• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recombinant Transglutaminase Production By Metabolically Engineered Pichia Pastoris

Gunduz, Burcu 01 September 2012 (has links) (PDF)
Transglutaminases (EC 2.3.2.13) are enzymes that catalyze an acyl transfer reaction between a &gamma / -carboxyamide group of a peptide bound glutaminyl residue (acyl donor) and a variety of primary amines (acyl acceptors), including the amino group lysine. Transglutaminase has a potential in obtaining proteins with novel properties, improving nutritional quality of foods with the addition of essential amino acids, preparing heat stable gels, developing rheological properties and mechanical strength of foods and reducing the applications of food additives. The aim of this study is to develop intracellular and extracellular microbial protransglutaminase (pro-MTG) producing recombinant Pichia pastoris strains by using genetic engineering techniques. In this context first,protransglutaminase gene (pro-mtg) from Streptomyces mobaraensis was amplified by PCR both for intracellular and extracellular constructs using proper primers then they were cloned into the pPICZ&alpha / -A expression vectors, separately. Both intracellular (pPICZ&alpha / A::pro-mtgintra) and extracellular (pPICZ&alpha / A::pro-mtgextra) constructs were prepared with strong alcohol oxidase 1 promoter which is induced by methanol. Pichia pastoris X33 cells were transfected by linear pPICZ&alpha / A::pro-mtgintra and pPICZ&alpha / A::pro-mtgextra, separately and plasmids were integrated into the Pichia pastoris X33 genome at AOX1 locus. After constructing the recombinant P. pastoris strains, batch shaker bioreactor experiments were performed for each recombinant cell and the best producing strains were selected according to Dot blot and SDS-PAGE analyses. The selected recombinant P. pastoris strains, carrying pPICZ&alpha / A::promtgextra gene and pPICZ&alpha / A::pro-mtgintra gene in their genome were named as E8 and I1, respectively. Afterwards, a controlled pilot scale bioreactor experiment in a working volume of 1 L was performed with E8 clone and produced pro-MTG was activated by Dispase I. The variations in the recombinant MTG activity, cell concentration, total protease activity, AOX activity and organic acid concentrations throughout the bioprocess were analyzed and specific growth rates, specific consumption rates and yield coefficients were calculated regarding to measured data. Maximum MTG activity was obtained as 4448 U L- 1 and the maximum cell concentration was measured as 74.1 g L-1 at t=36 h of the bioprocess. In this study, an active transglutaminase enzyme was produced extracellularly by P. pastoris for the first time and the third highest extracellular MTG activity was achieved with E8 clone.
2

The Impact of Extracellular Matrix Stiffness on Angiogensis

Lee, Po-Feng 1976- 14 March 2013 (has links)
Sprouting endothelial cells (ECs) use soluble and insoluble cues to guide migration and expand the existing vascular network to meet changing trophic needs of the tissue during angiogenesis. A noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique was used to optically image endothelial sprouting morphogenesis in three dimensional (3D) collagen matrices with simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Sprout advancement and lumen expansion companying with ECM alteration were the synergistic results of membrane-associated matrix metalloproteinase and cell traction evidenced by proteinase inhibition and Rho-associated kinase (p160ROCK) inhibition experiments. These physical EC-ECM interactions suggest that ECM mechanical properties may influence angiogenic responses. In a 3D angiogenesis model, we measure angiogenic responses as a function of collagen matrix stiffness by inducing collagen cross-linking with microbial transglutaminase (mTG). Collagen matrices stiffen with both mTG treatment and incubation time as evidenced with biaxial mechanical test results and collagen TPF intensity increases with mTG treatment and that the ratio of TPF/SHG correlates with biaxial tested mechanical stiffness. SHG and optical coherence microscopy (OCM) are further used to show that other physical properties of the matrix do not change with mTG treatment, thus providing the same density but different stiffness with which to measure angiogenic responses. Stiffer matrices promote angiogenesis with more invading sprouts that invade deeper. No differences in lumen size were observed between control and mTG stiffened 3D cultures, but there was evidence of greater matrix remodeling in stiffer gels using NLOM. Results of this study show angiogenic responses are enhanced with increasing stiffness and suggest that these properties may be used in tissue engineering and regenerative medicine applications to engineer angiogenesis.
3

Gelation properties of protein mixtures catalyzed by transglutaminase crosslinking

Sun, Xiangdong 07 April 2011 (has links)
Gelation properties of a salt extracted pea (Pisum sativum) protein isolate (PPIs) were evaluated with a goal of using this isolate as a meat extender. Microbial transglutaminase (MTG) was used to improve gelation of PPIs, muscle protein isolate (MPI) from chicken breast and the two combined. Gelation properties were evaluated using small amplitude oscillatory rheology and texture analysis. SDS-PAGE and differential scanning calorimetry were used to examine protein structure. Minimum gelation concentration for PPIs was 5%, lower than the 14% obtained for a commercial pea protein isolate (PPIc), possibly because the PPIc undergone denaturation whereas PPIs had not. Storage modulus (G') and loss modulus (G") increased with protein concentration and maximum gel strength for PPIs occurred at pH 4.0 in 0.3M NaCl. Higher or lower pH values affected protein charge and the potential for network formation. Higher salt concentrations resulted in increased denaturation temperatures, to a point where the proteins did not denature at the 95ºC temperature used for gel formation. When both heating and cooling rate were increased, gel strength decreased, though the cooling rate had a greater impact. Chaotropic salts enhanced gel strength, whereas non-chaotropic salts stabilized protein structure and decreased gel formation. Based on effects of guanidine hydrochloride, urea, propylene glycol, β-mercaptoethanol, dithiothreitol and N-ethylmaleimide, hydrophobic and electrostatic interaction and hydrogen bonds were involved in pea protein gel formation but disulfide bond contribution was minimal. Gels formed with MPI at concentrations as low as 0.5% and were strongest at 95ºC, higher than the ~ 65ºC normally used in meat processing. Good gels were formed at pH 6 with 0.6 to 1.2 M NaCl. Addition of MTG increased gel strength for PPIs, MPI, and a combination of the two. SDS-PAGE showed that bands in the 35~100kDa range became fainter with higher MTG levels but no new bands were found to provide direct evidence of interaction between muscle and pea proteins. Improved gel strength for the MPI/PPI mixture (3:1) containing MTG suggested that some crosslinking occurred. Higher heating temperatures and MTG addition led to the formation of MPI/PPI gel and demonstrated the potential for utilization of pea protein in muscle foods.
4

