21 |
Αριθμητική προσομοίωση τυρβώδους ροής και μεταφορά ιζήματος πυθμένα επαγόμενων από τη διάδοση και θραύση παράκτιων κυματισμώνΚολοκυθάς, Γεράσιμος 02 March 2015 (has links)
Στην παρούσα διατριβή διερευνάται η επίδραση παράκτιων μη-θραυόμενων κυματισμών στη μορφολογική ισορροπία αμμώδους πυθμένα με πτυχώσεις, η θραύση εκχείλισης κυμάτων πάνω από πυθμένα σταθερής κλίσης, καθώς και τα συνεπαγόμενα κυματογενή ρεύματα στη ζώνη απόσβεσης. Για το σκοπό αυτό αναπτύσσονται μοντέλα αριθμητικής προσομοίωσης, τα οποία πραγματοποιούν επίλυση των δισδιάστατων και τρισδιάστατων εξισώσεων ασυμπίεστης, συνεκτικής ροής με ελεύθερη επιφάνεια. Η αριθμητική επίλυση των εξισώσεων ροής, Navier-Stokes, επιτυγχάνεται με τη χρήση κλασματικής μεθόδου για τη χρονική ολοκλήρωση, ενώ η χωρική διακριτοποίηση πραγματοποιείται μέσω ενός υβριδικού σχήματος πεπερασμένων διαφορών και ψευδο-φασματικών μεθόδων προσέγγισης. Στις προσομοιώσεις της θραύσης εκχείλισης κύματος γίνεται χρήση της μεθόδου προσομοίωσης μεγάλων κυμάτων LWS, σύμφωνα με την οποία επιλύονται μόνο οι μεγάλες χωρικές διακυμάνσεις της ταχύτητας και της ελεύθερης επιφάνειας, ενώ η επίδραση των μικρότερων διακυμάνσεων περιγράφεται μέσω ενός μοντέλου διατμητικών τάσεων υποκλίμακας (SGS), ανάλογα με ότι ισχύει στη μέθοδο προσομοίωσης μεγάλων δινών, LES. Ένα ανεξάρτητο μοντέλο για την προσομοίωση της μεταβολής μορφολογίας πυθμένα, μέσω μεταφοράς φορτίου πυθμένα, αναπτύσσεται και χρησιμοποιείται σε σύζευξη με τα μοντέλα προσομοίωσης δισδιάστατης ροής. H παροχή του φορτίου πυθμένα υπολογίζεται μέσω τροποποίησης γνωστών εμπειρικών σχέσεων, σε συνδυασμό με τη στιγμιαία διατμητική τάση πυθμένα από τη μονάδα προσομοίωσης της ροής. Από τις προσομοιώσεις ροής πάνω από πυθμένα με πτυχώσεις, προκύπτει ότι η παρουσία των πτυχώσεων επηρεάζει σημαντικά το κυματογενές οριακό στρώμα, ενώ οι μορφολογικές προσομοιώσεις οδηγούν στο συμπέρασμα ότι, η μακροπρόθεσμη ισορροπία των πτυχώσεων επέρχεται για συγκεκριμένη τιμή της γωνίας/συντελεστή δυναμικής τριβής, η οποία συσχετίζεται με τις διαστάσεις των πτυχώσεων και τα χαρακτηριστικά του κύματος. Για τη θραύση εκχείλισης εξετάζονται οι περιπτώσεις κάθετης αλλά και υπό γωνία, ως προς την ακτογραμμή, διάδοσης κυμάτων πάνω από πυθμένα σταθερής κλίσης 1/35. Τα αποτελέσματα για τα χαρακτηριστικά της κάθετης θραύσης (ύψος και βάθος θραύσης, Ηb και db, αντίστοιχα) και του συνεπαγόμενου υποβρύχιου ρεύματος, συγκρίνονται με δημοσιευμένες πειραματικές μετρήσεις και η συμφωνία είναι ικανοποιητική. Το μοντέλο είναι σε θέση να προσομοιώσει την ανάπτυξη του επιφανειακού στροβίλου στο μέτωπο του θραυόμενου κύματος, η οποία συνοδεύεται από αύξηση της ισχύος των SGS τάσεων (μέχρι βάθους d/db ≈ 0.75) και διαδοχική μείωσή τους, μέχρι μηδενισμού, στα ρηχά της ζώνης απόσβεσης. Από τα αποτελέσματα για το πεδίο στροβιλότητας και τις SGS τάσεις, κατά την προσομοίωση της υπό γωνία θραύσης, παρατηρείται η σταδιακή θραύση του κύματος κατά μήκος της κορυφογραμμής, ενώ προκύπτει ότι οι τελευταίες παραμένουν ενεργές για περίπου δύο μήκη κύματος. Επίσης, η μέση ταχύτητα του παράλληλου ρεύματος προκύπτει πιο ενισχυμένη σε ρηχά βάθη στη ζώνη απόσβεσης (d/db < 0.5), ενώ η κατακόρυφη κατανομή του παρουσιάζεται σαφώς επηρεασμένη από την παρουσία του υποβρύχιου ρεύματος κοντά στον πυθμένα. / In