• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 128
  • 16
  • Tagged with
  • 144
  • 144
  • 70
  • 62
  • 61
  • 46
  • 44
  • 40
  • 37
  • 36
  • 36
  • 33
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

聯準會模型的國際普遍性與門檻回歸應用 / The International Test and the Threshold Regressive Analysis of the Fed model

潘彥君 Unknown Date (has links)
本篇論文檢驗聯準會模型在六個亞洲市場:中國大陸、印度、馬來西亞、新加坡、台灣和泰國是否成立。我們首先檢驗共整合檢定來觀察變數之間長期的關係;另外,針對線性的指標模型,我們則檢測其是否具有非線性的門檻自回歸情形。實證結果顯示,於共整合檢定下,六個國家的股票價格、股票報酬和十年期債券殖利率具有長期共整合關係;而在非線性的TAR模型配適下,其解釋能力優於線性的AR模型。 / This paper studies the Fed Model in six Asia countries, China, India, Malaysia, Singapore, Taiwan, and Thailand. We examine the cointegraiton test for the long-run relationship and build a nonlinear threshold autoregressive model (TAR) between the long -term government bond yield, the stock index and the earning s index. Our empirical results show that such a long-run relationship indeed exists for those countries. In addition, the explanatory power of TAR model is better than linear AR model.
122

匯率報酬模型之非線性調整及可預測性 / Nonlinear adjustment and predictability of exchange rate returns models

陳紹珍 Unknown Date (has links)
在全球經貿體系自由化下,國際資金流通快速,匯率變動也非常頻繁,廠商的產銷決策與營運,面對匯率風險更加難以掌控。如何掌握匯率的變動,並採取有效的避險措施,是廠商從事貿易必須面臨之重要課題。本研究採用自我迴歸整合移動平均模式、倒傳遞類神經網路及混合式自我迴歸整合移動平均模式及倒傳遞類神經網路模型進行未來即期匯率報酬率之預測。試圖找出合適的新台幣兌美元即期匯率之預測模型,並將其應用於外匯避險操作。 研究結果顯示,關於預測誤差的績效表現,整體來說,以自我迴歸整合移動平均及倒傳遞類神經網路混合式模型表現最佳,顯示傳統時間序列模型捕捉匯率報酬率走勢之能力,藉由倒傳遞類神經網路捕捉其線性預測誤差中非線性的部分,可更符合資料的特性,加強匯率報酬率預測的準確性。考慮預測方向的正確性,在兩個不同的準則下(SR、PT),皆以自我迴歸整合移動平均模型表現最差,代表其在進行匯率報酬率之預測時正確率較為不足。而在PT檢定當中,倒傳遞類神經網路模型及混合式模型皆達到顯著。因此利用人工智慧模型對報酬率之方向進行預測是有效的,又以自我迴歸整合移動平均及倒傳遞類神經網路混合式模型表現最好。總結來說,利用倒傳遞類神經網路模型針對自我迴歸整合移動平均模型做非線性的調整,同時涵蓋未來匯率報酬率線性與非線性的部分,使得自我迴歸整合移動平均模型之預測誤差、方向準確性皆得到改善,藉由倒傳遞類神經網路捕捉其線性預測誤差中非線性的部分,可更符合資料的特性,加強匯率報酬率預測的準確性。
123

帶走一首曲子:結合音樂與敘事之數位繪本創作 ─以《心弦之歌》App為例 / Bring back a piece of music: a creative project of combining music and storytelling in the interactive music picture app-”Song of Heartstrings”