Gelation properties of protein mixtures catalyzed by transglutaminase crosslinking

Sun, Xiangdong 07 April 2011 (has links)
Gelation properties of a salt extracted pea (Pisum sativum) protein isolate (PPIs) were evaluated with a goal of using this isolate as a meat extender. Microbial transglutaminase (MTG) was used to improve gelation of PPIs, muscle protein isolate (MPI) from chicken breast and the two combined. Gelation properties were evaluated using small amplitude oscillatory rheology and texture analysis. SDS-PAGE and differential scanning calorimetry were used to examine protein structure. Minimum gelation concentration for PPIs was 5%, lower than the 14% obtained for a commercial pea protein isolate (PPIc), possibly because the PPIc undergone denaturation whereas PPIs had not. Storage modulus (G') and loss modulus (G") increased with protein concentration and maximum gel strength for PPIs occurred at pH 4.0 in 0.3M NaCl. Higher or lower pH values affected protein charge and the potential for network formation. Higher salt concentrations resulted in increased denaturation temperatures, to a point where the proteins did not denature at the 95ºC temperature used for gel formation. When both heating and cooling rate were increased, gel strength decreased, though the cooling rate had a greater impact. Chaotropic salts enhanced gel strength, whereas non-chaotropic salts stabilized protein structure and decreased gel formation. Based on effects of guanidine hydrochloride, urea, propylene glycol, β-mercaptoethanol, dithiothreitol and N-ethylmaleimide, hydrophobic and electrostatic interaction and hydrogen bonds were involved in pea protein gel formation but disulfide bond contribution was minimal. Gels formed with MPI at concentrations as low as 0.5% and were strongest at 95ºC, higher than the ~ 65ºC normally used in meat processing. Good gels were formed at pH 6 with 0.6 to 1.2 M NaCl. Addition of MTG increased gel strength for PPIs, MPI, and a combination of the two. SDS-PAGE showed that bands in the 35~100kDa range became fainter with higher MTG levels but no new bands were found to provide direct evidence of interaction between muscle and pea proteins. Improved gel strength for the MPI/PPI mixture (3:1) containing MTG suggested that some crosslinking occurred. Higher heating temperatures and MTG addition led to the formation of MPI/PPI gel and demonstrated the potential for utilization of pea protein in muscle foods.
5

Estabilização, concentração, purificação e aplicação da transglutaminase microbiana de Streptomyces sp. CBMAI 837 / Stabilization, concentration, purification and application of microbial transglutaminase from Streptomyces sp. CBMAI 837

