Spelling suggestions: "subject:"εκθετική κατανομή"" "subject:"εκθετικής κατανομή""
1 |
Εκτίμηση ποσοστιαίων σημείων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής ως προς ασύμμετρη συνάρτηση ζημιάςΔεδελετάκης, Γεώργιος 28 August 2008 (has links)
Η παρούσα διατριβή εντάσσεται ερευνητικά στην περιοχή της στατιστικής θεωρίας αποφάσεων. Αντικείμενο της είναι η μελέτη προβλημάτων εκτίμησης ποσοστιαίου σημείου για το μοντέλο της παραμετρικής εκθετικής κατανομής. Στο πρώτο κεφάλαιο περιέχονται κάποιοι ορισμοί και παρουσιάζονται γνωστά αποτελέσματα. Στο δεύτερο κεφάλαιο παρατίθεται το μοντέλο της διπ. εκθετικής κατανομής και κατασκευάζονται γνωστοί εκτιμητές για το ποσοστιαίο σημείο της. Στο τρίτο κεφάλαιο εξετάζονται οι εκτιμητές τύπου stein, στο τέταρτο κεφάλαιο οι εκτιμητές τύπου bayes, ενώ στο τελευταίο κεφάλαιο δίνονται οι γραφικές παραστάσεις οι οποίες δείχνουν το ποσοστό βελτίωσης που πετυχαίνεται με την χρήση των πιο πάνω εκτιμητών. / This paper is enlisted in the area of the statistical decision theory. Its objective is the problem of estimation of the fraction point in the model of the exponential distribution with two parameters. In the first chapter, we propose simple and well known theorems, the second chapter comprises of the model of the exponential distribution and well known estimators for her fraction point, in the third chapter the stein estimators are presented, the fourth chapter has the bayes estimators and finally we present the graphical presentations.
|
2 |
Εκτίμηση ποσοστιαίων σημείων για επιλεγμένο εκθετικό πληθυσμό από k πληθυσμούςΑγγέλου, Κωνσταντίνος 06 November 2014 (has links)
Η παρούσα διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής Θεωρίας Αποφάσεων
και ειδικότερα στην (σημειακή) εκτίμηση του ποσοστιαίου σημείου στο μοντέλο της
διπαραμετρικής εκθετικής κατανομής. Το πρόβλημα της εκτίμησης του ποσοστιαίου σημείου
από τη σκοπιά της Στατιστικής Θεωρίας Αποφάσεων ακολούθησε αυτό της παραμέτρου
κλίμακας, ειδικότερα αναφέρουμε το πρόβλημα εκτίμησης της διασποράς κανονικής κατανομής
με άγνωστη μέση τιμή από τον Stein (1964). Στην εργασία εκείνη ο Stein απέδειξε ότι, με
κριτήριο το μέσο τετραγωνικό σφάλμα, ο βέλτιστος αναλλοίωτος εκτιμητής της διασποράς είναι
μη αποδεκτός, κατασκευάζοντας άλλον με μικρότερο μέσο τετραγωνικό σφάλμα. Εν συνεχεία, οι
Brewster and Zidek (1974) παρουσίασαν δύο γενικές τεχνικές κατασκευής βελτιωμένων
εκτιμητών, εφαρμόσιμες για τυχαία bowl-shaped συνάρτηση ζημίας και αποτελεσματικές,
κυρίως όταν η υπό εκτίμηση παράμετρος είναι η παράμετρος κλίμακας και επί πλέον υπάρχει
και άλλη άγνωστη παράμετρος. Αντικείμενο της μεταπτυχιακής διατριβής είναι η εκτίμηση του
ποσοστιαίου σημείου θεωρώντας ανεξάρτητα τυχαία δείγματα από εκθετικούς πληθυσμούς με
την ίδια παράμετρο θέσης και διαφορετική παράμετρο κλίμακας για κάθε πληθυσμό ξεχωριστά.
Βασιζόμενοι στην εργασία των Kumar and Sharma (1996) βρίσκουμε εκτιμητή μέγιστης
πιθανοφάνειας και αμερόληπτο εκτιμητή ελάχιστης διασποράς για το ποσοστιαίο σημείο από
τον πρώτο εκθετικό πληθυσμό και στην συνέχεια εφαρμόζουμε τη τεχνική κατασκευής,
βελτιωμένων εκτιμητών, των Brewster and Zidek (1974).