游馨婷, Yu, Hsin Ting Unknown Date (has links)
本創作嘗試發展一套結合音樂與故事元素的數位繪本,以非線性敘事為架構,融入音樂敘事元素,以「帶走一首曲子」的閱讀形式,創造一種新的繪本閱讀經驗。在閱讀繪本的過程中,讀者可以透過選擇場景中的角色,在閱讀完該角色故事後,獲得代表角色的音樂元素。隨著多次選擇互動,背景的音樂元素也慢慢增加,讀完故事的最後,可以得到一首完整的曲子。根據讀者的選擇不同,將得到不同的音樂結果,此結果也詮釋了每一次的故事經驗。 本繪本創作以「心弦之歌」為主題,透過主角與城市人物的互動,產生聽覺和視覺的變化。本創作期望創造一個由單一至豐富的閱讀體驗,透過音樂、人物與故事的結合,加深作品所要傳達的訊息,並結合音樂和繪本的療癒特性,來達到滿足的效果。 創作完成後進行作品實測與評估,施測對象根據目標對象及評估目標,由21-30歲具繪本閱讀經驗者及潛在讀者、具數位繪本或音樂相關互動App使用經驗者、具音樂背景者所組成,分別就內容及形式兩個面向,透過作品實測、問卷和深入訪談的方式來評估是否達成創作目的,並針對問卷及訪談的結果進行歸納分析,最後提出結論和建議。 / The purpose of this research is to develop an interactive digital picture book app which combines musical and narrative elements by adding musical narration into non-linear narrative structure. This digital project, “Song of Heartstrings”, is aimed at creating a new reading experience of picture book by designing the reading form: “Bring Back a Song”. “Song of Heartstrings” shows auditory and visual changes through the interactions between protagonist and other characters. Through the reading process, audience can select one or more characters among all, and collect corresponding soundtrack after finishing the character’s storyline. The goal of this app is evaluated by readers’ experiences test, questionnaires and in-depth interviews. After that, we use inductive approach to analyze the result of questionnaires and in-depth interviews, and make conclusion and recommendation.
124

有序分類下三維列聯表之關係模型探討 / On Association Models for Three-Way Contingency Tables with Ordinal Categories

劉佳鑫, Benny Liu, Chia-Hsin Unknown Date (has links)
本文主要是在探討三個變數所構成之三維列聯表中,兩兩有序類別變數間的關係,而衡量的標準,我們則採用「兩兩變數所構成之二維列聯表中,相鄰兩列與相鄰兩行所求計出的相對成敗比(local odds ratios)」。在三維列聯表的資料架構下,我們可分別就固定某一變數水準之下兩個有序變數彼此間的「條件關係」,以及三個有序類別變數彼此兩兩間的「部分關係」,建構其各自的三維關係模型,並進行參數估計。此外,我們也提供必要的電腦程式,並舉出實例,加以說明。 / In analyzing a three-way contingency table with three ordinal variables, we can use association models suggested in Goodman (1979) to study the association between each pair of ordinal variables. The association was measured in terms of the local odds ratios formed from adjacent rows and adjacent columns of the cross-classification. This article investigates in great details the conditional association models and the partial association models for three-way cross-classifications. In addition, issues on estimating the para-meters in these two kinds of association models are discussed, and computer programs are provided. Some of the applications are illustrated.
125

應用數量方法於解決多重目標規劃問題之研究

戚樹誠, Qi, Shu-Cheng Unknown Date (has links)
本研究旨在提出多重目標決策理論之分析模式,并考慮實際管理者之使用,以作為管 理決策過程的有效工具。 不論個人的、組織的問題,不可避免存在不同且彼此衝突之目標。對於單一目標,傳 統作業研究理論已提供相當完整、審密的分析,然而,對於多重目標問題,則因涉及 層面遠較複雜,理論發展至近年才漸豐富,本文便研析至今之各種學說,并嘗試引入 實際決策情境討論。 全文乃以觀念性分析邏輯配合實際操作,其內容計有: 一、決策者的價值與偏好具體化-利用屬性分析及權的量度。 二、線型多目標規劃模型 三、目標規劃模型 四、互動規劃模型 五、實際操作的探討 為使其易於為管理者接受,筆者并建議在使用時宜採行的原則,以作選擇模型之參考 ,最後并提及今後的發展方向,以展望此學科邁向更嚴謹、系統化的整套理論體系。
126

