• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 22
  • 14
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 83
  • 54
  • 40
  • 34
  • 27
  • 18
  • 18
  • 17
  • 16
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Rekurentní neuronové sítě v počítačovém vidění / Recurrent Neural Networks in Computer Vision

Křepský, Jan January 2011 (has links)
The thesis concentrates on using recurrent neural networks in computer vision. The theoretical part describes the basic knowledge about artificial neural networks with focus on a recurrent architecture. There are presented some of possible applications of the recurrent neural networks which could be used for a solution of real problems. The practical part concentrates on face recognition from an image sequence using the Elman simple recurrent network. For training there are used the backpropagation and backpropagation through time algorithms.
62

Modélisation d'un réseau de neurones humains dans le but de comprendre la dégradation neurale lors du vieillissement

Allard, Rémy January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
63

Modeling power system load using intelligent methods.

He, Shengyang January 1900 (has links)
Master of Science / Department of Electrical Engineering / Shelli K. Starrett / Modern power systems are integrated, complex, dynamic systems. Due to the complexity, power system operation and control need to be analyzed using numerical simulation. The load model is one of the least known models among the many components in the power system operation. The two different load models are the static and dynamic models. The ZIP load model has been extensively studied. This has widely applied to composite load models that could maintain constant impedance, constant current, and/or constant power. In this work, various Neural Networks algorithms and fuzzy logic have been used to obtain these ZIP load model coefficients for determining the percentage of constant impedance, current, or power for the various load buses. The inputs are a combination of voltage, voltage change, and power change, or voltage and power, and the outputs consist of the ZIP load model coefficients for determining the type and the percentage of load at the bus. The trained model is used to predict the type and percentage of constant load at other buses using simulated transient data from the 16-generator system. A small study was also done using a dynamic induction machine model in addition to the ZIP load model. As expected, the results show that the dynamic model is more difficult to determine than the static model.
64

Preprocessing perceptrons

Kallin Westin, Lena January 2004 (has links)
Reliable results are crucial when working with medical decision support systems. A decision support system should be reliable but also be interpretable, i.e. able to show how it has inferred its conclusions. In this thesis, the preprocessing perceptron is presented as a simple but effective and efficient analysis method to consider when creating medical decision support systems. The preprocessing perceptron has the simplicity of a perceptron combined with a performance comparable to the multi-layer perceptron. The research in this thesis has been conducted within the fields of medical informatics and intelligent computing. The original idea of the production line as a tool for a domain expert to extract information, build decision support systems and integrate them in the existing system is described. In the introductory part of the thesis, an introduction to feed-forward neural networks and fuzzy logic is given as a background to work with the preprocessing perceptron. Input to a decision support system is crucial and it is described how to gather a data set, decide how many and what kind of inputs to use. Outliers, errors and missing data are covered as well as normalising of the input. Training is done in a backpropagation-like manner where the division of the data set into a training and a test set can be done in several different ways just as the training itself can have variations. Three major groups of methods to estimate the discriminance effect of the preprocessing perceptron are described and a discussion of the trade-off between complexity and approximation strength are included. Five papers are presented in this thesis. Case studies are shown where the preprocessing perceptron is compared to multi-layer perceptrons, statistical approaches and other mathematical models. The model is extended to a generalised preprocessing perceptron and the performance of this new model is compared to the traditional feed-forward neural networks. Results concerning the preprocessing layer and its connection to multivariate decision limits are included. The well-known ROC curve is described and introduced fully into the field of computer science as well as the improved curve, the QROC curve. Finally a tutorial to the program trainGPP is presented. It describes how to work with the preprocessing perceptron from the moment when a data file is provided to the moment when a new decision support system is built.
65

Atvirkštinio skleidimo neuroziniai tinklai : vaizdų atpažinimas / Backpropagation neural networks: pattern recognition