the present thesis, the impact of nearshore, non-breaking waves on the morphological equilibrium of small scale patterns that appear in sandy beds, well-known as ripples, the spilling wave breaking over a bed of constant slope and the wave-induced currents developing in the surf zone, are investigated. Numerical models are developed for the simulation of the aforementioned phenomena, based on the numerical solution of the two/three-dimensional, incompressible, viscous, free-surface flow. The numerical solution of the flow equations, i.e. the Navier-Stokes equations, is accomplished by means of a time-splitting scheme of three stages for the temporal discretization and a hybrid scheme for the spatial discretization, with central finite differences along the streamwise direction and pseudo-spectral approximations, with Fourier modes and Chebyshev polynomials along the spanwise and vertical directions, respectively. The simulations of spilling wave breaking are performed employing the so-called large-wave simulation (LWS) method, according to which, large velocity and free-surface scales are fully resolved, while the effect of subgrid scales is modeled by eddy-viscosity stresses, similar to large-eddy simulation (LES) methodology. The bed morphology evolution, driven by the bed load sediment transport, is simulated by a morphology model, which performs the numerical solution of the sediment mass conservation equation, utilized coupled with the two-dimensional flow model. The bed load transport rate, is computed inserting bed shear stress timeseries (by the flow model) into published empirical formulas that have been modified to fit the characteristics of the investigated cases. For the case of rippled bed, it was found that the structure of the wave boundary layer is substantially influenced by the presence of the ripples, and that for a certain value of the dynamic friction angle/coefficient, which is correlated to the ripple dimensions and the wave characteristics, the ripples remain in quasi-steady equilibrium after each wave period. Wave breaking is investigated by the simulation of normal and oblique to the shoreline propagation, transformation and spilling breaking of incoming Stokes waves, over a bed of constant slope, tanβ = 1/35. Our numerical results are compared to published experimental measurements, and it is found that the LWS model predicts adequately the wave breaking parameters - breaking height, Ηb, and depth, db- and the distribution of the undertow current in the surf zone. The development of the surface roller in the breaking wavefront is also captured, while is connected to the increase of the strength of the sub-grid (SGS) stresses in the outer surf zone (up to d/db ≈ 0.75) and their successive decrease at shallower depths close to the shoreline. For the case of oblique wave breaking, the vorticity and the SGS stresses distribution in the surf zone clearly indicate the gradual breaking along the wave crestline, while the latter (SGS stresses) remain active for about two wavelenghts. Finally, the magnitude of the longshore current is found to be enhanced at shallower depths in the surf zone (d/db < 0.5), while its vertical distribution is affected by the interaction with the undertow current.
