1 |
化妝品商品與顧客關係管理之關聯性研究-以B公司為例 / The Association Rules Analysis of Cosmetic Products and Customer Relationship Management - A Case of B Company張祖蕙, Chang, Tsu Hui Unknown Date (has links)
化妝品產業發展相當蓬勃,全球市場每年的成長快速,消費者對化妝品需求也越來越廣,加上環保意識抬頭,追求效果同時也希望帶給生態以及地球正面的效益;而消費者在眾多商品之中不僅只是選擇有效的產品,產品本身的訴求更要符合消費者的期待。近年科技進步神速,資料庫的儲存容量越來越大,利用資料探勘技術於事業拓展,將這些知識轉化為業務決策的工具,實現商業價值即所謂的商業智慧,不僅能降低營運成本,更能提供企業的有意義的資訊。
本研究的顧客資料來源為B公司近一年的會員消費紀錄,研究目的如下:
一、對顧客交易資料進行資料探索分析,了解銷售資料本身的基本特質。
二、根據B公司會員之銷售資料進行計算,變數包含銷售日期、銷售數量、銷售金額以及銷售地點等,使用資料探勘找出潛在忠誠顧客。
三、根據忠誠顧客的銷售資料,使用關聯分析方法,歸納忠誠顧客的消費行為與規則,並依照此規則為該族群量身打造銷售策略,有利於未來的業績成長,加強企業與顧客之間的交流。
研究結果發現:銷售狀況受季節性因素影響,建議依照季節變化推出相關商品,吸引會員消費;茶樹系列和白麝香氛系列為B公司之主要熱銷商品,而VIP與Bonus兩種會員身份的的消費方式存在明顯差異,根據RFM分析結果找出價值客戶,並區分為兩種,第一種為忠誠客戶,建議和忠誠客戶維持緊密關係,並持續追蹤忠誠客戶的消費行為;第二種為機會客戶,其和忠誠客戶存在明顯差異,對於茶樹系列商品相當支持,購買比例甚至高於忠誠顧客,且喜好的產品系列集中在茶樹系列以及FIT緊實系列,同時購買同系列產品的比例明顯高於忠誠顧客,建議積極經營機會客戶,量身打造銷售策略。
|
2 |
資料採礦實務應用 - 以關聯規則分析E-ICP商品消費資料何玉芝 Unknown Date (has links)
20世紀電腦、網路產業的快速發展,使得人類能夠藉由更快速的電腦處理更大量的資料,但也因此產生了更多的問題。資料採礦技術發展的目的便在於解決分析大量資料時所遇到的問題。
商業領域的資料採礦發展十分迅速,因為由資料採礦得到的資訊與知識能夠幫助行銷決策者訂定最佳的行銷策略。終極目標是將公司內部、外部的資訊串連起來,經由工作循環以得到商業智慧。
目前台灣許多行銷領域的研究單位都在進行消費者資料的蒐集。本研究以E-ICP資料庫為研究目標,利用資料採礦方法挖掘尚未被研究者發現的知識。由於過去E-ICP資料的運用較少觸及商品消費的整體探討,但商品消費概況卻佔E-ICP資料相當大的比重,因此試以關聯規則分析為工具,進一步瞭解商品間的關係。
藉由本次實證研究的經驗發現關聯規則分析在實務上不適用之處,這樣的回饋對於未來研究關聯規則分析的研究者而言,能夠提供許多值得深究的方向。 / The swift developments of Computer Science and Internet in 20 century enable people handling more and more data, but bring even more problems. Data Mining is then developed to solve them.
Data Mining is very popular in business environment, because all the information and knowledge gained can help managers make the best decisions. And in the long run, Data Mining can help the circulation of information inside and outside an organization.
In Taiwan, many research centers are collecting consuming data in order to understand more about consumer behaviors. This study is in focus of E-ICP data which has a long history in consumer issues. The commodities data in E-ICP dataset is very abundant, but less emphasis was made upon it. Therefore, using Association Rules to find out the relationship between commodities is a good trial.