資本資產定價模型之穩健估計分析

顏培俊, Yen, Pei-Chun Unknown Date (has links)
長期性資料(longitudinal data)的最主要特徵是為對多個被觀測個體在不同的時間點上重複測量一個或多個反應變數。而在分析長期性資料的方法中,Laird & Ware(1982)建議以線性混合效果模型(linear mixed effects model,LME)來進行估計分析,此模型方法中,資料可以允許遺失值,並可將受測個體間與個體內的變異分開說明。 另在配適最小平方法(OLS)的迴歸模型中,係數估計經常會受到異常值的影響,而Rousseeuw & Leroy(1987)提出最小消去平方法(least trimmed squares,LTS)的穩健迴歸模型,即是解決最小平方法中對於異常值敏感的問題。 本研究主要針對台灣股票預期報酬之三種模型:資本資產定價模型、特徵模型、因子模型分別以OLS、LTS、LME三種估計方法做配適,並比較配適模型之適當與否,樣本資料為民國七十年七月至九十年六月共252個月516家上市公司股票報酬。實證結果顯示,不論是採用OLS、LTS、LME的估計方法,股票報酬解釋變數:系統風險、公司規模、帳面權益對市值比、SMB、HML皆為股票報酬的顯著解釋因子;而在模型比較方面,不論是配適資本資產定價模型、特徵模型或因子模型,LME都較OLS為較適當配適模型。這顯示了在分析長期性資料時,LME的確是一個較佳的統計分析模型。
127

以穩健估計及長期資料分析觀點探討資本資產定價模型 / On the CAPM from the Views of Robustness and Longitudinal Analysis

呂倩如, Lu Chien-ju Unknown Date (has links)
資本資產定價模型 (CAPM) 由Sharp (1964)、Lintner (1965)及Black (1972)發展出後,近年來已被廣泛的應用於衡量證券之預期報酬率與風險間之關係。一般而言,衡量結果之估計有兩個階段,首先由時間序列分析估計出貝它(beta)係數,然後再檢定廠商或投資組合之平均報酬率與貝它係數之關係。 Fama與MacBeth (1973)利用最小平方法估計貝它係數,再將由橫斷面迴歸方法所得出之斜率係數加以平均後,以統計t-test檢定之。然而以最小平方法估計係數,其估計值很容易受離群值之影響,因此本研究考慮以穩健估計 (robust estimator)來避免此一問題。另外,本研究亦將長期資料分析 (longitudinal data analysis) 引入CAPM裡,期望能檢定貝它係數是否能確實有效地衡量出系統性風險。 論文中以台灣股票市場電子業之實證分析來比較上述不同方法對CAPM的結果,資料蒐集期間為1998年9月至2001年12月之月資料。研究結果顯示出,穩健估計相對於最小平方法就CAPM有較佳的解釋力。而長期資料分析模型更用來衡量債券之超額報酬部分,是否會依上、中、下游或公司之不同而不同。 / The Capital Asset Pricing Model (CAPM) of Sharp (1964), Lintner (1965) and Black (1972) has been widely used in measuring the relationship between the expected return on a security and its risk in the recent years. It consists of two stages to estimate the relationship between risk and expected return. The first one is that betas are estimated from time series regressions, and the second is that the relationship between mean returns and betas is tested across firms or portfolios. Fama and MacBeth (1973) first used ordinary least squares (OLS) to estimate beta and took time series averages of the slope coefficients from monthly cross-sectional regressions in such studies. However it is well known that OLS is sensitive to outliers. Therefore, robust estimators are employed to avoid the problems. Furthermore, the longitudinal data analysis is applied to examine whether betas over time and securities are the valid measure of risk in the CAPM. An empirical study is carried out to present the different approaches. We use the data about the Information and Electronic industry in Taiwan stock market during the period from September 1998 to December 2001. For the time series regression analysis, the robust methods lead to more explanatory power than the OLS results. The linear mixed-effect model is used to examine the effects of different streams and companies for the security excess returns in these data.
128