Lima, Evandro Antônio de, 1985- 07 August 2010 (has links)
Orientador: Hélia Harumi Sato / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-16T16:22:18Z (GMT). No. of bitstreams: 1 Lima_EvandroAntoniode_M.pdf: 2108461 bytes, checksum: 6b52a40625238916bf0ef94067896ee2 (MD5) Previous issue date: 2010 / Resumo: A transglutaminase microbiana (MTGase; EC 2.3.2.13) é uma enzima capaz de catalisar a formação de ligações covalentes cruzadas entre proteínas, peptídeos e várias aminas primárias através da reação de acil transferência entre resíduos de glutamina e lisina. A incorporação de ligações covalentes cruzadas entre proteínas por ação da transglutaminase vem sendo empregada pela indústria alimentícia para modificar principalmente a textura, a viscosidade e a capacidade de formação de gel de alimentos. Este trabalho teve como principal objetivo estudar a estabilidade térmica, o efeito de inibidores e ativadores, a concentração e a purificação da transglutaminase microbiana produzida pela linhagem Streptomyces sp. CBMAI 837. No estudo da estabilidade térmica da enzima verificou-se que a transglutaminase de Streptomyces sp. CBMAI 837 é uma enzima termossensível, estável em temperaturas abaixo de 40°C e rapidamente inativada acima de 50°C. Parâmetros cinéticos e termodinâmicos da desnaturação térmica da enzima foram determinados para as seis temperaturas estudadas. Os tempos de meia-vida da enzima a 55 e 60°C foram estimados em 3,5 e 1,9 minutos, respectivamente. A influência de alguns compostos no aumento da estabilidade térmica da enzima foi investigada, sendo verificado que a adição de EDTA e KCl na concentração de 1% e de cisteína e glutationa na concentração de 0,1% aumentaram a estabilidade térmica da transglutaminase durante incubação a 45°C por 30 minutos. O efeito de compostos como etanol, ativadores e inibidores enzimáticos na atividade da MTGase de Streptomyces sp. CBMAI 837 foi estudado. O etanol na concentração de 10% (v:v) apresentou pouco efeito na atividade enzimática, enquanto que concentrações acima de 40% (v:v) provocaram rápida inativação da enzima. A MTGase foi ativada na presença de EDTA e cisteína e inativada na presença de iodoacetamida e ácido cloromercuribenzóico, sugerindo que esta é uma enzima cálcio independente com um resíduo de cisteína no sítio ativo. No estudo da concentração da MTGase foram avaliados diferentes métodos, sendo verificado que a precipitação com sulfato de amônio a 80% de saturação foi o método mais efetivo, possibilitando a concentração do sobrenadante de cultivo cerca de 4,5 vezes com rendimento de 142%. A aplicação da preparação enzimática bruta concentrada de MTGase de Streptomyces sp. CBMAI 837 em proteína texturizada de soja apresentou efeito similar ao da enzima comercial Activa® TG-BP quando aplicada nas mesmas condições. Na purificação da MTGase de Streptomyces sp. CBMAI 837 em coluna de afinidade Blue Sepharose CL-6B foram separadas 3 frações com atividade de transglutaminase (TG-BS1, TG-BS2 e TG-BS3), indicando a presença de isoenzimas. A massa molecular da MTGase presente nas frações purificadas TG-BS2 e TG-BS3 foi estimada em cerca de 35 KDa por SDS-PAGE. As três frações obtidas foram caracterizadas quanto ao pH ótimo de atividade enzimática. Foi observado que a fração parcialmente purificada TG-BS1 apresentou atividade ótima em pH 10,0 e um segundo pico de atividade em pH 6,0, enquanto as frações purificadas TG-BS2 e TG-BS3 apresentaram pH ótimo de atividade em pH 6,5 e também um segundo pico de atividade em pH 10,0 / Abstract: The microbial transglutaminase (MTGase, EC 2.3.2.13) is an enzyme capable of catalyzing the formation of covalent cross-links among proteins, peptides and various primary amines by reaction of acyl transfer between glutamine and lysine residues. The incorporation of covalent cross-links between proteins by the action of transglutaminase has been used by the food industry to modify especially the texture, viscosity and gel forming ability of foods. This work aimed to study the thermal stability, effect of inhibitors and activators, concentration and purification of microbial transglutaminase produced by strain Streptomyces sp. CBMAI 837. It was observed in the study of thermal stability of the enzyme that the transglutaminase from Streptomyces sp. CBMAI 837 is a thermosensitive enzyme, stable at temperatures below 40°C and rapidly inactivated above 50°C. Kinetic and thermodynamic parameters of thermal denaturation of the enzyme were determined for six temperatures. It was estimated that the half-life times of the enzyme at 55 and 60°C were 3.5 and 1.9 minutes, respectively. The influence of compounds to increase the thermal stability of the enzyme was investigated, and it was found that the addition of EDTA and KCl at a concentration of 1% and cysteine and glutathione at a concentration of 0.1% increased the thermal stability of transglutaminase during the incubation at 45°C for 30 minutes. The effect of compounds such as ethanol, activators and inhibitors on enzymatic activity of MTGase from Streptomyces sp. CBMAI 837 was studied. The ethanol concentration 10% (v/v) had little effect on enzyme activity, while concentrations above 40% (v/v) resulted in rapid inactivation of the enzyme. The MTGase was activated in the presence of EDTA and cysteine and inactivated in the presence of iodoacetamide and chloromercuribenzoic acid, suggesting that this is a calcium independent enzyme with a cysteine residue at the active site. Different methods were evaluated in the study of the concentration of MTGase, confirming that the precipitation with ammonium sulfate at 80% saturation of the culture supernatant was the method more effective, being concentrated this enzyme about 4.5 fold with a yield of 142%. The application of crude enzyme preparation of MTGase from Streptomyces sp. CBMAI 837 concentrated by ammonium sulfate in texturized soy protein showed a similar effect to the one of commercial enzyme Activa® TG-BP when applied under the same conditions. Three fractions with transglutaminase activity (TG-BS1, TG-BS2 e TG-BS3) were separated in the purification of MTGase from Streptomyces sp. CBMAI 837 in column affinity Blue Sepharose CL-6B, indicating the presence of isoenzymes. The molecular mass of MTGase present in the purified fractions TG-BS2 e TG-BS3 was estimated at about 35 KDa by SDS-PAGE. The three fractions were characterized by optimum pH of enzymatic activity. It was observed that the partially purified fraction TG-BS1 showed optimal activity at pH 10.0 and a second peak of activity at pH 6.0, while the purified fractions TG-BS2 e TG-BS3 showed optimum pH activity at pH 6.5 and also a second peak of activity at pH 10.0 / Mestrado / Mestre em Ciência de Alimentos
6

Produção e avaliação de pão de forma com triticale e enzima transglutaminase microbiana / Production and evaluation of loaf breads with triticale flour and microbial transglutaminase enzyme