The process of analyzing E-ICP data with Association Rules let us realize how difficult to take it into practice. And the problems I faced and the solutions I used in this study could feedback to future analyzer for some meaningful research issues.
|
3 |
應用文件探勘技術於概念股股價共同移動之研究 / A study of using text mining on the co-movement of concept stock price吳振和, Wu, Cheng Ho Unknown Date (has links)
證券市場在台灣為相當熱門的投資標的,台灣屬於淺碟式市場,股市投資者以散戶居多,且資訊來源大多為報紙、電視、網路…等媒體,因此外界的訊息易於影響股價波動。近年來股票分類方式除了傳統的產業類別分類,衍生出了一種新的分類方式-概念股。概念股是某種被看好之產品或產業甚至政策相關個股的集合,概念下的股票通常具有相當大的話題性,因此會引發報章媒體的報導,引發投資者的關注。基於以上原因,可推論概念相關的報導會對概念相關個股的漲跌有一定影響。因此本研究以消息面的資訊作為基礎,並以文字探勘技術加以分析,以聚集出人們有興趣概念所相關之個股。
本研究以聯合知識庫2011年1月至4月共86,579篇新聞為資料來源,以iPad2概念為標的,透過文字探勘的技術找出各新聞內容的特徵,並透過關聯分析對新聞做分析,從中找出概念及個股之間的關聯規則,藉此找出和概念相關之個股。接著本研究從台灣證券交易所網站取得2011年2月至5月所有交易日大盤之上漲、下跌個股數量,以其較大值與兩數和相除計算其股價共同移動程度,並取得其累積報酬率與本研究所選出之概念股進行比較。
在研究結果中,本研究方法所選出之概念股在門檻值為0.2時在2月至5月股價共同移動程度分別為79.3%、73.6%、70.2%、68.1%,皆高於MoneyDJ選出之概念股及大盤同期間之股價共同移動程度。而以成對樣本T檢定在顯著水準95%下,顯示本研究選出之概念股顯著有股價共同移動現象。因此也證實了藉由文字探勘技術及關聯規則,能從雜亂無序的新聞中發掘出人們有興趣之概念所相關的個股,以提供投資者做更深入分析。 / In Taiwan stock market, most of investors are individual, as the result, the external information will affect the stock price. Concept stock is an aggregation of many stocks on a relative basis such as industry or particular product. It is usually makes the topic to mass media for report, therefore the investor will pay close attention to it. There are many websites offering digital news so we can obtain easily these from the Internet and analyze them. This paper proposes an method to find stocks that relate to the concept from the digital news.
In this paper, we collected the news from Udndata, using the text mining technique to analyze these data and performing association analysis’s algorithm to find out the association rule between stocks and concept. Then, we use statistical test to test the co-movement pattern between these Concept Stocks to the Taiwan Stock Index. The result illustrate text mining technique is able to find the relation between stocks and concept and proofs the Concept Stocks have co-movement pattern.
|
4 |
應用資料採礦技術於壽險產業客戶行為之探討謝晴伃 Unknown Date (has links)
近年來壽險產業競爭激烈,各壽險公司莫不希望對其顧客有更進一步的了解。事實上,壽險公司所累積的完善資料庫中蘊藏著相當豐富的資訊,若能從中萃取出壽險產業客戶行為訊息,則可提供壽險業者作為行銷決策依據,以增加利潤,減少損失。
以往文獻在壽險產業客戶消費現象的探討上,鮮少採用資料採礦作為發掘工具。因此本研究將嘗試利用資料採礦技巧,先為壽險公司分析客戶不正常解約的失效行為發生原因,進一步探索顧客群中會購買附加保險的群體其行為特徵,並輔以實際保險觀念相互驗證。最後針對有購買附約之傾向的客戶,為其找出主約附約搭配銷售的各種最佳設計,並且對該公司附約產品的推銷方案提出建議,企盼所找出的訊息對於壽險產業實質上的行銷活動設計有所助益。