Studenikin, Oleg 28 May 2005 (has links)
In this Master’s degree work artificial neural networks and back propagation learning algorithm for human faces and pattern recognition are analyzed. In the second part of work artificial neural networks and their architecture and structures models are analyzed. In the third part of article the backpropagation procedure and procedures theoretical learning principle are analyzed. In the fourth part different kinds of ANN methods and patterns extracting methods in recognition, learning and classification use were researched. In this part RGB method for patterns features extraction was described. In the fifth part the requirements specification, prototype model, use case diagram, system architecture, programs modules and objects project for software realization were created. In the same part backpropagation procedures running principle was realized. After the project part was completed, a face and patterns recognition system was created. In the sixth part the created software system was tested. According to the testing results software’s recognition rate is 82,5 % using supervised learning and 82,8 % using unsupervised learning. We found using the FAR and FRR rates the ERR rate, which was 40 %. While doing the testing with changed human characteristics, the system showed 84,6 % recognition rate. This rate shows very good work of the system by a little bit changed human characteristics. Systems realization was evaluated by users as very good one. In the seventh part software’s... [to full text]
66

An instruction systolic array architecture for multiple neural network types

Kane, Andrew January 1998 (has links)
Modern electronic systems, especially sensor and imaging systems, are beginning to incorporate their own neural network subsystems. In order for these neural systems to learn in real-time they must be implemented using VLSI technology, with as much of the learning processes incorporated on-chip as is possible. The majority of current VLSI implementations literally implement a series of neural processing cells, which can be connected together in an arbitrary fashion. Many do not perform the entire neural learning process on-chip, instead relying on other external systems to carry out part of the computation requirements of the algorithm. The work presented here utilises two dimensional instruction systolic arrays in an attempt to define a general neural architecture which is closer to the biological basis of neural networks - it is the synapses themselves, rather than the neurons, that have dedicated processing units. A unified architecture is described which can be programmed at the microcode level in order to facilitate the processing of multiple neural network types. An essential part of neural network processing is the neuron activation function, which can range from a sequential algorithm to a discrete mathematical expression. The architecture presented can easily carry out the sequential functions, and introduces a fast method of mathematical approximation for the more complex functions. This can be evaluated on-chip, thus implementing the entire neural process within a single system. VHDL circuit descriptions for the chip have been generated, and the systolic processing algorithms and associated microcode instruction set for three different neural paradigms have been designed. A software simulator of the architecture has been written, giving results for several common applications in the field.
67

Uso de redes neurais artificiais para detecção de pele em imagens digitais / Artificial neural networks for skin detection in digital images

Vicentini, Rafael Estéfano 20 October 2017 (has links)
Submitted by Rafael Estefano Vicentini null (rafaelvicentini@dee.feis.unesp.br) on 2017-12-14T18:01:32Z No. of bitstreams: 1 DISSERTAÇÃO-RAFAEL ESTÉFANO VICENTINI.pdf: 15039479 bytes, checksum: 43a2765c1d39e13b3435f194a64198ec (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2017-12-18T10:48:16Z (GMT) No. of bitstreams: 1 vicentini_re_me_ilha.pdf: 15039479 bytes, checksum: 43a2765c1d39e13b3435f194a64198ec (MD5) / Made available in DSpace on 2017-12-18T10:48:16Z (GMT). No. of bitstreams: 1 vicentini_re_me_ilha.pdf: 15039479 bytes, checksum: 43a2765c1d39e13b3435f194a64198ec (MD5) Previous issue date: 2017-10-20 / Na última década, o aumento da capacidade de processamento de informação em computadores e dispositivos de uso pessoal possibilitou o desenvolvimento de filtros e classificadores automatizados que operam em tempo real, aplicados em diversas áreas. No âmbito do Processamento Digital de Imagens associado às Redes Neurais Artificiais, os filtros emulam a percepção humana buscando por padrões para identificação de características de interesse. Filtros que têm por objetivo restringir o acesso a conteúdo impróprio partem da identificação de pele - principal indício de presença humana em uma imagem. Independentemente de sua complexidade e/ou robustez, caso o classificador não seja capaz de identificar as diferentes tonalidades de pele sob diferentes condições de captura, sua eficácia é prejudicada. Frente à diversificada forma de descrever uma tonalidade de pele usando diferentes espaços de cor, neste estudo foram destacados os espaços de cor RGB, YCbCr e HSV, amplamente utilizados em equipamentos de captura (por exemplo câmeras fotográficas e filmadoras digitais). A partir de exemplos apresentados durante a etapa de treinamento, as RNAs devem estar aptas para classificar as tonalidades em dois grupos distintos: pele e não pele. Dentre os espaços de cores indicados, seja utilizando ou descartando o aspecto da iluminação (critério amplamente discutido na literatura), este trabalho busca avaliar qual possui a maior taxa de detecção de pele em uma imagem. / Over the last decade, the increasing capacity of data processing in personal computers and devices could develop filters and automatic classifiers working in real time and applied in several areas. Considering Digital Image Processing and Artificial Neural Networks, these filters emulate the human perception searching for patterns to identify specific features. Filters which the main goal is to restrict the access to inappropriate content starts identifying skin tones - the main evidence of human presence in a picture. Although being complex and robust, if the classifier is not able to identify distinct skin tones under random capture conditions, the accuracy is minimal. Facing several ways on describing skin tones over different color spaces, this work uses the RGB, YCbCr and HSV color spaces which are widely applied in recording devices (photographic and digital cameras for example). Based on the examples shown during the training phase, the ANNs must be able to classify skin tones into two distinct groups: skin and non skin. Among the different color spaces used, considering or not the luminance aspect (widely discussed on papers), this work intends to evaluate which one has the highest detection accuracy to identify skin tone in such a picture.
68