Gragnani, Marco Antonio Lefèvre 16 August 2018 (has links)
Orientador: Fernanda Paula Collares-Queiroz / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-16T05:58:10Z (GMT). No. of bitstreams: 1 Gragnani_MarcoAntonioLefevre_M.pdf: 7651041 bytes, checksum: 7fa59de3bac1eecf3a788631b8dc0cc1 (MD5) Previous issue date: 2010 / Resumo: A produção e o consumo de pães de forma no Brasil crescem continuamente. Assim como a maioria dos produtos de panificação, sua fabricação requer a utilização de farinhas com características específicas para obtenção de produtos sensorialmente aceitáveis. Até hoje, a farinha de trigo é a única capaz de produzir pães com essas características. Os estudos de substitutos para farinha de trigo esbarram em dificuldades técnicas, que dificultam a formação de uma rede protéica estável, capaz de desempenhar um papel satisfatório na estruturação do pão e na retenção dos gases produzidos durante a fermentação. O triticale, cereal resultante do cruzamento do trigo com centeio, apresenta características bastante semelhantes aos seus progenitores, sem, contudo, ter a capacidade de substituir o trigo em grandes quantidades na produção de pães de forma. A utilização da enzima transglutaminase microbiana (MTGase) na área de panificação já mostrou-se eficiente no fortalecimento da rede de glúten, permitindo, além da utilização de farinhas fracas em produtos que necessitam de farinha forte, a incorporação de novas fontes protéicas nesses alimentos. O objetivo deste projeto foi avaliar a viabilidade tecnológica da utilização da MTGase para produzir pães de forma com a maior substituição de farinha de trigo por farinha de triticale possível, apresentando as mesmas características do pão de forma padrão. Inicialmente, as duas farinhas, foram caracterizadas pela realização de análises reológicas (farinográficas e extensográficas), teor de glúten, falling number e cor. Foi realizada a produção de pães de forma padrão, apenas com farinha de trigo, para avaliação de qualidade e estudos comparativos posteriores. Foi elaborado um delineamento composto central rotacional (DCCR) com duas variáveis independentes:porcentagem de substituição de farinha de trigo por triticale (%TTC) e porcentagem de enzima transglutaminase microbiana em base seca de farinha (%MTGase). O delineamento incluiu onze ensaios, sendo quatro pontos fatoriais, quatro pontos axiais e três pontos centrais. Os resultados foram analisados por Metodologia de Superfície de Resposta. As variáveis dependentes desse estudo foram: (i) características reológicas das farinhas com enzima e (ii) qualidade dos pães de forma produzidos. Os pães foram analisados quanto ao volume específico, firmeza, umidade, atividade de água e cor do miolo (parâmetros L*, C* e h). Foi analisada também a influência do tempo de fermentação (35, 70 e 105 minutos) nessas respostas. Pela análise instrumental, observou-se ser inviável a produção dos pães de forma com 35 minutos de fermentação. Para os pães com maiores tempos, os parâmetros de volume específico e firmeza foram próximos ao pão padrão, mesmo com elevadas porcentagens de substituição da farinha de trigo, devido ao auxílio da enzima. Foram identificadas duas formulações, com quantidades máximas de substituição de farinha de trigo, que mostraram características semelhantes ao pão padrão, uma nos pães assados submetidos a 70 minutos de fermentação (60,64% de substituição de farinha de trigo por triticale e 0,65% de transglutaminase microbiana em base seca da farinha) e outra com 105 minutos de fermentação (71,28% de substituição de farinha de trigo por triticale,e 0,80% de porcentagem de transglutaminase microbiana em base seca da farinha). Essas formulações foram submetidas a testes de aceitação e intenção de compra por 72 provadores, que as avaliaram nos quesitos: modo global, aparência, aroma, sabor e textura. Os resultados mostraram que a substituição da farinha de trigo por triticale com a adição da enzima, em valores iguais aos das duas formulações escolhidas, pode ser realizada sem alterações significativas (p < 0,05) na intenção de compra dos consumidores. Entretanto, o pão de forma com 105 minutos de fermentação se mostrou mais próximo ao pão padrão nas análises instrumentais, e uma leve alteração na aceitação da textura foi evidenciada na sensorial obtendo média ¿gostei¿ (70 minutos), enquanto o pão padrão e a formulação com 105 minutos de fermentação obtiveram ¿gostei muito¿. O estudo mostrou que é possível substituir até 71,28% de farinha de trigo por triticale, utilizando a enzima transglutaminase microbiana, na produção de pães de forma de qualidade e sem aumentar o custo para os fabricantes / Abstract: The production of loaf breads in Brazil grows continuously. Like the majority of the bakery products, its manufacture requires the usage of flour with specific characteristics to result in sensory acceptable products. Until today, wheat flour is the only flour capable to produce loaf breads with those characteristics. Researches for wheat flour substitutes face on technical limitations, that interfere on the formation of a stable protein network, capable to play a satisfactory role in the bread structure and gas retention produced during fermentation. The triticale, a cereal resultant from the crossing of wheat and rye, has very similar characteristics to its progenitors, without, however, the ability to substitute wheat in great quantities in loaf bread production. The use of microbial transglutaminase (MTGase) in bakery products has been studied as an efficient empowering of the gluten network, allowing, besides the usage of weaker flours in products that requires strong flours, the incorporation of new protein sources in those foods. The objective of this project was to evaluate the technological viability to use MTGase to make loaf breads with the highest wheat flour substitution as possible, showing the same characteristics as a wheat flour loaf bread. Initially, both flours were characterized by rheological analysis (farinographics and extensographics), gluten index, falling number and color. Standard loaf bread with 100% wheat flour was produced for later quality evaluation and result comparison. A central composite rotational design (CCRD) was made with two independent variables: substitution percentage of wheat flour by triticale flour (%TTC) and the microbial transglutaminase enzyme percentage on dry flour basis (%MTGase). The design included eleven tests: four factorial points, four axial points and tree central points. The results were analyzed by Response Surface Methodology. The dependent variables were: (i) rheological characteristics of the flours with enzyme and (ii) the quality of the produced loaf breads. The breads were analyzed regarding its specific volume, firmness, humidity, water activity and bread crumb color (parameters L*, C*, and h). The influence of fermentation time (35, 70 and 105 minutes) was also studied on those responses. By instrumental analysis, it was found that it is not possible to produce triticale loaf breads with 35 minutes of fermentation. Breads with higher fermentation times presented specific volume and firmness values closer to standard loaf breads, even with high values of wheat flour substitution, due to the usage of the enzyme. Two formulations were identified, with maximum wheat flour substitution, one among the breads with 70 minute fermentation (wheat flour substitution: 60.64%, and microbial transglutaminase percentage (w/w): 0.65%) and another with 105 minute fermentation (wheat flour substitution: 71.28%, and microbial transglutaminase percentage (w/w): 0.80%). Those formulations were submitted to acceptance tests and intension of purchase by 72 costumers, who evaluated the global aspect, appearance, aroma, flavor and texture. The results shows that the substitution of wheat flour by triticale with addition of microbial transglutaminase, in the same values as the chosen formulations, can be made without significant alteration (p < 0.05) in the costumers' purchase intension. However, the loaf breads with 105 minute fermentation were closer to the standard loaf breads in the instrumental analysis, and a light alteration on the texture acceptance was evidenced in the sensorial tests, getting ¿liked¿ score (70 minutes), while the standards breads and 105 minute fermentation got ¿liked a lot¿. This study had shown that it is possible to substitute up to 71.28% of wheat flour by triticale, using microbial transglutaminase, to make loaf bread maintaining its quality without increasing the industrial costs / Mestrado / Mestre em Tecnologia de Alimentos
7

