Spelling suggestions: "subject:"lactoglobulin"" "subject:"blactoglobulin""
1 |
A dairy-based beverage development by alpha-lactalbumin/beta-lactoglobulin ratio adjustment for dysphagia patientsWei, Ting January 1900 (has links)
Master of Science / Department of Food Science / Karen A. Schmidt / People who suffer from swallowing disorders are diagnosed with dyphasgia. The beverage for the dyphagia patients should have the apparent viscosity in the range of nectar-like (51 to 350 mPa•s) or honey-like (351 to 1750 mPa•s). Due to the swallowing problems, dysphagia patients usually consume beverages slowly. Thus, the apparent viscosity of beverage for such patients should be high enough to be in the suitable range during the entire time of consumption.
Three ratios of α-lactalbumin (α-la)/β-lactoglobulin (β-lg) (3:8, 1:1 and 8:3) were used to prepare the milk systems. These ratio adjusted milk systems were either processed at 70, 80, and 90ºC for 30 min or at 25ºC, and cooled to 25 ± 1ºC. After the process was completed, the milk systems were set quiescently 120 min at 25 ±1ºC. Physical and chemical properties were assessed at various time. For the milk systems at 0 min, the apparent viscosity increased in all 90°C processed-samples, and the increase was in the order of 8:3 (15.96%), 1:1 (6.38%) and 3:8 (2.11%) compared with the 25ºC samples at each ratio. When the milk systems set for 120 min, apparent viscosity increased slightly by 3.7%.
The maximum apparent viscosity was 2.18 mPa•s, which was less than nectar-like. Therefore, xanthan gum was added at 0.15 w/w % to enhance rheological properties of the milk systems. α-La/β-lg ratio adjusted milk systems either with or without xanthan gum were prepared, and processed at 90ºC or 25ºC, and cooled to 25 ± 1ºC. Apparent viscosity increased by 48.61 and 89.61% in 3:8 and 8:3 milk systems, respectively for those at 0.15% xanthan gum concentration and processed at 90ºC compared with at 25ºC. Apparent viscosity of 8:3 milk systems at xanthan gum concentration of 0.15% processed at 90°C was 58.7 ± 2.12 mPa•s which was within the nectar-like range. When the samples were set for 120 min, no changes were found in the apparent viscosity of the milk systems. If the rheological properties of the milk systems can be controlled by ingredients interactions, this can be used to develop nutritious products with different forms for dysphagia patients.
|
2 |
Fate of β-Lactoglobulin, α-Lactalbumin, and Casein Proteins in Ultrafiltered Concentrated Milk after Ultra-high Temperature ProcessingAlleyne, Mark Christopher 01 May 1994 (has links)
The problem of age gelation in ultra-high temperature (U1IT) sterilized milk retentate (ultrafiltered 3x concentrated) is investigated in this work. Transmission electron microscopy (1EM), utilizing the microcube encapsulation technique and protocols for immunolocalization of milk proteins, provides insight into the phenomenon of age gelation ofUHT-sterilized, ultrafiltered (UF) milk retentate. Primary antibodies (specific for the native as well as the complexed forms of milk proteins) and secondary antibodies (conjugated to gold probes) are used to elucidate the positions of the milk proteins in various samples of milk from the stage of milking through UHT sterilization and storage for 12 months, by which time gelation had occurred. The movement of the milk proteins is charted and these data are used to determine the role of the proteins in age gelation of UHT-sterilized UF milk retentate.
Heat-denatured β-lactoglobulin and α-lactalbumin form complexes within the serum as well as with the casein components of the micelles. UHT sterilization not only denatures β-lactoglobulin and α-lactalbumin, but catalyzes the reaction of these whey proteins and K-casein, leading to the successful formation of the complex. Complexing of β-lactoglobulin and K-casein competitively weakens the complex of K-casein to other casein fractions of the micelle. This leads to migration of K-casein from the micelle to the serum, compromising the role of K-casein in stabilizing the casein proteins within the micellar moiety. The time-dependent loss of K-casein from the micelle would expose the calcium-insoluble micellar αs1-casein and β-casein to the serum calcium. Subsequent to this, some αs1-casein and β-casein are also released from the micelles, and gelation of the milk occurs. No information was obtained on location of αs2-casein. The release of K-casein from the micelles thus apparently represents the critical factor in the phenomenon of age gelation in UHT-sterilized milk concentrates.