|
22 |
Μέθοδος Hamilton-Jacobi για τη ρύθμιση μη γραμμικών διεργασιών με ασταθή δυναμική μηδενιστώνΜουσαβερέ, Δήμητρα 13 March 2009 (has links)
Για την αντιμετώπιση του προβλήματος ρύθμισης ενός συστήματος μη ελάχιστης φάσης είναι γνωστοί δύο τρόποι από τη θεωρία των γραμμικών συστημάτων. Ο ένας αφορά στην επιλογή βέλτιστης συνθετικής εξόδου ως προς την οποία το σύστημα είναι ελάχιστης φάσης. Ο δεύτερος τρόπος περιλαμβάνει άμεση κατασκευή βέλτιστου νόμου ανάδρασης καταστάσεων ως προς ένα σύνθετο δείκτη απόδοσης.
Στην παρούσα εργασία αρχικά αναπτύσσεται μέθοδος για τη σύνθεση βέλτιστου νόμου ανάδρασης καταστάσεων για μη γραμμικές διεργασίες, όπου η είσοδος υπεισέρχεται μη γραμμικά στις διαφορικές εξισώσεις, με βάση ένα σύνθετο τετραγωνικό δείκτη απόδοσης. Ο δείκτης αυτός εξαρτάται τόσο από τη ρυθμιστική απόκλιση, όσο και από την απόκλιση της μεταβλητής χειρισμού. Για την επίλυση του προβλήματος δυναμικής βελτιστοποίησης χρησιμοποιούνται οι εξισώσεις Hamilton – Jacobi μέσω των οποίων υπολογίζεται ο βέλτιστος νόμος ανάδρασης καταστάσεων. Η λύση των εξισώσεων Hamilton – Jacobi υπολογίζεται με βάση την επαναληπτική μέθοδο Newton – Kantorovich. Σε κάθε βήμα της επανάληψης επιλύεται προσεγγιστικά μια μερική διαφορική εξίσωση τύπου Zubov με τη βοήθεια αναπτύγματος σε δυναμοσειρά. Στο Νοστό βήμα της επανάληψης η μέθοδος παράγει τη Νοστής τάξης προσέγγιση του αναπτύγματος κατά Taylor του βέλτιστου νόμου ανάδρασης καταστάσεων. Η παραπάνω μέθοδος εφαρμόζεται σε προβλήμα ρύθμισης της συγκέντρωσης προϊόντος σε σύστημα δύο μη ισοθερμοκρασιακών αντιδραστήρων CSTR, όπου λαμβάνει χώρα εξώθερμη αντίδραση, στην περίπτωση που η είσοδος υπεισέρχεται μη γραμμικά στις δυναμικές εξισώσεις της διεργασίας. Επίσης μελετώνται οι ιδιότητες σύγκλισης της επαναληπτικής μεθόδου Newton – Kantorovich, όταν αυτή εφαρμόζεται για την επίλυση της εξίσωσης Hamilton – Jacobi – Bellman που αντιστοιχεί στο πρόβλημα βελτιστοποίησης ενός σύνθετου τετραγωνικού δείκτη απόδοσης υπό τους περιορισμούς μιας μη γραμμικής δυναμικής όπου η είσοδος υπεισέρχεται γραμμικά στις διαφορικές εξισώσεις.