New bacterial transglutaminase Q-tag substrate for the development of site-specific Antibody Drug Conjugates / Nouveaux subtrats Q-tag pour le développement d’ADCs site spécifique par activité enzymatique transglutaminase

Sivado, Eva 04 December 2018 (has links)
Es ADCs (Antibody-Drug Conjugates) correspondent à une nouvelle stratégie thérapeutique anti-tumorale particulièrement prometteuse. Néanmoins, les ADCs actuellement utilisés en clinique sont obtenus par conjugaisons chimiques, resultant en des mixtures hétérogènes impactant négativement leurs pharmacocinétiques et leurs performances in vivo.Récemment, différentes strategies de couplage site-spécifique ont été développées afin de réduire cette hétérogénéité. Dans cette thèse, nous rapportons le développement d’une nouvelle technologie CovIsoLink™ (Covalently Isopeptide Crosslinking) permettant la génération d’ADCs par utilisation de nouveaux peptides glutamine Q-Tag présentant des affinités optimisées par rapport à des peptides disponibles (ZQG, LLQG) pour une enzyme bactérienne la transglutaminase (mTG).La preuve de concept de cette technologie a été réalisée par insertion de ces peptides Q-Tag en C-ter de la région codant pour la chaine lourde des anticorps anti-HER2 (Trastuzumab). Nous avons ainsi pu démontrer la conjugaison homogène et reproductible de différentes drogues sans contamination par des chaines d’anticorps non conjuguées. Nous avons pu montrer que l’immunoréactivité et la capacité d’internalisation de ces ADCs n’étaient pas altérées par la conjugaison et qu’ils présentaient in vitro et in vivo, des propriétés de lyse de cellules tumorales similaires au Trastuzumab emtansine (Kadcyla®), actuellement en clinique. Par ailleurs, afin de généraliser notre technologie à différents formats d’anticorps nous avons générés des fragments Fab et scFv et évalué leur fonctionnalité. Ainsi, nous avons pu prouver que l’utilisation de nouveaux peptides optimisés Q-Tag substrat de la transglutaminase permettait une stratégie de couplage alternative plus homogène par couplage de différentes molécules sans espèce contaminante non couplée / Antibody-drug conjugates (ADCs) are a powerful class of therapeutic agents, demonstrating success in the treatment of several malignancies. The currently approved ADCs are produced by chemical conjugations and exist as heterogeneous mixtures that negatively influence the pharmacokinetics and in vivo performance. Recently many of site-specific conjugation technologies have been developed to reduce heterogeneity and batch-to batch variability. Microbial transglutaminase (mTG) has been demonstrated as efficient tool for site-specific conjugation. In this thesis we report the development CovIsoLink™ (Covalently Isopeptide Crosslinking) technology for the generation of homogenous immunoconjugates using a novel glutamine donor peptides (Q-tag) with improved affinity compared to the known peptides (ZQG, LLQG). As a proof of concept, the peptides sequences were engineered into the heavy chain C-terminal of Trastuzumab antibody. We demonstrated the reproducible and homogeneous conjugation of Q-tagged Trastuzumab with different payloads, without any unconjugated species. The ADCs were evaluated in series of in vitro and in vivo assays. We confirmed that the immunoreactivity and internalisation are not altered by the conjugation. Furthermore similar in vitro and in vivo tumor cell killing potency was demonstrated than Trastuzumab emtansine (Kadcyla®), which is already used in the clinic. Morover we extend our site-specific conjugation technology to antibody fragments (Fab and scFv), evaluating their functionality by conjugation with AlexaFluor488-cadaverine and in antigen binding assays. Thus, using novel glutamine donor peptides, our technology provides an alternative enzymatic conjugation strategy for the engrafment of different payloads resulting in homogeneous batches, without unconjugated species
8

Produção, purificação, caracterização e aplicação de transglutaminase de Streptomyces sp. CBMAI 837 / Production, purification, characterization and application of transglutaminase from Streptomyces sp. CBMAI 837

