des ondes pour les formes différentielles sur les espaces symétriques.
|
Page generated in 0.2962 seconds