Στη συνέχεια, για τη βέλτιστη ρύθμιση μη γραμμικών συστημάτων με ασταθή δυναμική μηδενιστών (συστήματα μη ελάχιστης φάσης), χρησιμοποιείται ο συνήθης τετραγωνικός δείκτης απόδοσης ISE. Στην περίπτωση αυτή το πρόβλημα δυναμικής βελτιστοποίησης είναι ιδιόμορφο. Για την επίλυση του προβλήματος αυτού το μη γραμμικό σύστημα μετασχηματίζεται στην κανονική μορφή Byrnes-Isidori, εφαρμόζεται η θεωρία Hamilton – Jacobi και υπολογίζεται στατικά ισοδύναμη συνθετική έξοδος με ευσταθή δυναμική μηδενιστών. Η ρύθμιση της συνθετικής εξόδου στο προκαθορισμένο σημείο επιτυγχάνεται με γραμμικοποίηση εισόδου/εξόδου. Για την επίλυση των σχετικών εξισώσεων Hamilton–Jacobi αναπτύσσεται η επαναληπτική μέθοδος Newton – Kantorovich, η οποία περιλαμβάνει την επίλυση μιας μερικής διαφορικής εξίσωσης τύπου Zubov σε κάθε βήμα της επανάληψης. Η μέθοδος εφαρμόζεται σε πρόβλημα ρύθμισης της συγκέντρωσης του επιθυμητού προϊόντος σε μη ισοθερμοκρασιακό αντιδραστήρα CSTR με κινητική Van de Vusse που παρουσιάζει ασταθή δυναμική μηδενιστών.
Τέλος, οι δύο μέθοδοι συγκρίνονται με βάση τους επιμέρους δείκτες απόδοσης ISE και ISC, των οποίων ο γραμμικός συνδυασμός συνιστά το σύνθετο δείκτη απόδοσης της πρώτης μεθόδου, ενώ τα αποτελέσματά τους συγκρίνονται όταν αυτές εφαρμόζονται σε πρόβλημα ρύθμισης της συγκέντρωσης του επιθυμητού προϊόντος σε μη ισοθερμοκρασιακό αντιδραστήρα CSTR με κινητική Van de Vusse. / For the control of nonlinear nonminimum – phase systems, there are two possible lines of attack, originating from linear systems theory: a) direct calculation of the optimal state feedback with respect to a quadratic performance index that represents a combination of an error measure and a control effort measure (composite index), and b) calculation of the ISE-optimal minimum-phase output and subsequent input/output linearization on that output.
This work develops a numerical algorithm for the calculation of an optimal nonlinear state feedback law for nonlinear systems. A quadratic performance index is used, which contains quadratic error terms and quadratic input penalty terms. The optimization problem is solved using the Hamilton-Jacobi equations, which determine the optimal nonlinear state feedback law. A Newton-Kantorovich iteration is developed for the solution of the pertinent Hamilton-Jacobi equations, which involves solving a Zubov partial differential equation at each step of the iteration, using a power series method. At step N of the iteration, the method generates the (N+1)-th order truncation of the Taylor series expansion of the optimal state feedback function. The method is applied to the problem of controlling a system of two non-isothermal continuous stirred tank reactors (CSTR), where an exothermic reaction takes place. Convergence properties of the algorithm are also developed independently of Kantorovich’s theorem, and the results are illustrated in a numerical example.
For the optimal regulation of nonminimum-phase nonlinear systems, the performance index ISE (Integral of the Square of the Error) is used. The problem of minimizing ISE subject to the dynamics of the system and closed-loop stability is singular. The problem of calculation of an ISE-optimal, statically equivalent, minimum-phase output for nonminimum-phase compensation is formulated using Hamilton-Jacobi theory and the Byrnes-Isidori normal form representation of the nonlinear system. An input/output linearizing state feedback law is applied to regulate the synthetic output to a constant set point. A Newton-Kantorovich iteration is developed for the solution of the pertinent Hamilton-Jacobi equations, which involves solving a Zubov equation at each step of the iteration. The method is applied to the problem of controlling a nonisothermal CSTR with Van de Vusse kinetics, which exhibits nonminimum-phase behaviour.