Macedo, Juliana Alves, 1982- 13 August 2018 (has links)
Orientadores: Helia Harumi Sato , Lara Durães Sette / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-13T13:26:40Z (GMT). No. of bitstreams: 1 Macedo_JulianaAlves_D.pdf: 1354680 bytes, checksum: f0751667b78c8b7e3db22d9ceb16adbf (MD5) Previous issue date: 2009 / Resumo: A transglutaminase (TGase) (EC 2.3.2.13; proteina-glutamina ?-glutaminiltransferase) é uma enzima capaz de catalisar reações de transferência de grupos acil utilizando resíduos de glutamina das ligações peptídicas de proteínas como doadores de grupos acil, e diversas aminas primárias como receptores. As ligações covalentes cruzadas entre inúmeras proteínas e peptídeos pela transglutaminase promovem mudanças nas propriedades de proteínas de alimentos. Por essa razão, a transglutaminase é amplamente utilizada nas indústrias de processamento de alimentos para o desenvolvimento de novos produtos e modificação de características como: viscosidade, capacidade emulsificante e valores nutricionais. Uma cepa de Actinomyceto, isolada de amostras de solo brasileiro, foi investigada taxonomicamente por uma combinação de técnicas moleculares e morfológicas, resultando na conclusão de que a cepa pertence ao gênero Streptomyces sp. A cepa, chamada de Streptomyces sp. CBMAI 837 produziu transglutaminase quando cultivada a 30°C por cinco dias, em agitador rotatório, no meio de fermentação otimizado, composto por: 0,2% KH2PO4, 0,1% MgSO4.7H2O, 2% farinha de soja, 2% amido de batata, 0,2% glicose, e 2% peptona, atingindo uma atividade enzimática de 1,37 U.mL-1. A transglutaminase foi purificada cerca de 5 vezes através de duas passagens cromatográficas sucessivas em uma coluna de filtração em gel Sephadex G-75, com 17% de recuperação. A purificação da proteína foi comprovada por homogeneidade eletroforética em SDS-PAGE. A massa molar da TGase foi estimada em cerca de 45 kDa. A transglutaminase de Streptomyces sp CBMAI 837, tanto na forma bruta quanto purificada, apresentou atividade enzimática ótima em pH 6,0-6,5, e em 35-40°C. Um segundo pico de atividade ótima foi observado em pH 10,0 na enzima no estado bruto. Ambas as formas da enzima foram estáveis na faixa de pH de 4,5 a 8,0 e até 45°C. A transglutaminase na forma bruta e purificada mostrou-se independente de íons cálcio, mas foi ativada na presença de K+, Ba2+, e Co2+; e inibida por Cu2+ e Hg2; o que sugere a presença de um grupo tiol no sítio ativo da enzima. A TGase purificada apresentou um Km de 6,37 mM e um Vmax de 1,70 U/mL, enquanto a enzima bruta apresentou Km de 6,52 mM e um Vmax de 1,35 U/mL para o substrato N-carbobenzoxi-L-glutaminil-glicina. A influência da transglutaminase de Streptomyces sp CBMAI 837 bruta, nas propriedades de géis ácidos de caseinato de sódio foi investigada, tendo como parâmetro géis preparados com a TGase comercial (Ajinomoto Inc.). Os géis com a enzima comercial tiveram um valor de módulo de elasticidade maior, porém, dependendo da concentração de proteína, estes foram menos deformáveis. Os géis com enzima bruta de Streptomyces sp. CBMAI 837 se mostraram muito mais rígidos e menos elásticos. Resultados da eletroforese indicaram que a enzima comercial promoveu a formação de polímeros de proteínas de massa molecular mais alta do que a enzima de Streptomyces sp. CBMAI 837. Os testes de microscopia eletrônica de varredura e da capacidade de retenção de água mostraram que características particulares de cada um dos géis poderiam estar associadas ao tipo específico de interação promovida por cada uma das amostras enzimáticas testadas / Abstract: Transglutaminase (EC 2.3.2.13; protein-glutamine ?-glutaminyltransferase) is an enzyme that catalysis an acyl transfer reaction using protein or peptide-bond glutamine residues as acyl donors and several primary amines as receptors. The covalent cross-links between a number of proteins and peptides introduced by transglutaminase promote modification of the functional properties of the food proteins. Therefore, transglutaminase are widely used by food-processing industries for the purpose of new product development, modification of the product properties such as viscosity, emulsification foaming and nutritional values. An actinomycete strain, isolated from Brazilian soil, was taxonomically investigated using a combination of molecular and morphological basedmethods, resulting on the conclusion that the strain belongs to the genus Streptomyces sp. The strain, named Streptomyces sp. CBMAI 837, produce transglutaminase when cultivated at 30°C for 5 days at 200 rpm in a rotatory shaker, on the optimized fermentation medium composed of 0.2% KH2PO4, 0.1% MgSO4.7H2O, 2% soybean flour, 2% potato starch, 0.2% glucose, and 2% peptone, with a enzymatic activity of 1.37 U.mL-1. The enzyme purification was performed by of two successive chromatographies on Sephadex G-75 columns with yields of 48% and 17%, respectively. The protein purification was successfully achieved to electrophoretical homogeneity on SDS-PAGE. The molecular mass of the MTGase was estimated to be about 45 kDa. The enzyme from Streptomyces sp., in both crude and pure forms, exhibited optimal activity in the 6.0-6.5 pH range and at 35-40°C. A second maximum of activity was observed at pH 10.0 on the crude Streptomyces sp. enzyme. Both forms of transglutaminase were stable over the pH range from 4.5 to 8.0 and up to 45°C. The activities of all the TGase samples were independent of Ca+2 concentration, but they were elevated in the presence of K+, Ba2+, and Co2+ and inhibited by Cu2+ and Hg2+, which suggests the presence of a thiol group in the TGase¿s active site. The purified enzyme presented Km of 6.37 mM and Vmax of 1.7 U/mL, while the crude enzyme demonstrated Km of 6.52 mM and Vmax of 1.35 U/mL. The influence of the transglutaminase on acid-gel properties was studied. Texture parameters showed that the commercial TGase (Ajinomoto Inc.) gels had greater values of elasticity modulus and could promote the formation of more elastic and soft food systems, while addition of the crude TGase of Streptomyces sp. CBMAI 837 to the gel led to the formation of more rigid and less elastic gels. The electrophoresis showed that the commercial TG enzyme in this system promoted higher molecular mass protein polymers than the enzyme from Streptomyces sp. CBMAI 837. Microscopy and water holding capacity (WHC) observations showed that all the gel characteristics could be associated to specific interactions promoted by each TGase tested / Doutorado / Doutor em Ciência de Alimentos
9