|
3 |
Monitoring Heat-Induced Conformational Changes and Binding of Milk Fat Globule Membrane and β-lactoglobulin using Quartz Crystal Microbalance with DissipationFishel, Simone 22 December 2022 (has links)
No description available.
|
4 |
B- laktoglobulino geno polimorfizmas vietinėse Lietuvos avių veislėse / Genetic polymorphism of β-lactoglobulin in Lithuanian Native sheepVagonis, Gediminas 13 April 2005 (has links)
The aim of the present study was to describe the genetic polymorphism of the -LG milk protein locus in the Lithuanian Blackface sheep breed obtained using isoelectric focusing (IEF) method and in the Lithuanian Native Coarse wool sheep – using PCR-RFLP method.
The results of study as follows: in Lithuanian Blackface sheep two genetic variants A and B with allele frequency of A=0.52 and B=0.48 were identified. The most frequent genotype in Lithuanian Blackface breed, detected in 66.7 % of studied individuals, was heterozygous genotype AB. Homozygous genotypes AA and BB were observed at frequencies of 19.0 % and 14.3 %, respectively. In Lithuanian Native Coarse wool sheep two genetic variants A and B with allele frequency of A=0.69 and B=0.31 were identified. The BB genotype was not frequent (7.8 %) in Lithuanian Native Coarse wool breed. The genotypes AA and AB were observed at frequency of 46.1 %. Mean observed heterozygosity value (Hobs=0.511) in Lithuanian Blackface sheep was slightly lower than mean expected heterozygosity (Hexp=0.667). In Lithuanian Native Coarse wool sheep mean expected heterozygosity value (Hobs=0.461) was similar to the mean observed heterozygosity (Hexp=0.434). The deviation from Hardy-Weinberg equilibrium was not detected in any of those breeds.
Conclusions: the detected high frequency of genotype AB in meat-wool type Lithuanian Blackface and Lithuanian Native Coarse wool sheep might be in agreement with the observations made by Bocharev. Since the... [to full text]
|
5 |
Volatile Sulphur Compounds in UHT MilkAl-Attabi, Zahir Unknown Date (has links)
Heating milk to high temperatures such as 140 ºC, as used in ultra high temperature (UHT) processing, causes physical and chemical changes in the milk. The production of a cooked flavour is a major change which reduces consumer acceptance of the UHT milk. It has been correlated with the formation of volatile sulphur compounds (VSCs) that result from milk proteins, principally the whey proteins β-lactoglobulin, containing the the sulphur amino acids cystine, cysteine and methionine. The VSCs in milk, whose concentrations are in the parts per billion to parts per million range, are highly reactive, easily oxidised, and sensitive to heat during thermal processing and analysis; this makes them a challenge to analyse. A sensitive method based on gas chromatography with pulsed flame photometric detection coupled with headspace sampling by solid phase microextraction (SPME/GC/PFPD) was developed to detect these compounds in commercial UHT milk and to investigate their production and disappearance during heating and storage. The SPME/GC/PFPD procedure was optimised using different extraction time (15 min, 30 min, & 60 min) – temperature (30 oC, 45 oC & 60 oC) combinations with CAR/PDMS fibre to obtain maximum sensitivity. A short extraction time (15 min) at low temperature (30 oC) was chosen to provide high sensitivity for detecting all VSCs in UHT milk without introducing artefactual VSCs. The extraction method and GC run time (16 min) make this method simple and fast. Nine VSCs were detected in commercial indirectly processed UHT milk, skim and whole. These are hydrogen sulphide (H2S), carbonyl sulphide (COS), methanethiol (MeSH), dimethyl sulphide (DMS), carbon disulphide (CS2), dimethyl disulphide (DMDS), dimethyl sulphoxide (DMSO), dimethyl sulphone (Me2SO2) and dimethyl trisulphide (DMTS). An additional unknown compound was detected but could not be identified by GC/MS because its concentration was below the detection limit of the MS detector. The concentrations of H2S, DMS and DMTS were higher than their threshold values indicating their importance in milk flavour, especially cooked flavour. Several attempts have been made to reduce the cooked flavour in UHT milk. In the current research, the use of hydrogen peroxide (H2O2) to oxidise the VSCs and thereby reduce cooked flavour was investigated. H2O2 is used as a milk preservative and is generally recognised as safe (GRAS) in USA. Several concentrations of H2O2 (0.001%, 0.005%, 0.01%, 0.02% & 0.03%) were added to milk to assess its effects on VSCs and on whey proteins denaturation in UHT