Finally, the two methods are compared with respect to the constituent indexes ISE and ISC (Integral of the Square of the Control), whose linear combination forms the composite performance index. The numerical results from both methods are compared in the control of a nonisothermal CSTR with Van de Vusse kinetics.
|
23 |
Δυισμοί στη γραμμικοποιημένη βαρύτηταΜυλωνάς, Διονύσιος 07 July 2010 (has links)
Στη γραμμική εκδοχή της γενικής θεωρίας της σχετικότητας, θεωρεί κανείς τις διαταραχές κάποιας μετρικής γύρω από κάποιο χωροχρονικό υπόβαθρο. Κρατώντας όρους διαταραχών μέχρι και πρώτης τάξεως, οδηγείται κανείς στις γραμμικές εξισώσεις Einstein. Σε αυτό το πλαίσιο αποδεικνύεται μια σχέση δυισμού ανάμεσα στα διάφορα στοιχεία του τανυστή Weyl, αντίστοιχη με το δυισμό ανάμεσα στην ηλεκτρική και τη μαγνητική ροή της ηλεκτρομαγνητικής θεωρίας του Maxwell.
Στην εργασία αυτή κάνουμε μία ανασκόπηση της έρευνας που έχει γίνει μέχρι τώρα αναφορικά με αυτές τις σχέσεις δυισμού. Πιο συγκεκριμένα, εξετάζουμε την ισχύ των σχέσεων στον Anti-de Sitter χωρόχρονο και επισημαίνουμε το τρόπο με τον οποίο κατασκευάζει κανείς δυικές δομές από τις εκφράσεις για τις διαταραχές. Επίσης, χρησιμοποιώντας τη τεχνική της ολογραφικής επανακανονικοποίησης, εξετάζουμε το σύμμορφο σύνορο του χωροχρόνου. Βρίσκουμε εκεί μια σχέση δυισμού ανάμεσα στα στοιχεία του τανυστή ενέργειας-ορμής και του τανυστή Cotton της αντίστοιχης Chern - Simons θεωρίας, η οποία αποδεικνύεται ότι είναι άμεση συνέπεια του δυισμού στο AdS υπόβαθρο.
Τέλος, εφαρμόζουμε την ίδια συλλογιστική στο Schwarzschild - Anti-de Sitter υπόβαθρο, όπου η παρουσία της μελανής οπής διαφοροποιεί τις συνοριακές συνθήκες του προβλήματος. Λόγω αυτού του γεγονός δεν μπορεί να πει κανείς με σιγουριά εάν μπορούν να διατυπωθούν σχέσεις δυισμού σε αυτή τη περίπτωση. Παρόλα αυτά βρίσκουμε ότι ισχύουν σχέσεις δυισμού στο σύμμορφο σύνορο παρόμοιες με αυτές του AdS υποβάθρου, πράγμα που σημαίνει ότι στο σύστημα παραμένει κάποια συμμετρία από τη γραμμική θεωρία. Η εργασία καταλήγει σε σχόλια και μία εκτενή συζήτηση για τις πιθανές μελλοντικές κατευθύνσεις. / In the linear version of the general theory of relativity, one considers metric perturbations around a fixed background. Keeping terms up to first order of perturbation leads to the linearized Einstein equations. In this framework it has been proved that a duality between the various elements of the Weyl tensor holds. This duality is similar to the one between the electric and magnetic fluxes of Maxwell's electromagnetism.
In the present work we review the status of these dualities for non trivial backgrounds. We examine the Anti-de Sitter background, where we point out the way to explicitly construct dual configurations using the metric perturbation expressions. Using the holographic renormalization technique, we examine the conformal boundary where a duality between the components of the energy-momentum tensor and the Cotton tensor of the corresponding Chern - Simons theory holds. It is then proved that this duality is a direct consequence of the electric/magnetic duality in the bulk, in the case of the AdS background.
