Spelling suggestions: "subject:"altre"" "subject:"oltre""
1 |
Conception et validation d'un processeur programmable de traitement du signal à faible consommation et à faible empreinte silicium : application à la vidéo HD sur téléphone mobileThevenin, Mathieu 16 October 2009 (has links) (PDF)
Les capteurs CMOS sont de plus en plus présents dans les produits de grande consommation comme les téléphones portables. Les images issues de ces capteurs nécessitent divers traitements numériques avant d'être affichées. Aujourd'hui, seuls des composants dédiés sont utilisés pour maintenir un niveau de consom- mation électrique faible. Toutefois leur flexibilité est fortement limitée et elle ne permet pas l'intégration de nouveaux algorithmes de traitement d'image. Ce manuscrit présente la conception et la validation de l'archi- tecture de calcul eISP entièrement programmable et originale capable de supporter la vidéo HD 1080p qui sera intégrée dans les futures générations de téléphones portables.
|
2 |
Méthodes et structures non locales pour la restauration d'images et de surfaces 3DThierry, Guillemot 03 February 2014 (has links) (PDF)
Les technologies d'acquisition numériques n'ont cessé de se perfectionner, permettant d'obtenir des données d'une qualité toujours plus fine. Néanmoins, le signal acquis est corrompu par des défauts qui ne peuvent être corrigés matériellement et nécessitent des méthodes de restauration adaptées. A l'origine, ces approches s'appuyaient uniquement sur un traitement local du signal. Récemment, le support du filtre a pu être étendu à l'ensemble des données acquises en exploitant leur caractère autosimilaire. Ces approches non locales ont principalement été utilisées pour restaurer des données régulières et structurées telles que des images. Mais dans le cas extrême de données irrégulières et non structurées comme les nuages de points 3D, leur adaptation est peu étudiée à l'heure actuelle. Avec l'augmentation de la quantité de données échangées, de nouvelles méthodes non locales ont récemment été proposées. Elles utilisent un modèle a priori extrait à partir de grands ensembles d'échantillons pour améliorer la qualité de la restauration. Néanmoins, ce type de méthode reste actuellement trop coûteux en temps et en mémoire. Dans cette thèse, nous proposons d'étendre les méthodes non locales aux nuages de points 3D, en définissant une surface de points exploitant leur caractère autosimilaire. Nous introduisons ensuite une nouvelle structure de données, le CovTree, flexible et générique, capable d'apprendre les distributions d'ensemble d'échantillons avec une capacité de mémoire limitée. Finalement, nous généralisons les méthodes de restauration collaboratives, en utilisant notre CovTree pour apprendre un modèle statistique a priori à partir d'un ensemble de données.
|
Page generated in 0.0512 seconds