|
5 |
一個基於記憶體內運算之多維度多顆粒度資料探勘之研究-以yahoo user profile為例 / A Research of Multi-dimensional and Multigranular Data Mining with In-memory Computingwith yahoo user profile林洸儂, Lin, Guang-Nung Unknown Date (has links)
近年來雲端運算技術的發展與電腦設備效能提升,使得以大量電腦主機以水
平擴充的方式組成叢集運算系統,成為一可行的選擇。Apache Hadoop 是Apache
基金會的一個開源軟體框架,它是由Google 公司的MapReduce 與Google 檔案
系統實作成的分布式系統,可以管理數千台以上的電腦群集。Hadoop 利用分散
式檔案系統HDFS 可以提供PB 級以上的資料存放空間,透過MapReduce 框架
可以將應用程式分割成小工作分散到叢集中的運算節點上執行。
此外,企業累積了巨量的資料,如何處理與分析這些結構化或者是非結構化
的資料成了現在熱門研究的議題。因此傳統的資料挖掘方式與演算法必須因應新
的雲端運算技術與分散式框架的概念,進行調整與改良,發展新的方法。
關聯規則是分析資料庫龐大的資料中,項目之間隱含的關聯,常見的應用為
購物籃分析。一般情形下會在特定的維度與特定的顆粒度範圍內挖掘關聯規則,
但這樣的方式無法找出更細微範圍下之規則,例如挖掘一個年度的交易資料無法
發現消費者在聖誕節為了慶祝而購買的商品項目間的規則,但若將時間限縮在
12 月份即可挖掘出這些規則。
Apriori 演算法是挖掘關聯規則的一個著名的演算法,透過產生候選項目集
合與使用自訂的最小支持度進行篩選,產生高頻項目集合,接著以最小信賴度篩
選獲得關聯規則的結果。若有k 種單一項目集合,則候選項目集合最多有2𝑘 − 1
個,計算高頻項目時則需反覆掃描整個資料庫,Apriori 這兩個主要步驟需要耗費
相當大量的運算能力。
因此本研究將資料庫分割成多個資料區塊挖掘關聯規則,再將結果逐步更新
的演算法,解決大範圍挖掘遺失關聯規則的問題,結合spark 分散式運算的架構
實作程式,在電腦群集上平行運算減少關聯規則的挖掘時間。 / Because of improving technique of cloud-computing and increasing capability of
computer equipment, it is feasible to use clusters of computers by horizon scalable a lot
of computers. Apache Hadoop is an open-source software of Apache. It allows the
management of cluster resource, a distributed storage system named Hadoop
Distributed File System (HDFS), and a parallel processing technique called
MapReduce.
Enterprises have accumulated a huge amount of data. It is a hot issue to process
and analyze these structured or unstructured data. Traditional methods and algorithms
of data mining must make adjustments and improvement to new cloud computing
technology and concept of decentralized framework.
Association rules is the relations of items from large database. In general, we find
association rules in fixed dimensions and granular database. However, it might loss
infrequent association rules.
Apriori algorithm is one famous algorithm of mining association rule. There are
two main steps in this algorithm spend a lot of computing resource. To generate
Candidate itemset has quantity 2𝑘 − 1, if there are k different item. Second step is to
find frequent, this step must compare all tractions in the database.
This approach divides database to segmentations and finds association rules of
these segmentations. Then, we combine rules of segmentations. It can solve the problem
of missing infrequent itemset. In addition, we implement this method in Spark and
reduce the time of computing.