流行音樂組曲之電腦音樂編曲 / Computer Music Arrangement for Popular Music Medley

董信宗, Tung,Hsing-Tsung Unknown Date (has links)
在音樂中,組曲是一種特別的創作形式。組曲將多首音樂段落組合排列,並且在音樂段落之間加入間奏,形成一首音樂組曲。組曲的編曲重點在於音樂段落的編排順序及段落之間的連結。平時在宴會、舞會、餐廳、賣場等場合中,往往都會連續播放多首流行音樂。利用電腦編曲自動產生流行音樂組曲,將可提升播放音樂的銜接與流暢感。 因此,本研究利用資料探勘技術及音樂編曲理論,將多首音樂重新改編成一首組曲。系統首先將每首音樂分段並找出每首音樂的代表段落。接著,系統根據代表段落間的相似度編排順序。最後,為了達到組曲中音樂段落連接的流暢性,我們以模型訓練的方式在段落連結間加入間奏。系統從訓練資料學習產生旋律發展、和弦進程與節奏的模型,接著分析代表段落的動機、旋律、和弦及節奏,使得組曲編曲後的段落連結更為流暢且完整。本研究以流行音樂鋼琴伴奏曲為測試資料,我們分別邀請三十四位受過音樂訓練與未受音樂訓練的測試者,針對本研究所提出的鋼琴伴奏節奏辨識、代表段落萃取、段落順序編排及間奏產生,評估其效果。實驗結果顯示,本研究所提出的順序編排與間奏產生技術,對於組曲的流暢感,有著相當大的幫助。 / In music, a medley is an organized piece composed from segments of existing pieces. Ordering and bridge for connection between segments are the important elements for medley arrangement. Automatic medley arrangement is helpful for playing a set of music continuously which is common in banquet, party, restaurant, shopping mall, etc.. This thesis aims to develop the automatic medley arrangement method by using data mining techniques and music arrangement theory. The proposed method first segments each music and discovers the significant segment from each music. Then, the linear arrangement based on the similarities between significant segments is generated. Finally, in order to connect segments smoothly in the medley, the bridge between two segments is generated and inserted by using model training. Three models, melody progression, chord progression and rhythm models are learned from training data. For the experiments, testing data is collected from popular piano music and thirty-four people are invited to evaluate the effectiveness of the rhythm recognition of accompaniment, the extraction of significant segment, the linear arrangement of segments, and the creation of bridge. Experimental results show that the proposed medley arrangement method performs well.
129

高承諾人力資源措施與知識分享的關係探討:採跨層次分析 / A Study of the Relationship between High Commitment Human Resource Practices and Knowledge Sharing: A cross-level analysis using hierarchical linear modeling

