Spelling suggestions: "subject:" depolymerization"" "subject:" copolymerisation""
11 |
Synthesis of Chemically Recyclable Polymers from Renewable Oxalic Acid : Investigation on thermal and mechanical properties of oxalate polyestersSoto, Oskar Alberto, Karlsson, Victoria January 2024 (has links)
Chemical recycling stands as a method for managing plastic waste, by transforming it into monetary value through a circular recycling process. Addressing the demand for a solution on sustainable polymers made from renewable sources, this project aimed to design a polymer that facilitates the process of chemical recycling. Three linear oxalate polymers and two elastomers were synthesized through step-growth polymerization techniques. The thermal and mechanical properties were evaluated via thermal gravimetric analysis, differential scanning calorimetry, size exclusion chromatography, and tensile testing. The thermal properties of the oxalate polymers could be determined. Dimethyl polyoxalate had the highest molecular weight, but due to insufficient molecular weight the mechanical properties could not be evaluated for any of the linear polymers. Introducing a crosslinker,pentaerythritol, to the dimethyl polyoxalate increased the molecular weight, creating an etworked and flexible elastomer with mechanical properties that could be evaluated. Two elastomers were synthesized with different amounts of crosslinker. A successful chemical recycling process was conducted on the linear dimethyl polyoxalate and the elastomer with a higher amount of crosslinker. This was achieved through ring closing depolymerization to obtain sublimated monomer crystals and later resynthesized through ring opening polymerization. The elastomers also demonstrated mechanical recyclability through reprocessing. / Kemisk återvinning står som en metod för att hantera plastavfall, genom att omvandla det till monetärt värde genom en cirkulär återvinningsprocess. För att möta behovet på en lösning av hållbara polymerer gjorda från förnybara källor, syftade detta projekt till att designa en polymer som underlättar processen för kemisk återvinning. Tre linjära oxalatpolymerer och två elastomerer syntetiserades genom stegvisa polymerisationstekniker. De termiska och mekaniska egenskaperna utvärderades via termogravimetrisk analys, differentiell svepkalorimetri, storlek-uteslutning kromatografi och dragprovning. De termiska egenskaperna hos oxalatpolymererna kunde bestämmas. Dimetylpolyoxalat hade den högsta molekylvikten, men på grund av otillräcklig molekylvikt kunde de mekaniska egenskaperna inte utvärderas för någon av de linjära polymererna. Införandet av en tvärbindare, pentaerythritol, till dimetylpolyoxalatet ökade molekylvikten, vilket skapade en nätverksbunden och flexibel elastomer med mekaniska egenskaper som kunde utvärderas. Två elastomerer syntetiserades med olika mängder tvärbindningsmedel. En framgångsrik kemisk återvinningsprocess genomfördes på den linjära dimetylpolyoxalatet och elastomeren med en högre mängd tvärbindare. Detta uppnåddes genom ringslutande depolymerisation för att erhålla sublimerade monomerkristaller som senare återsyntetiserades genom ringöppningspolymerisation. Elastomerna visade också mekanisk återvinningsbarhet genom upparbetning.
|
12 |
Modification of native and waste starch by depolymerization and cationization:utilization of modified starch in binding of heavy metal ions from an aqueous solutionLappalainen, K. (Katja) 17 November 2015 (has links)
Abstract
Starch is one of the most abundant polysaccharides found in nature and is widely utilized in various fields of industry. Due to the complex structure of native starch it is insoluble in most organic solvents and needs modification prior utilization. In this study, ionic liquids (ILs), modern green chemistry alternatives for common solvents were used as reaction media in starch modification.
At first various starch species were depolymerized in 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) with p-TsOH as a catalyst. Microwave activation or conventional bath heating were used as heating methods while HPLC-ELSD was used as an analytical method. All studied starch species depolymerized similarly into water-soluble starch oligomers while microwave activation shortened the depolymerization time considerably compared to oil bath heating.
Barley starch was chosen for further experiments, in which various ILs were studied as potential media for starch dissolution and depolymerization. Results suggested that both the anion and the cation part of the IL had an effect on the dissolution and depolymerization of barley starch. After the depolymerization reactions, the depolymerized barley starch was further modified by cationization. [AMIM]Cl was used as the reaction media, microwave activation as the heating method while HPLC-ELSD, 1H NMR and elemental analysis were used as analytical methods. The modified products had DS values from 0.2 to 0.5 depending on the reaction conditions. The products were studied as potential binding agents for heavy metal ions which showed that moderately substituted modified starch (DS 0.4) could be used to bind Cu(II), Fe(III) and Zn(II) ions from an aqueous solution.