Finally, we apply same procedure to the Schwarzschild - Anti-de Sitter background, where the presence of the black hole changes the boundary conditions of the problem. This simple fact makes it impossible say whether such a duality exists in this case. Nevertheless, we find that a duality similar to that of the AdS background still holds for the conformal boundary, which means that there is a remnant of symmetry from the linear theory. We conclude with comments and a extensive discussion on possible future directions.
|
24 |
Generalized integral transforms related to the theory of potential and stokes flow / Γενικευμένοι ολοκληρωτικοί μετασχηματισμοί στην θεωρία δυναμικού και στη ροή StokesΔόσχορης, Μιχαήλ 29 July 2011 (has links)
The main concern of this Dissertation is focused on the derivation of novel integral formulation for simple problems. This alternative integral representations display a rapid decay as the complex parameter involved tends to infinity and are therefore suitable for numerical computations and for the study of the asymptotic properties of those solutions. There is also another important advantage attached to the novel formulae presented. These integral representations are useful for solving changing-type boundary value problems (such as Dirichlet data on part of the boundary and Neumann data on the complementary of the boundary).
The following problems are analyzed: (a) The Laplacian operator in the interior of a Square, (b) the Laplacian operator in the interior and exterior of a Sphere and, (c) the Stokes' operator concerning the irrotational flow of an incompressible, viscous fluid.
Moreover, the behaviour of the Gegenbauer functions of the first and second kind of general complex degree and order on the cut (-1, +1) are examined. / Με οδηγό μια νέα μεθοδολογία επίλυσης Μερικών Διαφορικών Εξισώσεων (ΜΔΕ),
προβλήματα που σχετίζονται με την θεωρία Δυναμικού όπως επίσης και με την ροή Stokes, θα αναλυθούν. Απώτερος σκοπός αποτελεί η ανάπτυξη ολοκληρωτικών αναπαραστάσεων, η οποίες χαρακτηρίζονται από ταχεία σύγκλιση, με σκοπό να χρησιμοποιηθούν στην ασυμπτωτική μελέτη, στην αριθμητική ανάλυση όπως επίσης και στην επίλυση προβλημάτων μεικτών συνοριακών συνθηκών (π.χ. δεδομένα Dirichlet στο ένα κομμάτι του συνόρου και δεδομένα Neumann στο υπόλοιπο). Συγκεκριμένα, τα ακόλουθα προβλήματα αναλύονται: (α) Εξίσωση Laplace στο εσωτερικό ενός τετραγώνου, (β) εξίσωση Laplace στο εσωτερικό και εξωτερικό μιας σφαίρας και, (γ) εξίσωση αστρόβιλης ροής Stokes στο εσωτερικό ενός σφαιρικού κελύφους το οποίο στην συνέχεια καταλήγει, με οριακές διαδικασίες, στο εσωτερικό και εξωτερικό μιας σφαίρας. Τέλος, παρουσιάζονται αναπτύγματα και ασυμπτωτικές εκφράσεις των συναρτήσεων Gegenbauer.
|
25 |
Μαθηματικές μέθοδοι στα μικροοικονομικά και χρηματοοικονομικάΑνδριόπουλος, Κωστής 22 December 2011 (has links)
Η διατριβή χωρίζεται σε δύο μέρη. Στο Μέρος Α' χρησιμοποιούνται μαθηματικές μέθοδοι της Θεωρίας Παιγνίων και των Δυναμικών Συστημάτων για να μελετηθεί η κανονική και χαοτική δυναμική διαφόρων μοντέλων της Μικροοικονομίας. Βασικά αποτελέσματα είναι η μετάβαση σε συνθήκες πλήρους ανταγωνισμού και η διαφοροποίηση του παραγόμενου προιόντος σε ένα δυοπώλιο-τριοπώλιο. Στο Μέρος Β', κύριος στόχος της έρευνας ήταν να συνδεθούν ορισμένες από τις πλέον γνωστές μερικές διαφορικές εξισώσεις (ΜΔΕ) που χρησιμοποιούνται στα Οικονομικά Μαθηματικά και Χρηματοοικονομικά, με την εξίσωση της θερμότητας της Μαθηματικής Φυσικής, εφαρμόζοντας την κατά Lie συμμετρίες ανάλυση. Επίσης η ανάλυση αυτή αποδείχθηκε ιδιαίτερα ισχυρή για την εύρεση αλγεβρικών δομών εξισώσεων που περιγράφουν την τιμολόγηση αγαθών. Έτσι, οδηγούμαστε με συστηματικό τρόπο όχι μόνο στην εύρεση νέων λύσεων αλλά και στην ανακάλυψη κομψών γενικεύσεων των εξισώσεων αυτών. / The thesis is divided into two parts. In Part One we use the mathematical methods of Game Theory and Dynamical Systems to study the stable and chaotic dynamics of various models in Microeconomics. Some of our main results are the route to perfect competition and the differentiation of goods in a duopoly and in a triopoly. In Part Two, our main concern was to link some of the most well-known partial differential equations that are encountered in Economics and Financial Mathematics, with the heat equation of Mathematical Physics, using Lie symmetry analysis. More to that, this analysis proved extremely powerful to the finding of interesting algebraic properties for equations that describe the pricing of commodities. In such way, we succeed in presenting, in a systematic fashion, not only new solutions, but also elegant generalisations of the equations under investigation.