Uso de redes neurais artificiais para detecção de pele em imagens digitais /

Vicentini, Rafael Estéfano January 2017 (has links)
Orientador: Anna Diva Plasencia Lotufo / Resumo: Na última década, o aumento da capacidade de processamento de informação em computadores e dispositivos de uso pessoal possibilitou o desenvolvimento de filtros e classificadores automatizados que operam em tempo real, aplicados em diversas áreas. No âmbito do Processamento Digital de Imagens associado às Redes Neurais Artificiais, os filtros emulam a percepção humana buscando por padrões para identificação de características de interesse. Filtros que têm por objetivo restringir o acesso a conteúdo impróprio partem da identificação de pele - principal indício de presença humana em uma imagem. Independentemente de sua complexidade e/ou robustez, caso o classificador não seja capaz de identificar as diferentes tonalidades de pele sob diferentes condições de captura, sua eficácia é prejudicada. Frente à diversificada forma de descrever uma tonalidade de pele usando diferentes espaços de cor, neste estudo foram destacados os espaços de cor RGB, YCbCr e HSV, amplamente utilizados em equipamentos de captura (por exemplo câmeras fotográficas e filmadoras digitais). A partir de exemplos apresentados durante a etapa de treinamento, as RNAs devem estar aptas para classificar as tonalidades em dois grupos distintos: pele e não pele. Dentre os espaços de cores indicados, seja utilizando ou descartando o aspecto da iluminação (critério amplamente discutido na literatura), este trabalho busca avaliar qual possui a maior taxa de detecção de pele em uma imagem. / Abstract: Over the last decade, the increasing capacity of data processing in personal computers and devices could develop filters and automatic classifiers working in real time and applied in several areas. Considering Digital Image Processing and Artificial Neural Networks, these filters emulate the human perception searching for patterns to identify specific features. Filters which the main goal is to restrict the access to inappropriate content starts identifying skin tones - the main evidence of human presence in a picture. Although being complex and robust, if the classifier is not able to identify distinct skin tones under random capture conditions, the accuracy is minimal. Facing several ways on describing skin tones over different color spaces, this work uses the RGB, YCbCr and HSV color spaces which are widely applied in recording devices (photographic and digital cameras for example). Based on the examples shown during the training phase, the ANNs must be able to classify skin tones into two distinct groups: skin and non skin. Among the different color spaces used, considering or not the luminance aspect (widely discussed on papers), this work intends to evaluate which one has the highest detection accuracy to identify skin tone in such a picture. / Mestre
69

Classificação de imagens digitais por textura usando redes neurais / Classification of di gital images through texture with the aid of neural networks