milk. H2O2 effectively reduced the concentration of all VSCs, except DMDS which was increased, presumably by oxidation of MeSH. H2S was completely oxidised or reduced below its threshold value. Low concentrations of H2O2 (0.001% & 0.005%) had no effect on, or decreased, the extent of denaturation of β-lactoglobulin when added after or before processing, respectively. Some UHT plants use severe heating conditions, leading to high levels of denaturation of whey proteins, particularly β-Lg, the main source of the VSCs in milk. Correlations between heat severity, β-Lg denaturation and individual VSC generation were investigated in milk batch-heated at 80 oC and 90 oC, and UHT milk processed at 120-150 oC. In accordance with previous reports, β-Lg was more heat-sensitive than α-La. Only five VSCs were detected. The concentrations of H2S and MeSH correlated well with denaturation of β-Lg and α-La. DMS concentration correlated well with β-Lg in UHT milk but not in the batch-heated milk. CS2 did not show a good correlation with heat intensity and appeared to plateau out after a certain level of heating. Conversely, COS and MeSH seemed to require a certain minimum amount of heat before generation commenced; this corresponded to denaturation of β-Lg above 49% and 89% respectively at 80 oC. The higher concentrations of DMS and H2S in UHT milk compared with batch-heated samples having similar degrees of denaturation suggested other possible sources for their production and the importance of the heat severity in generating them. For example, at high heat intensity, S-methylmethionine and thiamine could be sources of DMS and H2S respectively. Furthermore, in whole milk as used in this work, milk fat globule membrane proteins are another source of VSCs. The outcome of this study will help UHT manufacturers to understand the production and disappearance of the VSCs in commercial UHT milk and how to adjust the processing conditions to avoid generation of cooked flavour. Additionally, the promising results of using low concentrations of H2O2 to oxidise the VSCs will provide the industry with another means of reducing cooked flavour. Before H2O2 use is implemented in UHT processing, future studies are required to evaluate all of its effects, including sporicidal effects. Overall, this study makes a contribution to finding a solution to the cooked flavour problem in UHT milk, thereby increasing market share of this milk in countries such as Australia, the UK and North America where cooked flavour is the main barrier to its consumer acceptance.
|
6 |
Influence de la présence et de la composition du microbiote intestinal sur le développement et la prévention des allergies alimentaires / Role of gut microbiota and its composition on the development of food allergiesMorin, Stéphanie 29 October 2012 (has links)
Le développement de l’allergie peut être influencé par le microbiote intestinal qui est impliqué dans la maturation du système immunitaire de l’hôte lors de la colonisation du tractus digestif dès la naissance. L’objectif de mon travail a été d’étudier l’impact du microbiote intestinal sur le développement d’une sensibilisation allergique à des protéines de lait de vache à l’aide d’un modèle de souris BALB/c gnotoxéniques. Dans une première étude, nous avons montré que les souris axéniques (Ax, sans germe) sont plus réactives que les souris conventionnelles (CV) au potentiel immunogénique et allergénique de la β-lactoglobuline (BLG) et de la caséine (CAS), lorsque ces deux protéines sont injectées intrapéritonéalement sans adjuvant. A l’aide d’un autre modèle de sensibilisation par voie orale au lait, nous avons confirmé que les souris Ax développent des réponses IgE contre la BLG plus fortes que celles des souris CV. Les mécanismes de sensibilisation contre la BLG et la CAS sont alors différemment affectés par la présence ou non d’un microbiote intestinal. Par ailleurs, une colonisation tardive du tractus digestif de souris Ax à l’âge de 6 semaines par le microbiote de souris CV induit chez les souris conventionnalisées (CVd) le développement, après sensibilisation, de réponses humorales toujours plus fortes que celles observées chez les souris CV. A l’inverse, une conventionnalisation des souris Ax au moment du sevrage à l’âge de 3 semaines, induit un niveau de sensibilisation plus faible que celui des souris CV. Dans ce cas, des différences de composition du microbiote intestinal entre souris CV et CVd pourraient jouer un rôle dans le faible niveau de sensibilisation des souris CVd. Nous avons enfin évalué l’impact de l’implantation dès la