|
26 |
Διαφορική θεωρία Galois και μη-ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Stormer και του ισοσκελούς προβλήματος τριών σωμάτωνΝομικός, Δημήτριος 20 October 2010 (has links)
Στην παρούσα διατριβή μελετήσαμε την ολοκληρωσιμότητα του ανισοτροπικού προβλήματος Størmer (ASP) και του ισοσκελούς προβλημάτος τριών σωμάτων (IP), με εφαρμογή της θεωρίας Morales-Ramis-Simó. Τα αποτελέσματα της μελέτης δημοσιεύθηκαν στο περιοδικό Physica D: Nonlinear Phenomena.
Ένα σύστημα Hamilton SH, Ν βαθμών ελευθερίας, είναι ολοκληρώσιμο (κατά Liouville) όταν επιδέχεται Ν συναρτησιακώς ανεξάρτητα και σε ενέλιξη πρώτα ολοκληρώματα. Οι J.J. Morales-Ruiz, J.P. Ramis και C. Simó απέδειξαν ότι αν ένα SH είναι ολοκληρώσιμο, τότε η ταυτοτική συνιστώσα G0k της διαφορικής ομάδας Galois των εξισώσεων μεταβολών VE¬k τάξης k , που αντιστοιχούν σε μια ολοκληρωτική καμπύλη του SH, είναι αβελιανή.
Το ASP μπορεί να θεωρηθεί ότι είναι ένα σύστημα Hamilton δυο βαθμών ελευθερίας που περιέχει τις παραμέτρους pφ και ν2>0, το οποίο περιγράφει την κίνηση ενός φορτισμένου σωματιδίου υπό την επίδραση του μαγνητικού πεδίου ενός διπόλου. Οι Α. Almeida, T. Stuchi είχαν αποδείξει ότι το ASP είναι μη-ολοκληρώσιμο για pφ≠0 και ν2>0, ενω για pφ=0 είχαν αποδείξει τη μη-ολοκληρωσιμότητα των περιπτώσεων που αντιστοιχούν στις τιμές ν2≠5/12, 2/3. Η δική μας διερεύνηση απέδειξε ότι το ASP με pφ=0 (ASP0) είναι, επίσης, μη-ολοκληρώσιμο για ν2=5/12, 2/3. Αρχικά, με χρήση της μεθόδου Yoshida, αναλύσαμε τις G01 των VE¬1, που αντιστοιχούν σε δύο ολοκληρωτικές καμπύλες του ASP0, καταλήγοντας ότι οι G01 είναι μη-αβελιανές για ν2≠2/3. Στη συνέχεια, ορίσαμε τις VE3 κατά μήκος μιας τρίτης ολοκληρωτικής καμπύλης του ASP0 και δείξαμε ότι η αντίστοιχη G03 είναι μη-αβελιανή για ν2=2/3. Σύμφωνα με τη θεωρία Morales-Ramis-Simó, τα προαναφερόμενα αποδεικνύουν τη μη-ολοκληρωσιμότητα του ASΡ για pφ=0 και ν2>0.