Produção e caracterização bioquímica de uma nova transglutaminase microbiana = Production and biochemical characterization of a new microbial transglutaminase / Production and biochemical characterization of a new microbial transglutaminase

Melo, Ricardo Rodrigues de, 1985- 08 June 2013 (has links)
Orientador: Hélia Harumi Sato / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-22T23:52:05Z (GMT). No. of bitstreams: 1 Melo_RicardoRodriguesde_M.pdf: 1621799 bytes, checksum: 14182717e9ba5de8c1d5014f330c1b6c (MD5) Previous issue date: 2013 / Resumo: Transglutaminase é uma enzima capaz de catalisar a formação de ligações cruzadas intra- e intermoleculares entre proteínas, peptídeos e aminas primárias por meio de ligações covalentes entre resíduos de lisina e glutamina. Desta forma, transglutaminase pode ser utilizada em diversos setores industriais para o desenvolvimento de novos produtos ou para a modificação de suas características. A linhagem B6 isolada de amostra de solo coletada na região do Estado de Minas Gerais foi identificada como tendo características morfológicas típicas de actinomicetos e pela análise da região 16S rRNA há colocou na subclasse Streptomyces próximo a linhagem Streptomyces angustmycinicus NBRC 3934T. A fim de aumentar a produção de transglutaminase (2,75 U/mL) pela linhagem Streptomyces sp. B6, o meio de fermentação foi submetido a processos de otimização. Como primeiro passo da otimização, o crescimento do micro-organismo e a produção da enzima foram estudados através de uma pré-seleção de fontes de carbono, nitrogênio e sais no meio de produção. Após as análises das diferentes fontes, um delineamento experimental do tipo Plackett-Burman foi utilizado para a seleção dos componentes do meio de cultivo que afetam a produção de transglutaminase. Os resultados do delineamento experimental indicaram que a produção de transglutaminase foi influenciada negativamente pela peptona bacteriológica e MgSO4.7H2O, positivamente pelo amido de batata, glicose, peptona de caseína e KH2PO4.7H2O e não foi influenciada pelo farelo de soja, considerando um nível de confiança de 95%. A concentração de amido de batata foi fixada no maior nível testado no planejamento Plackett-Burman devido à gelificação do meio de fermentação em concentrações maiores. Assim, os três fatores que influenciaram a produção de transglutaminase (glicose, peptona de caseína e KH2PO4.7H2O) foram otimizados para obter o máximo de produção da enzima utilizando delineamento composto central. Sob a condição otimizada, a qual continha 25 g/L de farinha de soja, 35 g/L de amido de batata, 5 g/L de glicose, 24,5 g/L de peptona de caseína e 8 g/L de KH2PO4.7H2O, a atividade enzimática atingiu 6,13 U/mL, apresentando 125% à mais de atividade em relação á obtida no meio antes da otimização. A transglutaminase microbiana produzida pela linhagem Streptomyces sp. B6 exibiu atividade ótima em 45°C e em pH de 6,5 e 11,0. A enzima manteve-se estável na faixa de pH 3,0-11,0 durante 60 minutos à 40°C durante 3 horas. A transglutaminase não foi inibida por Ca2+, Na+, Co2+, Mn2+, K+, Mg2+, Ba2+, EDTA, L-cisteína e glutationa na concentração de 5 mM, mas foi inibida na presença de Hg2+, Cu2+, Zn2+ e Fe2+ na concentração de 5mM. A linhagem Streptomyces sp. B6 é uma nova fonte de transglutaminase com características interessantes para aplicações biotecnológicas / Abstract: Transglutaminase is an enzyme capable of catalyzing the forming intra-and intermolecular cross-linking between proteins, peptides and primary amines by covalent bonds between lysine and glutamine residues. Thus, transglutaminase can be used in food processing industries to develop new products and modify their characteristics. The B6 strain was isolated from soil sample collected in the region state of Minas Gerais was identified as having morphological characteristics typical of the actinomycetes, and the 16S rRNA analysis placed it in the Streptomyces subclade, closely related to Streptomyces angustmycinicus NBRC 3934T. In order to increase the transglutaminase production (2.75 U/mL) from Streptomyces sp. B6 strain, the fermentation medium was subjected to optimization processes. In the first step of optimization, the micro-organism growth and enzyme production were studied through a pre-selection of carbon, nitrogen and salts sources in the culture medium. After analysis of different sources, the Plackett¿Burman experimental design was used for screening the components of the culture medium that affect the transglutaminase production. Results of the experiment indicated that production of transglutaminase was negatively influenced by bacteriological peptone and MgSO4.7H2O, positively influenced by potato starch, glucose, casein peptone and KH2PO4.7H2O and was not influenced by soybean meal, considering 95% of confidence level. The potato starch concentration was fixed at the highest level tested in Plackett¿Burman design due to gelation of the fermentation medium in higher concentrations. Thus, the three factors that influence the transglutaminase production (glucose, casein peptone and KH2PO4.7H2O concentrations) were optimized to obtain the maximum transglutaminase production using central composite design. Under the proposed optimized condition, which contained 25 g/L soybean meal, 35 g/L potato starch, 5 g/L glucose, 24.5 g/L casein peptone and 8 g/L KH2PO4.7H2O, the enzyme activity reached 6.13 U/mL, which was 125% more than the activity in relative obtained medium before optimization. The microbial transglutaminase produced by Streptomyces sp. B6 strain exhibited optimal activity at 45 oC and at pH 6.5 and 11.0. The enzyme remained stable in the pH range from 3.0 - 11.0 for 60 minutes and at 40 oC temperature for 3 hours. The transglutaminase was not inhibited by Ca2+, Na+, Co2+, Mn2+, K+, Mg2+, Ba2+, EDTA, L-cysteine and glutathione in concentration 5 mM, but was inhibited in the presence of Hg2+, Cu2+, Zn2+ and Fe2+ in concentration 5 mM. In conclusion, Streptomyces sp. B6 strain is a new source of transglutaminase with interesting features for biotechnological applications / Mestrado / Ciência de Alimentos / Mestre em Ciência de Alimentos
10