naissance d’une souche de Lactobacillus casei en monoxénie (souris Mx). La réponse humorale contre la CAS, mais pas contre la BLG, est alors significativement plus élevée chez les souris Mx que chez les souris Ax. Ces différentes études suggèrent que l’influence du microbiote sur le développement d’une sensibilisation aux protéines du lait de vache diffère selon les allergènes et selon le mode d’exposition aux allergènes. Ces résultats soulignent également qu’un retard de colonisation du tractus digestif peut perturber durablement la réactivité du système immunitaire à une sensibilisation contre des antigènes alimentaires. / The development of allergic responses can be influenced by the gut microbiota, which critically stimulates the maturation of the host immune system during colonization of the digestive tract at birth. We thus aimed to study the impact of the gut microbiota on the development of an allergic sensitization to cow's milk proteins by using a gnotobiotic BALB/c mouse model. First, we showed that germ-free (GF) mice are more responsive than conventional mice (CV) to the immunogenic and allergenic potential of β-lactoglobulin (BLG) and casein (CAS) when these proteins are injected intraperitoneally without adjuvant. With another model of oral sensitization to cow’s milk, the development of higher BLG-specific IgE responses in GF mice compared to CV mice was confirmed. We also observed that the mechanisms leading to oral sensitization to BLG and CAS are differentially affected by the absence of gut microbiota. Furthermore, a delayed colonization of the digestive tract of 6-week-old GF mice by a conventional microbiota was studied. The conventionalized mice (CVd) still developed, after sensitization, higher antibody responses than those measured in CV mice. In contrast, GF mice conventionnalized just after weaning, at 3 week of age, displayed a level of sensitization lower than that of CV mice. Differences in the gut microbiota composition evidenced between CVd and CV mice could also play a role in the lower level of sensitization of CVd mice. Finally, we evaluated the impact of the neonatal mono-colonization of mice by a strain of Lactobacillus casei. The antibody responses against CAS, but not against BLG, were then significantly higher in mono-associated mice than in GF mice. These studies suggest that the influence of microbiota on the development of sensitization to cow's milk proteins depends on the nature of the allergens and the mode of exposure. These results also underline that delayed bacterial colonization altered persistently the host immune response to oral sensitization against food antigens.
|
7 |
Hetero-Protein Coacervation and Complex Equilibria Between β-lactoglobulin and LactoferrinFlanagan, Sean E 01 January 2014 (has links) (PDF)
Coacervation between the milk proteins β-lactoglobulin (BLG) and Lactoferrin (LF) was studied as a model system for hetero-protein coacervation (HPC). Equilibria among BLG/LF complexes and the corresponding speciation were found to control coacervation, which can be quantitatively monitored by turbidimetry. Several methods were used to assess complexation as a function of LF : BLG (mol/mol) mixing ratio (r). Proton release, calculated from a shift in pH when LF is added to BLG, was used to identify regions of complexation. Dynamic light scattering (DLS) was used to determine regions of complexation by relating complex size to stoichiometry. Isothermal titration calorimetry (ITC) was used to measure enthalpies of binding upon addition of LF to BLG. These results are used to show that coacervation is related to speciation, with the LF(BLG2)2 complex as the coacervating species.
|
8 |
Enzymatisch vernetzte Milchproteine: Reaktionsorte und funktionelle KonsequenzenPartschefeld, Claudia 21 February 2012 (has links) (PDF)
In der Lebensmittelindustrie steht die Entwicklung neuer innovativer Produkte im Vordergrund. Insbesondere die Modifizierung von Proteinen durch den Einsatz des Enzyms mikrobielle Transglutaminase (mTG) bietet hier neue Ansatzpunkte. Das Enzym verknüpft die γ-Carboxamidgruppe proteingebundenen Glutamins mit der ε-Aminogruppe von Lysin unter Bildung sogenannter Isopeptidbindungen. Durch diese Reaktion erreicht man eine gezielte Veränderung funktioneller Eigenschaften der Proteine wie z.B. Gelbildung, Löslichkeit, Wasserbindevermögen, Emulgier- und Schäumungsverhalten. Im Rahmen der Arbeit wurden grundlegende Forschungen zur Aufklärung des Mechanismus der mTG-katalysierten Proteinquervernetzungsreaktion im Hinblick auf das Lebensmittel Milch durchgeführt.