Liberman, Felipe January 1997 (has links)
Este trabalho apresenta um estudo sobre a classificação de imagens digitais através da textura com o auxílio de redes neurais. São utilizadas técnicas e conceitos de duas áreas da Informática: O Processamento de Imagens Digitais e a Inteligência Artificial. São apresentados os principais tópicos de processamento de imagens, as principais aplicações em tarefas industriais, reconhecimento de padrões e manipulação de imagens, os tipos de imagem e os formatos de armazenamento. São destacados os atributos da imagem a textura e sua quantificação através da matriz de concorrência dos níveis de cinza. Também apresenta-se alguns sistemas computacionais disponíveis para processamento de imagens. Na área de Inteligência Artificial, o enfoque é para técnicas computacionais inteligentes, mais especificamente as Redes Neurais. É feita uma breve apresentação da área, incluindo seu histórico e suas principais aplicações. As redes neurais são classificadas quanto ao tipo de treinamento, à regra de aprendizado, à topologia da rede e quanto ao tipo de interconexão dos neurônios. O modelo BPN (BackPropagation Network) é visto com maior detalhe, visto ser utilizado na implementação do sistema IMASEG (Sistema para Classificação de Imagens) que faz parte desse trabalho. O BPN é descrito quanto ao seu funcionamento, a forma de aprendizado e as respectivas equações utilizadas. O sistema IMASEG foi desenvolvido com o objetivo de implementar as técnicas propostas para a classificação de imagens utilizando textura e redes neurais. Seu funcionamento e algoritmos utilizados são detalhados e ao final, apresenta-se os resultados obtidos com a respectiva análise. A classificação de imagens é uma das principais etapas no processamento de imagens digitais. Dado um conjunto de classes e um padrão apresentado como entrada para o sistema, o problema consiste em decidir a que classe o padrão pertence. Deve haver a alternativa de rejeição do padrão. Podemos extrair da imagem atributos espectrais, espaciais e de contexto. Por serem mais facilmente quantificáveis, a maioria dos sistemas tradicionais utiliza apenas atributos espectrais para caracterizar uma imagem. Essa abordagem é muito utilizada em imagens multiespectrais. Entretanto, utilizando apenas atributos espectrais, não se obtém uma informação completa sobre a imagem, pois não são levados em consideração as relações espaciais entre seus pixels, bem como a forma de objetos. A textura, atributo espacial, é ainda pouco utilizada, visto que tem origem na sensação visual causada pelas variações tonais existentes em uma determinada região da imagem, tornando difícil sua quantificação. Neste trabalho, é feito um estudo sobre a utilização dos atributos espaciais da imagem no seu processamento. É feita uma análise do comportamento de cinco deles: média, desvio-padrão, uniformidade, entropia e contraste, todos extraídos de janelas pertencentes à uma classe. A uniformidade, entropia e contraste provém da matriz de concorrência dos níveis de cinza. Através do cálculo do valor desses atributos em diversas imagens, constata-se que existem algumas importantes relações entre eles. A partir da análise dos diferentes modelos de redes neurais e das diversas formas de quantificar a textura de uma imagem, é proposto um sistema computacional com o objetivo de classificar imagens. Esse sistema faz o processamento das imagens através de uma janela móvel. O usuário deve escolher o tamanho para a janela: 3x3, 5x5 ou 7x7 pixels. Essa escolha irá depender do tipo e da granularidade da textura que a imagem contém. Em seguida, utilizando a janela, deve selecionar amostras representativas de cada textura (classe) presente na imagem que se deseja classificar. O sistema então, encarrega-se de treinar a rede neural utilizando as amostras selecionadas pelo usuário. Para realizar o treinamento, é necessário encontrar uma forma de mapear os dados da realidade para a rede neural. Essa tarefa nem sempre é trivial. Nesse sistema, são propostas duas abordagens para realizar essa tarefa. Na primeira, o mapeamento é feito através do cálculo das feições da média, desvio-padrão e uniformidade, sendo esse último obtido da matriz de concorrência. Essas feições, após um escalonamento para a mesma faixa de valores, serão os parâmetros de entrada para a rede neural. Na segunda abordagem, o mapeamento é direto, ou seja, o valor de cada pixel, após o escalonamento, corresponde a uma entrada da rede neural. Após a etapa de treinamento, a imagem é processada por inteiro, fazendo-se uma varredura com a janela, gerando como saída uma imagem temática na qual cada tema representa uma das texturas existentes na imagem original. Para testar o sistema IMASEG, foram geradas várias imagens sintéticas com 256 níveis de cinza. Deste total, foram selecionadas 6 imagens para serem apresentadas nesse trabalho. Elas são representativas das diversas situações que podem ocorrer em relação aos valores da média, desvio-padrão e uniformidade. Cada imagem original é processada pelas duas abordagens, gerando duas imagens de saída. É feita uma análise quantitativa e qualitativa dos resultados obtidos, apontando-se as prováveis causas de sucessos e problemas encontrados. Conclui-se que a classificação por textura atinge o objetivo proposto e é muito útil no processamento de imagens, levando-se em consideração os bons resultados obtidos. / This paper is