楊敦程, Yang, Tun Cheng Unknown Date (has links)
知識不同於一般的商品,其具有無形、內隱與價值不易判斷等特質,組織很難以權威、命令、或單以金錢的方式來要求員工主動分享其專屬的知識,以提高組織內知識運用與創造的循環。人力資源制度涵蓋整體企業,各項措施與內部員工息息相關,而員工個人主觀的支持知覺和對上司的信任態度,對其知識分享(Knowledge sharing)的行為存在可能的影響。本研究以社會交換理論為基礎,透過階層線性模式(Hierarchical Linear Modeling)的統計方法,以Snell & Dean(1992)提出的五種高承諾人力資源措施構面為組織層次變項,同時參考Eisenberger(1986)與Robinson(1994)所提出的知覺組織支持(POS)與信任(Trust)為個體層次的預測變項和中介變項,驗證跨層次與單一層次的變項對組織員工知識分享行為的影響。 本研究將問卷分為主管問卷與基層問卷,透過書面郵寄與電子郵件的方式進行發放,對象為台灣國內27家金融機構的管理人員與一般員工,參與本研究的公司涵蓋銀行、證券、保險、投信、郵局與期貨公司。我們經由實證分析,得到了以下的研究發現: 一、 員工的知覺組織支持的認知程度愈高,其採取知識分享的意願與行為也會愈高。 二、 員工的知覺組織支持的認知程度愈高,其對直屬上司的信任也會跟著增加。 三、 員工對直屬上司的信任程度增加,其採取知識分享的意願與行為也會愈高。 四、 對直屬上司的信任在員工的知覺組織支持與知識分享之間存在中介效果。 五、 高承諾人力資源措施對知覺組織支持之間的跨層次影響有顯著,個別措施中嚴格甄選、績效評估、外部競爭與內部公平薪酬制度對員工的知覺組織支持之間存在正向關係。 六、 高承諾人力資源措施對信任之間的跨層次影響不顯著,個別措施的關係皆不顯著。 七、 高承諾人力資源措施對知識分享之間的跨層次影響不顯著,個別措施中僅嚴格甄選對員工的知識分享之間存在正向關係。 依據本研究結論,提供具體建議予相關單位及後續研究者參考。 / Knowledge has the characteristics of being intangible, tacit and difficult to evaluate. So an organization can’t force its employees to actively share their own knowledge to others by using the ways of authority, command or high payment only. High Commitment Human Resource Management (HCHRM) system includes many practices which closely influence the whole company and individuals in the organization context. And in individual level, the knowledge-sharing behavior of employees may be changed by the factors of perception organization support (POS) for company and the Trust for supervisors. In this study, we use Hierarchical Linear Modeling (HLM) to investigate the relationship among HCHRM practices, POS, Trust and Knowledge Sharing (KS) in both single level and cross level. The research hypotheses all base on the theory of Social Exchange. We collected 956 valid questionnaires from the employers and employees in 27 financial companies in Taiwan. According to the results of our analysis, we found that POS and Trust in individual level were significantly and positively associated with the employees’ behavior of knowledge sharing. And Trust also had intervening effect between POS and KS. In cross-level analysis, HCHRM practices can only affect the variable of POS. Finally, we conclude with a brief discussion of the interpretations and implications of the results in the context of single-level and cross-level. We also provide some practical and reasonable suggestions for company supervisors and further research.
130

位移與混合型離散過程對波動度模型之解析與實證 / Displaced and Mixture Diffusions for Analytically-Tractable Smile Models

林豪勵, Lin, Hao Li Unknown Date (has links)
Brigo與Mercurio提出了三種新的資產價格過程,分別是位移CEV過程、位移對數常態過程與混合對數常態過程。在這三種過程中,資產價格的波動度不再是一個固定的常數,而是時間與資產價格的明確函數。而由這三種過程所推導出來的歐式選擇權評價公式,將會導致隱含波動度曲線呈現傾斜曲線或是微笑曲線,且提供了參數讓我們能夠配適市場的波動度結構。本文利用台指買權來實證Brigo與Mercurio所提出的三種歐式選擇權評價公式,我們發現校準結果以混合對數常態過程優於位移CEV過程,而位移CEV過程則稍優於位移對數常態過程。因此,在實務校準時,我們建議以混合對數常態過程為台指買權的評價模型,以達到較佳的校準結果。 / Brigo and Mercurio proposed three types of asset-price dynamics which are shifted-CEV process, shifted-lognormal process and mixture-of-lognormals process respectively. In these three processes, the volatility of the asset price is no more a constant but a deterministic function of time and asset price. The European option pricing formulas derived from these three processes lead respectively to skew and smile in the term structure of implied volatilities. Also, the pricing formula provides several parameters for fitting the market volatility term structure. The thesis applies Taiwan’s call option to verifying these three pricing formulas proposed by Brigo and Mercurio. We find that the calibration result of mixture-of-lognormals process is better than the result of shifted-CEV process and the calibration result of shifted-CEV process is a little better than the result of shifted-lognormal process. Therefore, we recommend applying the pricing formula derived from mixture-of-lognormals process to getting a better calibration.

Page generated in 0.0149 seconds