|
6 |
應用資料採礦於零售通路業之商品力矩陣分析-以某連鎖藥妝銷售資料為例 / The Application of Data Mining on Commodity Competitiveness Matrix Analysis of Retailing Industry-Case Study of Chained Drugstore Sales Data賴柏龍, Lai, Po Lung Unknown Date (has links)
由於台灣國人所得提高,生活水準跟著日漸提高,近年來更是意識到健康對個人及家庭的重要性,因此國內健康食品與藥品市場在這幾年蓬勃地發展,特別是連鎖藥妝的普及,結合藥品、健康食品與開架式保養品、化妝品銷售,提供專業藥師諮詢服務,成為複合式的經營模式。但近年來連鎖藥妝零售業者也面臨來自外商連鎖藥妝、本土連鎖藥妝、地區性連鎖藥局等不同體系的競爭,因此藥品及化粧品零售業者普遍認同,目前經營上所面臨之困難主要為「同業競爭激烈」。
商品力為一連鎖藥妝零售業者成功的重要因素,具體展現在商品多樣性、商品獲利性、商品價格競爭力、商品獨特性…等不同的面向。目前藥品及化粧品零售業中,確實大部分的業者都有商品企劃或設計的需求,但有商品企劃或設計部門者僅為少數。利用資料採礦技術,將能在不大量增加人事費用的情況下,有效率地協助進行商品企劃或設計,進而提升連鎖藥妝零售業者的商品力。
本研究將針對資料採礦在連鎖藥妝上的應用進行探討,包含以下研究目的:
1. 利用資料採礦中之集群分析建置商品力矩陣,代表他們的屬性與價值。透過商品力矩陣釐清各商品的定位,幫助決策者優化商品組合,針對各商品執行妥善策略安排。
2. 依循集群分析後的結果,更進一步進行商品分類的關聯規則分析。幫助決策者將集群分析之成果化為實務決策之參考,優化商品組合,針對各商品執行妥善策略安排,也為關聯規則的整理帶來新的應用方式。
3. 根據上述兩模型建置之結果,對H連鎖藥妝提出具體可行之行銷策略建議。
本研究利用資料採礦中的Two-step Cluster模型建置出H連鎖藥妝中各項商品的商品力矩陣,此矩陣的兩軸分別為「個別商品的平均毛利」及「個別商品的年交易筆數」,將各種商品概略分為明星、樂透、忠狗、問號四大類商品,分別代表他們不同的屬性與價值。同時配合關聯規則分析,提出具體可行之候選規則篩選模式:
1. 樂透型商品,應用方式有兩種,將樂透型商品放在Apriori模型中的後項,找出導購向樂透型商品的潛在模式;將樂透型商品放在Apriori模型中的前項,並將後項商品作為加價購搭售促銷標的,提升購買樂透型商品的意願。
2. 忠狗型商品,應用方式也有兩種,將忠狗型商品放在Apriori模型中的前項,找出可能導購的商品標的,推出合適的加價購搭售促銷活動;另外也可以藉由觀察忠狗型商品的消費行為,進而提供適當的促銷、推薦,提高其他品項交叉銷售的可能性。 / Taiwanese living standard raised due to the income growing, which lead to recognizing the importance of health toward personal and family. As a result, the market of dietary supplements and drugs flourishing these years, especially the spread of chained drugstores, which turned into combinative store by providing professional pharmacist consultant and selling of drugs, dietary supplements, skincare products and cosmetics. The drug and cosmetic retailers generally agreed that the main difficulty is “Industry Competition” due to the competition from different systems, including foreign chained drugstores, local chained drugstores and regional chained drugstores.
Commodity competitiveness is one of the key successful factors of chained drugstores, which expressed as commodity diversity, commodity profitability, commodity price competitiveness, commodity uniqueness, etc. Seldom drugstores own product planning or designing department although most drugstores have demand of product planning or designing. It could raise the commodity competitiveness of chained drugstores by applying data mining to help product planning or designing more efficiently without increasing too much labor cost.
This study focus on the application of data mining on chained drugstores, including goals below:
1. Building commodity competitiveness matrix by cluster analysis, representing their features and values. Through positioning products on commodity competitiveness matrix, helping decision maker optimize product mix and execute appropriate strategy toward products.
2. Based on the results from cluster analysis, proceed association rules analysis toward product categories. Help turning the results from cluster analysis into references of actual decision, optimize product mix and execute appropriate strategy toward products. Bringing new application pattern of association rules analysis.
3. Providing actual marketing strategy suggestions to H chained drugstore based on the two models built above.
This study built commodity competitiveness matrix of H chained drugstore by Two-step Cluster model, which take “average margin of individual product” and “annual transaction amounts of individual product” as two axes. Divided products into Star, Lottery, Greyfriars and Question Mark. Each of them represent different features and values. Providing practical filtering rules of candidate rules in association rules analysis:
1. Lottery Products:
Placing lottery products as consequents in Apriori model, searching for the potential pattern led to buying lottery products.
Placing lottery products as antecedents, which we can provide the consequents with additional purchase discount in order to raise the willing to buy lottery products.
2. Greyfriars Products:
Placing Greyfriars products as antecedents, searching for potential recommendation with additional purchase discount.