a study about the classification of digital images through texture with the aid of neural networks. The techniques and concepts from the field of Computer Science employed are: Digital Images Processing and Artificial Intelligence. The focus in Image Processing is on its main application in industrial tasks. pattern recognition and image manipulation, the types of images and the storing formats. The specific aspects analyzed are image attributes, texture and its quantification through the Coocurrence Matrix. Several available computing systems for image classification are presented. In Artificial Intelligence, the attention is concentrated on intelligent computational systems, more specifically on the neural networks which are briefly introduced. The subject's historical data and its main application are also addressed. The neural networks are classified according to the type of training, the learning rules, the network topology and the interconnection of neurones. The BPN model (Back Propagation Network) is examined more closely since it is employed in the implementation of the IMASEG system (classifying images system) which is part of this study. The BPN system is described in according to its functioning capacities, the learning method and the respective equations utilized. The IMASEG system was developed with the specific aim of implementing the techniques of image classification. Throughout the paper, the system's operation and related algorithms are presented to the reader, as well as the results obtained and the analysis performed provided in the end of the paper The image classification is one of the principal steps for the processing of digital images. It consists to decide of which class the pattern belong. It can refuse the pattern. We can extract spectral, spatial and contextual image's attributes. Because they are easily quantified, a major part of the traditional systems of image processing employ only the spectral attributes to work the images and are, therefore, extensively used in the processing of multispectral images. However, the exploration of ima ges through spectral attributes is not enough to provide a complete recognition of the image since information such as spatial relations among its pixels as well as the form of objects are not taken into consideration. The use of image processing with spatial attributes is also considered in this paper. Texture is still not a commonly employed attribute. This is due to the fact that its based on visual sensation which is produced by the existing tonal variations of a specific image region, making its quantification a difficult task to perform. A behavior analysis of the spatial attributes under consideration in this paper are the following: mean, standard deviation, uniformity, entropy and contrast. These five attributes were all taken from windows belonging to a single class. Uniformity, entropy and contrast are issued from the gray level coocurrence matrix. Via a calculation of the value of these attributes is observed that there is an important relationship among them. This paper proposes a system of image classification based on the analysis of different models of neural networks and also through the analysis of the diverse ways of quantifying the texture of an image. This system performs the image processing through a shifting window. Then, the user must choose the window's size from among the following dimensions: 3x3, 5x5 or 7x7 pixels. The choice will vary depending on the type and on the image's texture granularity. The selection of meaningful samples of each texture (class) present in the image one wishes to classify is the next step in the process. The system, then, is in charge of training the neural networks by applying the user's selected samples. In order to perform the training, it is necessary to first establish a way of mapping the data reality to the neural network, oftentimes a difficult task. In this system two approaches are proposed for the execution of this task. In the first, the mapping is done through the calculation of the mean, standard deviation and uniformity features. The last item is obtained from the coocurrence matrix. After these features have been scaled to the same value band, they will become the input to the neural networks. In the second approach, it is expected that the neural network will be able to extract textures attributes without executing an explicit calculation exercise. After the training phase, the image is completely processed through a window scanning generatin g a thematic image as the output onto which each theme will represent one of the texture's original image. In order to verify the adequacy of the IMASEG system, several synthetical graylevel images were created. Of these, 7 images were chosen as objects for this analysis, representing the various possible situations that might occur in relation to the average, standard deviation and uniformity. Each original image is processed in according with these two chosen approaches, thus generating two images as outputs, as well as a quantitative and qualitative analysis of the obtained results, pointing to the probable successes and failures generated. The final conclusion is that the classification through texture partially attains the proposed objectives and can be very useful in the processing of images, serving as an aid in the traditional classification process.
70