Finally, potato peel waste was studied as an alternative starch source to produce cationized starch for wastewater purification. Peel waste was pre-treated by alkaline depolymerization after which it was cationized in a water solution to produce cationized products with DS from 0 to 0.35. The cationized peel waste products were studied preliminary as binding agents for Cu(II) ions from a water solution using ICP-OES as an analytical method. The results suggested that when the molar ratio between cationized waste starch and copper was 3:1, cationized waste starch was an effective binding agent for copper ions. / Tiivistelmä
Tärkkelys on yksi yleisimmistä luonnossa esiintyvistä polysakkarideista. Sitä hyödynnetään useilla eri teollisuuden aloilla. Monimutkaisen rakenteensa vuoksi tärkkelys on liukenematon useimpiin orgaanisiin liuottimiin ja veteen, minkä vuoksi sitä täytyy modifioida ennen käyttöä. Tässä väitöstutkimuksessa tärkkelyksen modifioinnissa käytettiin ionisia nesteitä reaktioväliaineena.
Tutkimuksen alussa eri tärkkelyslajeja depolymeroitiin 1-allyyli-3-metyyli-imidatsoliumkloridissa ([AMIM]Cl) katalyyttinä p-TsOH. Mikroaaltoaktivointia ja haudekuumennusta käytettiin vaihtoehtoisina lämmitysmenetelminä. Reaktion edistymistä ja tuotteiden muodostumista tutkittiin HPLC-ELSD -menetelmällä. Eri tärkkelyslajit depolymeroituivat samankaltaisesti vesiliukoisiksi, lyhytketjuisiksi tärkkelysoligomeereiksi. Mikroaaltoaktivointi lyhensi reaktioaikaa haudekuumennukseen verrattuna.
Tutkimuksen seuraavassa vaiheessa tutkittiin ohratärkkelyksen liukoisuutta ja depolymeroitumista eri ionisissa nesteissä. Tulosten perusteella ionisen nesteen sekä anioni- että kationiosa vaikuttivat tärkkelyksen liukenemiseen. Depolymeroidun ohratärkkelyksen modifiointitutkimuksia jatkettiin [AMIM]Cl:ssa kationisoinnilla. Lämmitysmenetelmänä käytettiin mikroaaltoaktivointia. Tuotteet tutkittiin käyttäen alkuaineanalyysiä sekä HPLC-ELSD- että 1H NMR-tekniikoita. Kationisoitujen tuotteiden substituutioaste (DS) vaihteli reaktio-olosuhteista riippuen välillä 0.2–0.5. Saatuja tuotteita tutkittiin raskasmetalli-ionien sitomisessa vesiliuoksesta. Havaittiin, että kohtalaisesti substituoitu (DS 0.4) modifioitu tärkkelys sitoi Cu(II)-, Fe(III)- ja Zn(II)-ioneja vesiliuoksesta.
Tutkimuksen loppuosassa tutkittiin perunan kuorijätettä vaihtoehtoisena tärkkelyslähteenä kationisoidun tärkkelyksen valmistamisessa. Kuorijäte esikäsiteltiin kuumentamalla se emäksisessä etanoliliuoksessa, minkä jälkeen sille suoritettiin kationisointi vesiliuoksessa. Kationisten tuotteiden substituutioasteet vaihtelivat välillä 0–0.35. Tuotteiden soveltuvuutta Cu(II)-ionien sitomiseen vesiliuoksesta tutkittiin ICP-OES -menetelmän avulla. Alustavien tulosten mukaan kationisoitu jätetärkkelys sitoi kupari-ioneja vedestä, kun tärkkelyksen ja kuparin moolisuhde oli 3:1.
|
13 |
Bifunctionalised pretreatment of lignocellulosic biomass into reducing sugars:use of ionic liquids and acid-catalysed mechanical approachDong, Y. (Yue) 27 October 2017 (has links)
Abstract
Lignocellulosic biomass is the most abundant renewable raw material on the earth and it is so far the most suitable and promising resource for the production of biofuels to replace long-term use of fossil oil. This research aims to convert lignocellulose-based industrial residuals, fibre sludge (FS) from a pulp mill and pine sawdust (PSD) from a sawmill, into platform sugars by two different bifunctionalised pretreatments of lignocellulosic biomass. The bifunctionalised pretreatment combines the ordinary pretreatment (deconstruction) of lignocellulosic biomass with lignocellulosic polysaccharides saccharification. The outcome from both pretreatments can be further transformed into biofuels and chemicals.
PSD and FS were converted into platform sugars by acid-catalysed mechanical depolymerisation in a planetary ball mill in the first part of this research. The efficiency of the conversion was mainly affected by the transferred energy caused by collisions, the total milling time, acid concentration and moisture content in the reaction. Approximately 30 wt% of the sugars was yielded from PSD and FS both in the short milling process with a low acid/substrate (A/S) concentration without any prior treatment.