Η παρουσίαση των επί μέρους θεμάτων και αποτελεσμάτων της διατριβής αυτής οργανώνεται
ως εξής.
Στο Κεφάλαιο 1 αναφέρονται κάποια βασικά στοιχεία θεωρίας από τη Μαθηματική Στατιστική,
όπως βασικοί ορισμοί και θεωρήματα σχετικά κυρίως με τη συνάρτηση κινδύνου (risk function),
τους εκτιμητές (UMVUE), τους εκτιμητές μέγιστης πιθανοφάνειας (MLE) και τους
αναλλοίωτους (equivariant) εκτιμητές. Στο Κεφάλαιο 2 ορίζεται η διπαραμετρική εκθετική
κατανομή και το ποσοστιαίο σημείο της διπαραμετρικής εκθετική κατανομής,
, θετική σταθερά ,από τον πρώτο εκθετικό πληθυσμό, το οποίο στη συνέχεια
εκτιμάται από τον εκτιμητή μέγιστης πιθανοφάνειας και από τον εκτιμητή.
Στο Κεφάλαιο 3 χρησιμοποιούνται τεχνικές βελτίωσης του εκτιμητή του ποσοστιαίου
σημείου. Αρχικά εντοπίζεται ο βέλτιστος εκτιμητής του ποσοστιαίου σημείου στην κλάση των
εκτιμητών με κριτήριο το μέσο τετραγωνικό σφάλμα και στη συνέχεια χρησιμοποιείται η τεχνική
κατασκευής, βελτιωμένων εκτιμητών, των Brewster and Zidek (1974) όταν
και όταν
. Τέλος στο Κεφάλαιο 4 αναφέρονται κάποια Λήμματα τα οποία χρησιμοποιούνται
σε αποδείξεις προτάσεων της διατριβής. / Estimating quantiles of a selected exponential population from k populations.
|
3 |
Ιδιότητες και εκτίμηση για την κατανομή LaplaceΚαμπάνης, Γεώργιος 31 August 2012 (has links)
Η παρούσα διπλωματική διατριβή εντάσσεται ερευνητικά στη περιοχή της Στατιστικής Θεωρίας Αποφάσεων, καθώς ασχολούμαστε με τη μελέτη της κατανομής Laplace CL(θ,s), όπου με θ και s συμβολίζονται αντίστοιχα οι παράμετροι θέσεως και κλίμακος, και η οποία θεωρείται ως ιδανικό μοντέλο κατανομής οικονομικής φύσεως δεδομένων. / This thesis is part of research in the area of Statistical Decision Theory, as it deals with the study of the distribution Laplace CL (θ, s), where θ and s respectively symbolized the position and scale parameters, which is considered as an ideal model of distribution of economic kind of data.
|
4 |
Εκτίμηση των παραμέτρων της διπαραμετρικής εκθετικής κατανομής από ένα διπλά διακεκομμένο δείγμαΔασκαλάκη, Ιωάννα 05 January 2011 (has links)
Η παρούσα μεταπτυχιακή διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής Θεωρίας Αποφάσεων και ειδικότερα στην εκτίμηση των παραμέτρων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής με παράμετρο θέσης μ και παράμετρο κλίμακος σ. Θεωρούμε ένα δείγμα n τυχαίων μεταβλητών, καθεμία από τις οποίες ακολουθεί την διπαραμετρική εκθετική κατανομή. Λογοκρίνουμε κάποιες αρχικές παρατηρήσεις και έστω ότι τερματίζουμε το πείραμά μας πριν αποτύχουν όλες οι συνιστώσες. Τότε προκύπτει ένα διπλά διακεκομμένο δείγμα διατεταγμένων παρατηρήσεων. Η εκτίμηση των παραμέτρων της διπαραμετρικής εκθετικής κατανομής, γίνεται από το συγκεκριμένο δείγμα.