Το ΙΡ είναι μια υποπερίπτωση του προβλήματος τριών σωμάτων και μπορεί να μελετηθεί ως ένα σύστημα Hamilton δύο βαθμών ελευθερίας με παραμέτρους pφ και m, m3>0. Η προγενέστερη ανάλυση του ΙΡ υπεδείκνυε τη μη-ολοκληρωσιμότητα του συστήματος, όμως είχε πραγματοποιηθεί με χρήση αριθμητικών μεθόδων. Βρίσκοντας από μια ολοκληρωτική καμπύλη για κάθε μια απο τις περιπτώσεις pφ=0, pφ≠0, ορίσαμε τις αντίστοιχες VE1 και αποδείξαμε τη μη-ολοκληρωσιμότητα του ΙΡ. Για pφ=0 χρησιμοποιήσαμε τη μέθοδο Yoshida για να μελετήσουμε την G01, ενώ για pφ≠0 εφαρμόσαμε τον αλγόριθμο Kovacic και ερευνητικά αποτελέσματα των D. Boucher, J.A. Weil για να διερευνήσουμε την αντίστοιχη G01. Οι G01 και στις δυο προαναφερόμενες περιπτώσεις είναι μη-αβελιανές, οπότε το ΙΡ είναι μη-ολοκληρώσιμο, σύμφωνα με τη θεωρία Morales-Ramis-Simó. / In the present dissertation we studied the integrability of the anisotropic Stormer problem (ASP) and the isosceles three-body problem (IP), applying the Morales-Ramis-Simo theory. The results of our study were published by the journal Physica D: Nonlinear Phenomena.
A Hamiltonian system SH, of N degrees of freedom, is integrable (in the Liouville sense) if it admits an involutive set of N functionally independent first integrals. J.J. Morales-Ruiz, J.P. Ramis and C. Simó proved that if an SH is integrable, then the identity component G0k of the differential Galois group of the variational equations VE¬k of order k that correspond to an integral curve of the SH, is abelian.
The ASP can be considered as a Hamiltonian system of two degrees of freedom that contains the parameters pφ and ν2>0, which describes the motion of a charged particle under the influence of the magnetic field of a dipole. Α. Almeida, T. Stuchi had proved that the ASP is non-integrable for pφ≠0 and ν2>0, while for pφ=0 they had proved the non-integrability of the cases that correspond to ν2≠5/12, 2/3. Our study proved that the ASP with pφ=0 (ASP0) is, also, non-integrable for ν2=5/12, 2/3. Initially, using the Yoshida method, we analysed the G01 of the VE¬1, that correspond to two integrals curves of the ASP0, concluding that they are non-abelian for ν2≠2/3. Then, we defined the VE3 along a third integral curve of the ASP0 and indicated that the corresponding G03 is non-abelian for ν2=2/3. According to the Morales-Ramis-Simó theory, the aforementioned considerations prove the non-integrability of the ASP for pφ=0 and ν2>0.
The IP is a special case of the three-body problem and it can be treated as a Hamiltonian system of two degrees of freedom that embodies the parameters pφ and m, m3>0. Previous analysis of the IP suggested the non-integrability of the system, but it was performed with the use of numerical methods. Finding an integral curve for each of the cases pφ=0, pφ≠0, we defined the corresponding VE1 and proved the non-integrability of the IP. For pφ=0 we used the Yoshida method to examine G01 , while for pφ≠0 we applied the Kovacic algorithm and some results of D. Boucher, J.A. Weil to investigate the corresponding G01 . In both of the aforementioned cases the G01 were non-abelian, yielding IP non-integrable, according to the Morales-Ramis-Simó theory.
|
Page generated in 0.0708 seconds