Der erste Teil der Arbeit beschäftigte sich mit dem Ablauf der mTG-katalysierten Reaktion innerhalb der Caseinmicellen und dessen Effekt auf die Micellstruktur. Es zeigte sich, dass durch mTG die Caseine in der micellaren Struktur fixiert werden und der extramicellare Caseinanteil abnimmt. Hierbei wird β-Casein stärker vernetzt als αs-Casein. Infolge dieser intramicellaren Caseinquervernetzung wird die Stabilität der micellaren Struktur sowohl gegenüber destabilisierenden Reagenzien (EDTA, Ethanol, GDL), mechanischen Parametern (Hochdruck) sowie einer enzymatischen Proteolyse (Chymotrypsin, Pepsin) signifikant verbessert. Vermutlich werden die Isopeptide hierfür netzartig vorwiegend zwischen den β-Caseinen in der äußeren Micellschicht ausgebildet.
Im zweiten Teil der Arbeit stand die Identifizierung der Reaktionsorte, d.h. die an der enzymatischen Vernetzung beteiligten Gln- und Lys-Reste, im Vordergrund, um den Einfluss der Proteinstruktur auf die Spezifität der mTG zu erfassen. Bei der Bestimmung der Reaktionsorte für β-Casein konnten 5 der 21 Gln-Reste und 3 der 11 Lys-Reste als zugänglich für mTG eingestuft werden. Für β-Lactoglobulin konnten unter Normaldruck 3 der 15 Lys-Reste aber keine Gln-Reste durch das Enzym markiert werden. Unter Hochdruck bei 400 MPa wurden 4 der 9 Gln-Reste sowie zwei weitere Lys-Reste als mTG-reaktiv nachgewiesen. Die Lage dieser Reaktionsorte im Protein zeigte, dass Gln-Reste bevorzugt durch mTG modifiziert werden, welche in hydrophoben Proteinabschnitten lokalisiert sind und große hydrophobe Aminosäuren N-seitig sowie positiv geladene Aminosäuren C-seitig aufweisen. Die Lys-Reste werden nur durch mTG angegriffen, wenn diese neben Aminosäuren mit ungeladenen bzw. positiv geladenen Seitenketten lokalisiert sind, während die Nachbarschaft zu negativ geladenen Aminosäuren sowie zu Aminosäuren mit ungeladenen polaren (hydrophilen) Seitenketten die Angreifbarkeit verhindert. Weiterhin zeigte eine Bestimmung der reaktiven Gln- und Lys-Reste im β-Casein innerhalb der Caseinmicelle, dass die Zugänglichkeit für mTG durch die Micellstruktur deutlich vermindert ist. Es wird vermutet, dass in der Caseinmicelle eine Art Vorstrukturierung der β-Caseine existiert.
Abschließend wurden die Ergebnisse für einen Vorschlag eines Micellmodells herangezogen. Das im Rahmen der Arbeit vorgeschlagene Micellmodell beruht auf dem Internal Structure Modell, im speziellen auf dem „dual bonding model“ nach Horne, welches weiter charakterisiert werden konnte. So wird vermutet, dass β-Casein hauptsächlich im äußeren Micellbereich lokalisiert ist, während sich die αs-Caseine eher im Micellinneren befinden. β-Casein ist hierbei in laminaren Schichten angeordnet, wobei die hydrophilen Köpfe den größtmöglichen Abstand zueinander haben und hydrophobe Wechselwirkungen zwischen den hydrophoben Schwänzen ausgebildet werden können. Wird die Micelle nun mit mTG behandelt, so kann ausgehend von diesem Modell die quervernetzte Caseinmicelle als „GiOTTO® -Modell“ dargestellt werden. Dieses ist aus einem „festen äußeren Mantel“ aus quervernetzten β-Caseinen (Isopeptidnetzwerk) und einem „weichen Kern“ aus nur gering vernetzten αs-Caseinen zusammengesetzt.