Πρώτα μελετάμε κάποιες βασικές έννοιες της Στατιστικής και της Εκτιμητικής και βρίσκουμε εκτιμητές για τις παραμέτρους. Πιο συγκεκριμένα, βρίσκουμε αμερόληπτο εκτιμητή ελάχιστης διασποράς, εκτιμητή μέγιστης πιθανοφάνειας, εκτιμητή με την μέθοδο των ροπών και τον βέλτιστο αναλλοίωτο εκτιμητή σε συγκεκριμένη κλάση, αντίστοιχα και για τις δύο παραμέτρους. Σαν βελτίωση των προηγούμενων εκτιμητών, ακολουθούν οι εκτιμητές τύπου Stein και, ολοκληρώνοντας, ασχολούμαστε με πρόβλεψη κατά Bayes για μια μελλοντική παρατήρηση / The present master thesis deals with the estimation of the location parameter μ and the scale parameter σ of the two-parameter exponential distribution. A sample n of random variables from the two-parameter exponential distribution is assumed. Part of the initial variables is censored and the experiment is terminated before all the components fail. A doubly censored sample emerges from which the two-parameter exponential distribution's parameters are estimated.
First of all, basic Statistics' concepts are studied in order to estimate the parameters. More specifically, the Minimum Variance Unbiased Estimator (MVUE), the Maximum Likelihood Estimator (MLE), the estimator based on the Method of Moments and the best affine equivariant estimator are computed for both the parameters. To improve the previous estimators, the Stein method is used and to conclude the Bayes prediction is used for future observation
|
5 |
Μελέτη του ρυθμού αποτυχίας για το χρόνο ζωής βιομηχανικών προϊόντωνΜαυραειδή, Φανή 08 December 2008 (has links)
Mελετάται η μίξη δύο συνεχών κατανομών με αύξοντα ρυθμό αποτυχίας και δίνονται συνθήκες για να έχει η μίξη φθίνοντα ρυθμό αποτυχίας.
Όταν η μία από τις δύο κατανομές της μίξης είναι η εκθετική γίνεται αντιστροφή του ρυθμού αποτυχίας.
Στην περίπτωση της μίξης δύο κανονικών κατανομών παρουσιάζεται ο τρόπος που συνδέεται το πλήθος των κορυφών της πυκνότητας με τον ρυθμό αποτυχίας της μίξης.
Mελετάται επίσης, η μονοτονία του ρυθμού αποτυχίας διακριτών κατανομών χρησιμοποιώντας τον λόγο δύο διαδοχικών πιθανοτήτων και δίδεται μία συνθήκη για να έχει η μίξη δύο διακριτών κατανομών φθίνοντα ρυθμό αποτυχίας όταν η μία από τις δύο κατανομές της μίξης είναι η γεωμετρική.
Τέλος, χρησιμοποιώντας τον λόγο διαδοχικών πιθανοτήτων, μελετούμε την μονοτονία του ρυθμού αποτυχίας για διδιάστατες διακριτές κατανομές. / The mixture of two continuous distributions, with increasing failure rates, is considered and the necessary conditions to have decreasing failure rate (DFR) are given. When one of these distributions is the Exponential, reversal of the failure rate is observed.
In the case of two normal distributions the failure rate is associated with the number of modes.
It is also considered the failure rate for discrete distributions in regard with the ratio of two consecutive probabilities. A condition to have DFR is given when one of the distributions of the mixture is the geometric.
Finally, we make use of the ratio of two consecutive probabilities to study the failure rate for bivariate discrete distributions.
|
6 |
Εκτίμηση των παραμέτρων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής, υπό περιορισμόΡαφτοπούλου, Χριστίνα 10 June 2014 (has links)
Η παρούσα μεταπτυχιακή διατριβή εντάσσεται ερευνητικά στην περιοχή της Στατιστικής Θεωρίας Αποφάσεων και ειδικότερα στην εκτίμηση των παραμέτρων στο μοντέλο της διπαραμετρικής εκθετικής κατανομής με παράμετρο θέσης μ και παράμετρο κλίμακος σ. Θεωρούμε το πρόβλημα εκτίμησης των παραμέτρων κλίμακας μ και θέσης σ, όταν μ≤c, όπου c είναι μία γνωστή σταθερά. Αποδεικνύουμε ότι σε σχέση με το κριτήριο του Μέσου Τετραγωνικού Σφάλματος (ΜΤΣ), οι βέλτιστοι αναλλοίωτοι εκτιμητές των μ και σ, είναι μη αποδεκτοί όταν μ≤c, και προτείνουμε βελτιωμένους. Επίσης συγκρίνουμε του εκτιμητές αυτούς σε σχέση με το κριτήριο του Pitman. Επιπλέον, προτείνουμε εκτιμητές που είναι καλύτεροι από τους βέλτιστους αναλλοίωτους εκτιμητές, όταν μ≤c, ως προς την συνάρτηση ζημίας LINEX. Τέλος, η θεωρία που αναπτύσσεται εφαρμόζεται σε δύο ανεξάρτητα δείγματα προερχόμενα από εκθετική κατανομή. / The present master thesis deals with the estimation of the location parameter μ and the scale parameter σ of the two-parameter exponential distribution. We consider the problem of estimation of locasion parameter μ and the scale parameter σ, when it is known apriori that μ≤c, where c is a known constant. We establish that with respect to the mean square error (mse) criterion the best affine estimators of μ and σ in the absence of information μ≤c are inadmissible and we propose estimators which are better than these estimators. Also, we compare these estimators with respect to the Pitman Nearness criterion. We propose estimators which are better than the standard estimators in the unrestricted case with respect to the suitable choise of LINEX loss. Finally, the theory developed is applied to the problem of estimating the location and scale parameters of two exponential distributions when the location parameters are ordered.