Providing appropriate sales and recommendation to raise the possibility of cross-selling by observing consuming behaviors of Greyfriars products.
|
7 |
如何在資料庫中發掘空間性週期關聯規則--以便利商店交易資料為例 / Data Mining of Spatial Cyclic Association Rules in Databases -- A Convenience Store Transaction Data Example郭家佑, Guo, Jia-You Unknown Date (has links)
資料發掘目前在傳統關聯式資料庫相關議題上已有不少研究,但如果能再整合空間和時間要素進來,將可從資料中發掘出更明確、更具體的知識。以往常使用統計分析方法來分析空間資料,不幸的是,統計分析方法仍有許多問題亟待解決。而Han等人利用概念樹發掘「多層次關聯規則」的技術已相當成熟,值得學習。在時間方面,另外有學者提出「週期關聯規則」的觀念。於是本研究便想結合以上研究的優點,希望能創造出新的應用。
本研究試著將「空間特性」和「週期關聯規則」結合,提出「空間性週期關聯規則」的想法。首先從相關文獻中分別瞭解目前空間、時間資料發掘領域的研究現況,從而整合相關研究,提出研究架構。再以動態網頁技術配合假想的台北市便利商店交易資料庫,發展出一套雛型系統(目前只能作單一項目之間的關聯),以驗證本架構的可行性。最後提出進一步的研究建議,以供後續研究參考。 / There have been a lot of research about data mining in relational database. We can mine more specific and concrete knowledge in transaction databases by further considering spatial and temporal dimension. Until now the statistical spatial analysis has been one common technique for analyzing spatial data. However , there are still many remaining problems. Han et al. used concept hierarchies to mine multiple-level association rules. Their ideas are great and worth our learning. On the other hand , some scholars proposed the notion of cyclic association rules. Therefore , we combine the merits of these researches to discover more meaningful knowledge.
In this research , we try to integrate the ideas of spatial associations with cyclic association and propose the idea of spatial cyclic association rules. First , we survey these researches in the fields of spatial and temporal data mining. A framework is then proposed. Finally , we implement a prototype system in WWW ( 1-itemset and 2-itemset only now).
|
8 |
以雲端運算之概念建構資料採礦中關聯規則與集群分析系統 / Construct a concept of cloud computing and data mining system with association rules and clustering analysis賴建佑 Unknown Date (has links)
雲端運算和資料採礦已成為這二十一世紀的重要發展方向,綜觀現今各個生活層面,已漸漸的融合雲端計算的技術,故結合雲端運算已是一種趨勢。簡而談之,雲端運算是一種讓使用者更加地快速、便利又省成本的一種技術。而資料採礦方面,也已從先前的專門挖掘數字型態的資料,到現在多元的挖掘,像是文字、圖像採礦。資料採礦雖然比雲端運算發展的早,但是其功用是可以相輔相成的,有鑑於此,本研究係要發展出一資料採礦分析系統,使得使用者方便又簡易的操作。並針對特定的資料採礦分析方法-關聯規則及集群分析去研究,並利用Apriori 演算法及K-means方法,和Microsoft Excel VBA和R軟體共同結合出此資料採礦系統。
|
9 |
Mining Multi-Dimension Rules in Multiple Database Segmentation-on Examples of Cross Selling吳家齊, Wu,Chia-Chi Unknown Date (has links)
在今日以客戶為導向的市場中,“給較好的客戶較好的服務”的概念已經逐漸轉變為“給每一位客戶適當的服務”。藉由跨域行銷(cross-selling)的方式,企業可以為不同的客戶提供適當的服務及商品組合。臺灣的金融業近年來在金融整合中陸續成立了多家金融控股公司,希望藉由銀行、保險與證券等領域統籌資源與資本集中,以整合旗下子公司達成跨領域的共同行銷。這種新的行銷方式需要具有表達資料項目間關係的資訊技術,而關聯規則(association rule)是一種支援共同行銷所需之資料倉儲中的極重要元件。
傳統關聯規則的挖掘可以用來找出交易資料庫中客戶潛在的消費傾向。如果得以進一步的鎖定是那些客戶在什麼時間、什麼地點具有這種消費傾向,我們可藉此制定更精確、更具獲利能力的行銷策略。然而,大部分的相關習成技術都假設挖掘出的規則在資料庫的每一個區間都是一樣有效的,然而這顯然不符合大多數的現實狀況。
本研究主要著眼於如何有效率的在不同維度、不同大小的資料庫區域中挖掘關聯規則。藉此發展出可以自動在資料庫中產生分割的機制。就此,本研究提出一個方法找出在各個分割中成立的關聯規則,此一方法具有以下幾個優點:
1. 對於找出的關聯規則,可以進一步界定此規則在資料庫的那些區域成立。
2. 對於使用者知識以及資料庫重覆掃瞄次數的要求低於先前的方法。
3. 藉由保留中間結果,此一方法可以做到增量模式的規則挖掘。
本研究舉了兩個例子來驗證所提出的方法,結果顯示本方法具有效率及可規模化方面均較以往之方法為優。 / In today’s customer-oriented market, vision of “For better customer, the better service” becomes “For every customer, the appropriate service”. Companies can develop composite products to satisfy customer needs by cross-selling. In Taiwan’s financial sector, many financial holding companies have been consecutively founded recently. By pooling the resources and capital for banking, insurance, and securities, these financial holding companies would like to integration information resources from subsidiary companies for cross-selling. This new promotion method needs the information technology which can present the relationship between items, and association rule is an important element in data warehouse which supports cross-selling.