Classificação de imagens digitais por textura usando redes neurais / Classification of di gital images through texture with the aid of neural networks

Liberman, Felipe January 1997 (has links)
Este trabalho apresenta um estudo sobre a classificação de imagens digitais através da textura com o auxílio de redes neurais. São utilizadas técnicas e conceitos de duas áreas da Informática: O Processamento de Imagens Digitais e a Inteligência Artificial. São apresentados os principais tópicos de processamento de imagens, as principais aplicações em tarefas industriais, reconhecimento de padrões e manipulação de imagens, os tipos de imagem e os formatos de armazenamento. São destacados os atributos da imagem a textura e sua quantificação através da matriz de concorrência dos níveis de cinza. Também apresenta-se alguns sistemas computacionais disponíveis para processamento de imagens. Na área de Inteligência Artificial, o enfoque é para técnicas computacionais inteligentes, mais especificamente as Redes Neurais. É feita uma breve apresentação da área, incluindo seu histórico e suas principais aplicações. As redes neurais são classificadas quanto ao tipo de treinamento, à regra de aprendizado, à topologia da rede e quanto ao tipo de interconexão dos neurônios. O modelo BPN (BackPropagation Network) é visto com maior detalhe, visto ser utilizado na implementação do sistema IMASEG (Sistema para Classificação de Imagens) que faz parte desse trabalho. O BPN é descrito quanto ao seu funcionamento, a forma de aprendizado e as respectivas equações utilizadas. O sistema IMASEG foi desenvolvido com o objetivo de implementar as técnicas propostas para a classificação de imagens utilizando textura e redes neurais. Seu funcionamento e algoritmos utilizados são detalhados e ao final, apresenta-se os resultados obtidos com a respectiva análise. A classificação de imagens é uma das principais etapas no processamento de imagens digitais. Dado um conjunto de classes e um padrão apresentado como entrada para o sistema, o problema consiste em decidir a que classe o padrão pertence. Deve haver a alternativa de rejeição do padrão. Podemos extrair da imagem atributos espectrais, espaciais e de contexto. Por serem mais facilmente quantificáveis, a maioria dos sistemas tradicionais utiliza apenas atributos espectrais para caracterizar uma imagem. Essa abordagem é muito utilizada em imagens multiespectrais. Entretanto, utilizando apenas atributos espectrais, não se obtém uma informação completa sobre a imagem, pois não são levados em consideração as relações espaciais entre seus pixels, bem como a forma de objetos. A textura, atributo espacial, é ainda pouco utilizada, visto que tem origem na sensação visual causada pelas variações tonais existentes em uma determinada região da imagem, tornando difícil sua quantificação. Neste trabalho, é feito um estudo sobre a utilização dos atributos espaciais da imagem no seu processamento. É feita uma análise do comportamento de cinco deles: média, desvio-padrão, uniformidade, entropia e contraste, todos extraídos de janelas pertencentes à uma classe. A uniformidade, entropia e contraste provém da matriz de concorrência dos níveis de cinza. Através do cálculo do valor desses atributos em diversas imagens, constata-se que existem algumas importantes relações entre eles. A partir da análise dos diferentes modelos de redes neurais e das diversas formas de quantificar a textura de uma imagem, é proposto um sistema computacional com o objetivo de classificar imagens. Esse sistema faz o processamento das imagens através de uma janela móvel. O usuário deve escolher o tamanho para a janela: 3x3, 5x5 ou 7x7 pixels. Essa escolha irá depender do tipo e da granularidade da textura que a imagem contém. Em seguida, utilizando a janela, deve selecionar amostras representativas de cada textura (classe) presente na imagem que se deseja classificar. O sistema então, encarrega-se de treinar a rede neural utilizando as amostras selecionadas pelo usuário. Para realizar o treinamento, é necessário encontrar uma forma de mapear os dados da realidade para a rede neural. Essa tarefa nem sempre é trivial. Nesse sistema, são propostas duas abordagens para realizar essa tarefa. Na primeira, o mapeamento é feito através do cálculo das feições da média, desvio-padrão e uniformidade, sendo esse último obtido da matriz de concorrência. Essas feições, após um escalonamento para a mesma faixa de valores, serão os parâmetros de entrada para a rede neural. Na segunda abordagem, o mapeamento é direto, ou seja, o valor de cada pixel, após o escalonamento, corresponde a uma entrada da rede neural. Após a etapa de treinamento, a imagem é processada por inteiro, fazendo-se uma varredura com a janela, gerando como saída uma imagem temática na qual cada tema representa uma das texturas existentes na imagem original. Para testar o sistema IMASEG, foram geradas várias imagens sintéticas com 256 níveis de cinza. Deste total, foram selecionadas 6 imagens para serem apresentadas nesse trabalho. Elas são representativas das diversas situações que podem ocorrer em relação aos valores da média, desvio-padrão e uniformidade. Cada imagem original é processada pelas duas abordagens, gerando duas imagens de saída. É feita uma análise quantitativa e qualitativa dos resultados obtidos, apontando-se as prováveis causas de sucessos e problemas encontrados. Conclui-se que a classificação por textura atinge o objetivo proposto e é muito útil no processamento de imagens, levando-se