New insights into the substrate specificities of microbial transglutaminase: a biocatalytic perspective

Gundersen, Maria 12 1900 (has links)
La transglutaminase microbienne (Microbial transglutaminase : MTG) est fortement exploitée dans l’industrie textile et alimentaire afin de modifier l’apparence et la texture de divers produits. Elle catalyse la formation de liaisons iso-peptidiques entre des protéines par l’entremise d’une réaction de transfert d’acyle entre le groupement γ-carboxamide d’une glutamine provenant d’un substrat donneur d’acyle, et le groupement ε-amino d’une lysine provenant d’un substrat accepteur d’acyle. La MTG est tolérante à un large éventail de conditions réactionnelles, ce qui rend propice le développement de cette enzyme en tant que biocatalyseur. Ayant pour but le développement de la MTG en tant qu’alternative plus soutenable à la synthèse d’amides, nous avons étudié la réactivité d’une gamme de substrats donneurs et accepteurs non-naturels. Des composés chimiquement diversifiés, de faible masse moléculaire, ont été testés en tant que substrats accepteurs alternatifs. Il fut démontré que la MTG accepte une large gamme de composés à cet effet. Nous avons démontré, pour la première fois, que des acides aminés non-ramifiés et courts, tels la glycine, peuvent servir de substrat accepteur. Les α-acides aminés estérifiés Thr, Ser, Cys et Trp, mais pas Ile, sont également réactifs. En étendant la recherche à des composés non-naturels, il fut observé qu’un cycle aromatique est bénéfique pour la réactivité, bien que les substituants réduisent l’activité. Fait notable, des amines de faible masse moléculaire, portant les groupements de forte densité électronique azidure ou alcyne, sont très réactives. La MTG catalyse donc efficacement la modification de peptides qui pourront ensuite être modifiés ou marqués par la chimie ‘click’. Ainsi, la MTG accepte une variété de substrats accepteurs naturels et non-naturels, élargissant la portée de modification des peptides contenant la glutamine. Afin de sonder le potentiel biocatalytique de la MTG par rapport aux substrats donneurs, des analogues plus petits du peptide modèle Z-Gln-Gly furent testés; aucun n’a réagi. Nous avons toutefois démontré, pour la première fois, la faible réactivité d’esters en tant que substrats donneurs de la MTG. L’éventuelle amélioration de cette réactivité permettrait de faire de la MTG un biocatalyseur plus général pour la synthèse d’amides. Mots clés: Lien amide, biocatalyse, biotransformation, transglutaminase, arrimage moléculaire, criblage de substrats, ingénierie de substrats. / Microbial transglutaminase (MTG) is used extensively in the food and textile industry to alter the appearance and texture of products. MTG catalyses the formation of isopeptide linkages between proteins by an acyl transfer reaction between the γ-carboxamide group of a glutamine ‘acyl-donor’ substrate, and the ε-amino group of a lysine ‘acyl-acceptor’ substrate. MTG is tolerant to a broad range of reaction conditions and is therefore suitable for further development as a biocatalyst. Toward developing MTG as a “green” alternative for amide synthesis, we have investigated a range of non-native donor and acceptor substrates to probe the scope of MTG reactivity. Small, chemically varied compounds were tested as alternative acyl-acceptor substrates. We observed a broad acceptor specificity. We show, for the first time, that very short-chain alkyl-based amino acids such as glycine can serve as acceptor substrates. The esterified α-amino acids Thr, Ser, Cys and Trp – but not Ile – also show reactivity. Extending the search to non-natural compounds, an aromatic ring was observed to be beneficial for reactivity, although ring substituents reduced reactivity. Overall, bonding of the amine to a less hindered carbon increases reactivity. Importantly, very small amines carrying either the electron-rich azide or the alkyne groups required for click chemistry were highly reactive as acceptor substrates, providing a ready route to minimally modified, ‘clickable’ peptides. These results demonstrate that MTG is tolerant to a variety of chemically varied natural and non-natural acceptor substrates, which broadens the scope for modification of glutamine-containing peptides. To further probe the biocatalytic potential of MTG in terms of the donor substrate, smaller analogues of the model substrate Z-Gln-Gly were tested. We did not find product formation with substrates smaller than the model substrate. We observed, for the first time, trace esterase activity with MTG. Future improvement of this activity would render MTG a more attractive, general biocatalyst for amide bond formation.

Page generated in 0.188 seconds