|
7 |
Ιδιότητες και εκτίμηση για την γενικευμένη εκθετική κατανομήΚάτρης, Χρήστος 12 April 2010 (has links)
Αρχικά γίνεται μια ιστορική αναδρομή, μια παρουσίαση της διπαραμετρικής Γενικευμένης εκθετικής κατανομής (τύπος κατανομής, συνάρτηση πυκνότητας πιθανότητας κλπ) και αναφέρονται βασικά χαρακτηριστικά της κατανομής.
Στη συνέχεια αναφέρονται βασικοί ορισμοί και θεωρήματα σχετικά κυρίως με τη σημειακή παραμετρική εκτίμηση καθώς και την εκτίμηση κατά Bayes.
Το επόμενο κεφάλαιο πραγματεύεται την ανάλυση του μοντέλου και τις βασικές ιδιότητες της Γενικευμένης εκθετικής κατανομής. Επίσης μελετώνται ειδικά θέματα, όπως συναρτήσεις επιβίωσης, πληροφορία Fisher, διατεταγμένες παρατηρήσεις, κατανομή του αθροίσματος και παραγωγή τυχαίων αριθμών, στα πλαίσια της Γενικευμένης εκθετικής κατανομής.
Στη συνέχεια αναλύονται και εφαρμόζονται μέθοδοι σημειακής εκτίμησης (Μέγιστη Πιθανοφάνεια, Μέθοδος ροπών, Μέθοδος εκατοστημορίων, Ελάχιστα και σταθμισμένα ελάχιστα Τετράγωνα, L-ροπές) για την εκτίμηση των παραμέτρων της κατανομής. Μελετάται και η απόδοση των εκτιμητών για τις διάφορες μεθόδους εκτίμησης.
Ακολουθεί η εκτίμηση τύπου Bayes των παραμέτρων (με συναρτήσεις ζημίας τετραγωνικού σφάλματος και LINEX αντίστοιχα). Αναφέρονται πάλι συμπεράσματα για την απόδοση των εκτιμητών και σύγκριση με τους εκτιμητές μέγιστης πιθανοφάνειας.
Τελικά παρουσιάζουμε την προσέγγιση ενός αναλογιστικού πίνακα μέσω της Γενικευμένης εκθετικής κατανομής. / In the beginning, we mention a historical recursion, a presentation of the
2-parameter Generalized exponential distribution ( distribution type, probability density function etc.) and we also mention basic characteristics of the distribution.
Basic definitions and theorems about point estimation and Bayes estimation are reported.
Furthermore, we discource on the analysis of the model and basic properties of the Generalized exponential distribution. Special themes, such as survival functions, Fisher information, order statistics, sum distribution and production of random numbers are analyzed in the frame of the Generalized exponential distribution.
Moreover, we analyze and apply point estimation methods (maximum likelihood, method of moments, percentile estimation, least (and weighted least) squares, method of L-moments) in order to estimate parameters of the distribution. Performance of the estimators for different estimation methods is also analyzed.
Next, bayesian estimation of the parameters (under squared error loss function and LINEX loss function) is coming up for discussion. We also analyze the performance of the estimators and compare them to the maximum likelihood estimators.
Finally, we present approximation of an actuarial table via Generalized exponential distribution.
|
Page generated in 0.0625 seconds