em consideração os bons resultados obtidos. / This paper is a study about the classification of digital images through texture with the aid of neural networks. The techniques and concepts from the field of Computer Science employed are: Digital Images Processing and Artificial Intelligence. The focus in Image Processing is on its main application in industrial tasks. pattern recognition and image manipulation, the types of images and the storing formats. The specific aspects analyzed are image attributes, texture and its quantification through the Coocurrence Matrix. Several available computing systems for image classification are presented. In Artificial Intelligence, the attention is concentrated on intelligent computational systems, more specifically on the neural networks which are briefly introduced. The subject's historical data and its main application are also addressed. The neural networks are classified according to the type of training, the learning rules, the network topology and the interconnection of neurones. The BPN model (Back Propagation Network) is examined more closely since it is employed in the implementation of the IMASEG system (classifying images system) which is part of this study. The BPN system is described in according to its functioning capacities, the learning method and the respective equations utilized. The IMASEG system was developed with the specific aim of implementing the techniques of image classification. Throughout the paper, the system's operation and related algorithms are presented to the reader, as well as the results obtained and the analysis performed provided in the end of the paper The image classification is one of the principal steps for the processing of digital images. It consists to decide of which class the pattern belong. It can refuse the pattern. We can extract spectral, spatial and contextual image's attributes. Because they are easily quantified, a major part of the traditional systems of image processing employ only the spectral attributes to work the images and are, therefore, extensively used in the processing of multispectral images. However, the exploration of ima ges through spectral attributes is not enough to provide a complete recognition of the image since information such as spatial relations among its pixels as well as the form of objects are not taken into consideration. The use of image processing with spatial attributes is also considered in this paper. Texture is still not a commonly employed attribute. This is due to the fact that its based on visual sensation which is produced by the existing tonal variations of a specific image region, making its quantification a difficult task to perform. A behavior analysis of the spatial attributes under consideration in this paper are the following: mean, standard deviation, uniformity, entropy and contrast. These five attributes were all taken from windows belonging to a single class. Uniformity, entropy and contrast are issued from the gray level coocurrence matrix. Via a calculation of the value of these attributes is observed that there is an important relationship among them. This paper proposes a system of image classification based on the analysis of different models of neural networks and also through the analysis of the diverse ways of quantifying the texture of an image. This system performs the image processing through a shifting window. Then, the user must choose the window's size from among the following dimensions: 3x3, 5x5 or 7x7 pixels. The choice will vary depending on the type and on the image's texture granularity. The selection of meaningful samples of each texture (class) present in the image one wishes to classify is the next step in the process. The system, then, is in charge of training the neural networks by applying the user's selected samples. In order to perform the training, it is necessary to first establish a way of mapping the data reality to the neural network, oftentimes a difficult task. In this system two approaches are proposed for the execution of this task. In the first, the mapping is done through the calculation of the mean, standard deviation and uniformity features. The last item is obtained from the coocurrence matrix. After these features have been scaled to the same value band, they will become the input to the neural networks. In the second approach, it is expected that the neural network will be able to extract textures attributes without executing an explicit calculation exercise. After the training phase, the image is completely processed through a window scanning generatin g a thematic image as the output onto which each theme will represent one of the texture's original image. In order to verify the adequacy of the IMASEG system, several synthetical graylevel images were created. Of these, 7 images were chosen as objects for this analysis, representing the various possible situations that might occur in relation to the average, standard deviation and uniformity. Each original image is processed in according with these two chosen approaches, thus generating two images as outputs, as well as a quantitative and qualitative analysis of the obtained results, pointing to the probable successes and failures generated. The final conclusion is that the classification through texture partially attains the proposed objectives and can be very useful in the processing of images, serving as an aid in the traditional classification process.

Page generated in 0.2419 seconds