|
9 |
Enzymatisch vernetzte Milchproteine: Reaktionsorte und funktionelle KonsequenzenPartschefeld, Claudia 01 November 2011 (has links)
In der Lebensmittelindustrie steht die Entwicklung neuer innovativer Produkte im Vordergrund. Insbesondere die Modifizierung von Proteinen durch den Einsatz des Enzyms mikrobielle Transglutaminase (mTG) bietet hier neue Ansatzpunkte. Das Enzym verknüpft die γ-Carboxamidgruppe proteingebundenen Glutamins mit der ε-Aminogruppe von Lysin unter Bildung sogenannter Isopeptidbindungen. Durch diese Reaktion erreicht man eine gezielte Veränderung funktioneller Eigenschaften der Proteine wie z.B. Gelbildung, Löslichkeit, Wasserbindevermögen, Emulgier- und Schäumungsverhalten. Im Rahmen der Arbeit wurden grundlegende Forschungen zur Aufklärung des Mechanismus der mTG-katalysierten Proteinquervernetzungsreaktion im Hinblick auf das Lebensmittel Milch durchgeführt.
Der erste Teil der Arbeit beschäftigte sich mit dem Ablauf der mTG-katalysierten Reaktion innerhalb der Caseinmicellen und dessen Effekt auf die Micellstruktur. Es zeigte sich, dass durch mTG die Caseine in der micellaren Struktur fixiert werden und der extramicellare Caseinanteil abnimmt. Hierbei wird β-Casein stärker vernetzt als αs-Casein. Infolge dieser intramicellaren Caseinquervernetzung wird die Stabilität der micellaren Struktur sowohl gegenüber destabilisierenden Reagenzien (EDTA, Ethanol, GDL), mechanischen Parametern (Hochdruck) sowie einer enzymatischen Proteolyse (Chymotrypsin, Pepsin) signifikant verbessert. Vermutlich werden die Isopeptide hierfür netzartig vorwiegend zwischen den β-Caseinen in der äußeren Micellschicht ausgebildet.
Im zweiten Teil der Arbeit stand die Identifizierung der Reaktionsorte, d.h. die an der enzymatischen Vernetzung beteiligten Gln- und Lys-Reste, im Vordergrund, um den Einfluss der Proteinstruktur auf die Spezifität der mTG zu erfassen. Bei der Bestimmung der Reaktionsorte für β-Casein konnten 5 der 21 Gln-Reste und 3 der 11 Lys-Reste als zugänglich für mTG eingestuft werden. Für β-Lactoglobulin konnten unter Normaldruck 3 der 15 Lys-Reste aber keine Gln-Reste durch das Enzym markiert werden. Unter Hochdruck bei 400 MPa wurden 4 der 9 Gln-Reste sowie zwei weitere Lys-Reste als mTG-reaktiv nachgewiesen. Die Lage dieser Reaktionsorte im Protein zeigte, dass Gln-Reste bevorzugt durch mTG modifiziert werden, welche in hydrophoben Proteinabschnitten lokalisiert sind und große hydrophobe Aminosäuren N-seitig sowie positiv geladene Aminosäuren C-seitig aufweisen. Die Lys-Reste werden nur durch mTG angegriffen, wenn diese neben Aminosäuren mit ungeladenen bzw. positiv geladenen Seitenketten lokalisiert sind, während die Nachbarschaft zu negativ geladenen Aminosäuren sowie zu Aminosäuren mit ungeladenen polaren (hydrophilen) Seitenketten die Angreifbarkeit verhindert. Weiterhin zeigte eine Bestimmung der reaktiven Gln- und Lys-Reste im β-Casein innerhalb der Caseinmicelle, dass die Zugänglichkeit für mTG durch die Micellstruktur deutlich vermindert ist. Es wird vermutet, dass in der Caseinmicelle eine Art Vorstrukturierung der β-Caseine existiert.