Traditional association rule can discover some customer purchase trend in a transaction database. The further exploration into targets as when, where and what kind of customers have this purchase trend that we chase, the more precise information that we can retrieve to make accurate and profitable strategies. Moreover, most related works assume that the rules are effective in database thoroughly, which obviously does not work in the majority of cases.
The aim of this paper is to discover correspondent rules from different zones in database. We develop a mechanism to produce segmentations with different granularities related to each dimension, and propose an algorithm to discover association rules in all the segmentations. The advantages of our method are:
1. The rules which only hold in several segmentations of database will be picked up by our algorithm.
2. Mining all association rules in all predefined segmentations with less user prior knowledge and redundant database scans than previous methods.
3. By keeping the intermediate results of the algorithm, we can implement an incremental mining.
We give two examples to evaluate our method, and the results show that our method is efficient and effective.
|
10 |
應用資料採礦於連鎖藥局商品 / The Application of Data Mining on the Association of Pharmaceutical Products Through the Chain Pharmacies王詠立, Wang YungLi Unknown Date (has links)
台灣連鎖藥通路已逐漸轉型為複合式藥局,除了購買處方藥以外,現今藥局銷售商品種類眾多且逐漸成為社區商店之型態,讓民眾一次性購足藥品、化妝品、食品及生活日用品等。顧客於門市消費後累積了大筆的顧客會員銷售資料,本研究結合大數據資料採礦之技術,應用在顧客購買行為與行銷策略之間的相應關係,並藉此了解顧客在藥局通路的消費型態,進而衍生出符合顧客需求的行銷組合方案。
本研究藉由台灣某家連鎖藥局的銷售時點情報系統(POINT OF SALE, POS)資料分析顧客會員之購買行為,依據會員之購買日期、購買品項、購買金額等,應用資料採礦分析方法,先利用RFM模型分析顧客價值群的特性概況,再利用APRIORI演算法針對該連鎖藥局的八大類別商品銷售資料探討顧客會員購買產品的關聯規則,依照結果衍生出不同的商品銷售組合,並在門市執行有效的行銷策略以提升營業額。最後,依據研究結果對該家連鎖藥局提供銷售的策略及建議,作為該連鎖藥局業者後續經營之參考。 / The development of the domestic pharmacies in Taiwan has influenced by the government policy and logistics. Gradually, the traditional pharmacy had been replaced by the chain pharmacies to face the demands of products variety, customized and the consumer information.
The members' purchase behaviors were analyzed in this study through the Point of Sale(POS) data from chain pharmacy headquarters. The purchase behaviors of the pharmacy members were analyzed based on purchase date, purchase item, amount of purchase etc. First, data regarding customer purchasing records are collected and widely known RFM model is used to evaluate the value for each customer. Second, an association rule mining tool, the Apriori algorithm, is used to analyze the relationship between customer purchasing records and products, to obtain hidden and useful purchasing rules for each product category.
The association rules obtained can help the decision managers plan their new cross-selling strategies for products in future.
|
Page generated in 0.0231 seconds