Abschließend wurden die Ergebnisse für einen Vorschlag eines Micellmodells herangezogen. Das im Rahmen der Arbeit vorgeschlagene Micellmodell beruht auf dem Internal Structure Modell, im speziellen auf dem „dual bonding model“ nach Horne, welches weiter charakterisiert werden konnte. So wird vermutet, dass β-Casein hauptsächlich im äußeren Micellbereich lokalisiert ist, während sich die αs-Caseine eher im Micellinneren befinden. β-Casein ist hierbei in laminaren Schichten angeordnet, wobei die hydrophilen Köpfe den größtmöglichen Abstand zueinander haben und hydrophobe Wechselwirkungen zwischen den hydrophoben Schwänzen ausgebildet werden können. Wird die Micelle nun mit mTG behandelt, so kann ausgehend von diesem Modell die quervernetzte Caseinmicelle als „GiOTTO® -Modell“ dargestellt werden. Dieses ist aus einem „festen äußeren Mantel“ aus quervernetzten β-Caseinen (Isopeptidnetzwerk) und einem „weichen Kern“ aus nur gering vernetzten αs-Caseinen zusammengesetzt.
|
10 |
Stabilisation d’émulsions d’intérêt pharmaceutique par des protéines et des polysaccharides : exemples de la β-lactoglobuline, de la gomme arabique et de la gomme xanthane / Stabilization of pharmaceutical emulsions by proteins and polysaccharides : examples of β-lactoglobulin, gum arabic and xanthan gumJouanny-Bouyer, Eléonore 21 February 2011 (has links)
L’objectif de cette étude a été de formuler et caractériser des émulsions simples huile/eau d’intérêt pharmaceutique stabilisées par de la β-lactoglobuline (β-lg), de la gomme arabique (GA), de la gomme xanthane (GX) et des mélanges β-lg:GA et β-lg:GX. Les concentrations massiques totales des dispersions de biopolymères étaient de 1 % et ont été augmentées à 2,5 % si les émulsions formulées n’étaient pas stables. Le mélange β-lg:GA a été réalisé à pH 4,2 afin de permettre la formation de complexes par interactions électrostatiques attractives entre la β-lg et la GA. Deux ratios β-lg:GA ont été étudiés : 2:1 et 1:2. Enfin, le mélange β-lg:GX a été effectué à pH 7, où les deux biopolymères étant chargés négativement ne se complexent pas et à un ratio de 1:1. Une étude de stabilité des émulsions a été menée sur 6 mois. Les stabilités obtenues ont pu être classées par ordre croissant : GA 2,5 % < β-lg:GA 2,5 % < β-lg 2,5 % < GX 1 % = β-lg:GX 1 %. Plusieurs mécanismes de stabilisation ont été mis en évidence grâce à l’étude des propriétés interfaciales des biopolymères, à l’étude des propriétés rhéologiques des émulsions et à des observations au microscope confocal à balayage laser des émulsions après marquage des biopolymères à la fluorescence. La β-lg et la GA sont toutes deux capables de s’adsorber à l’interface des globules huileux alors que la GX augmente la viscosité de la phase continue. L’association β-lg:GA conduit à la formation d’une double couche interfaciale stabilisante. Enfin, l’association β-lg:GX combine les mécanismes de stabilisation de la protéine, par adsorption interfaciale et de la gomme, par augmentation de la viscosité de la phase continue. / The main objective of this study was to formulate and characterize oil-in-water simple emulsions of pharmaceutical interest stabilized by β-lactoglobulin (β-lg), gum arabic (GA), xanthan gum (XG), and mixtures of β-lg:GA and β-lg:XG. The total biopolymer final concentration in the dispersions was 1 (w/w) % and could be raised to 2.5 (w/w) % if the formulated emulsions were not stable. β-lg:GA mixing was performed at pH 4.2 to allow attractive electrostatic interactions between the two biopolymers and thus the formation of complexes. Two protein:polysaccharide ratios were investigated: 2:1 and 1:2. Conversely, β8lg:XG mixing was performed at pH 7, where both biopolymers are negatively charged, in order to avoid the complex formation, and with a 1:1 ratio. A stability study was conducted for emulsions over a 6-month period. The obtained stabilities could be classified increasingly: GA 2.5 % < β-lg:GA 2.5 % < β-lg 2.5 % < XG 1 % = β-lg:XG 1 %. Several stabilization mechanisms were evidenced by the study of the biopolymer interfacial properties, the study of emulsion rheology and by confocal laser scanning microscopy observations with labeled fluorescent biopolymers. β-lg and GA were both able to adsorb at the interface of oil globule. XG enhanced the continuous phase viscosity. β-lg:GA mixing led to the formation of a stabilizing interfacial double layer. Finally, β-lg:XG association combined the stabilization mechanisms of both biopolymers, respectively: interfacial adsorption and enhancement of the continuous phase viscosity.
|
Page generated in 0.0297 seconds