The second part of this research focuses upon the conversion of FS into platform sugars using hydroxyalkylimidazolium hydrogen sulphate ionic liquids (ILs). Around 29 wt% of the sugars was produced from FS using an IL/water mixture. The added water acted as a co-solvent and played a critical role in the utilisation of these ILs. The blended water reduced the viscosity of the ILs and enhanced the mass transfer between solvent and solute. In addition, the anions of the ILs provided their acidic property in an aqueous solution and offered an acidic environment for hydrolysis simultaneously. / Tiivistelmä
Lignosellulossapohjainen biomassa on runsaimmin saatavilla oleva ja yksi lupaavimmista raaka-aineista biopolttoaineiden valmistukseen korvaamaan fossiilisia polttoaineita. Väitöskirjassa tutkitaan teollisuuden lignoselluloosapohjaisten sivutuotteiden, selluteollisuuden kuitulietteen ja sahateollisuuden sahanpurun (mäntypuru), muuntamista sokereiksi kahdella erilaisella ns. bifunktionaalisella esikäsittelyllä, joissa yhdistyvät lignoselluloosabiomassan perinteinen esikäsittely (hajotus) ja polysakkaridien sokeroituminen. Muodostuneet sokerit voidaan edelleen muuntaa biopolttoaineiksi ja -kemikaaleiksi.
Tutkimuksen ensimmäisessä vaiheessa sahanpuru ja kuituliete muunnettiin sokereiksi happokatalysoidussa mekaanisessa käsittelyssä, joka tehtiin kuulamyllyssä. Reaktiossa katalyyttisen käsittelyn tehokkuuteen vaikuttivat erityisesti jauhatuksen kineettinen energia, jauhatusaika, happokonsentraatio ja reaktioseoksen kosteus. Tulosten perusteella todettiin, että ilman lähtöaineen esikäsittelyä sekä sahanpurun että kuitulietteen sokerisaanto oli noin 30 massa% lyhyen, matalassa happokonsentraatiossa tehdyn jauhatuksen jälkeen.
Tutkimuksen toisessa vaiheessa kuituliete muutettiin sokereiksi käyttämällä ionista liuotinta (IL), hydroksialkyyli-imidatsoliumvetysulfaattia. Sokerisaanto kuitulietteestä oli noin 29 massa% IL-vesiseoksessa. Vesi toimi reaktiossa apuliuottimena ja sen rooli on keskeinen ionisten liuottimien käytössä. Sekoittunut vesi laski ionisen liuottimen viskositeettia sekä edisti aineensiirtoa liuottimen ja liukenevan aineen välillä. IL:n anionit lisäsivät happamuutta vesiliuoksessa ja mahdollistivat happamat olosuhteet samanaikaiselle hydrolyysille. / Abstract
Biomasse aus Lignocellulose ist der am häufigsten vorkommende nachwachsende Rohstoff der Erde und wird aktuell als eine der besten Alternativen für die Produktion von Biokraftstoffen gesehen. Diese sollen langfristig die fossilen Öl-basierten Produkte ersetzen. Diese Forschungsarbeit untersucht die Herstellung von Zucker aus Lignocellulose basierten Abfällen. Faserschlamm aus der Zellstoffindustrie und Kiefern-Sägemehl aus der Holzverarbeitung wurden durch zwei unterschiedliche Bifunktionelle Vorbehandlungen aufgespalten. Diese Bifunktionelle Vorbehandlung kombiniert zwei Schritte in einem Prozess; die gewöhnliche Dekonstruktion der Biomasse und die Verzuckerung von Polysacchariden aus der Lignocellulose. Das so erzeugte Produkt dient als Ausgangsstoff für die weitere Herstellung von Biokraftstoffen und Chemikalien.
Im ersten Teil dieser Forschungsarbeit wurden Kiefern-Sägemehl und Faserschlamm in einer Planeten-Kugelmühle zermahlen und gleichzeitig durch eine Säure depolymerisiert. Der Wirkungsgrad dieser säurekatalysierten mechanischen Depolymerisation wurde hauptsächlich durch die Übertragung der Reibungsenergie, der Mahldauer der Zerkleinerung, der Konzentration der Säure und der Feuchtegehalt der Proben beeinflusst. Etwa 30 wt% Zucker wurde so durch den kurzen Zermahlungsprozess aus Kiefern-Sägemehl und Faserschlamm gewonnen. Dabei wurden die Proben nicht vorbehandelt und enthielten eine geringe Säure/Probe Konzentration.
Der zweite Teil der Forschungsarbeit untersucht die Umwandlung von Faserschlamm in Zucker mittels der Ionischen Flüssigkeit (ILs) Hydroxyalkyl Imidazolium Hydrogensulfat. Aus den Faserschlamm Proben konnte 29 wt% Zucker durch eine Mischung von ILs und Wasser gewonnen werden. Das zugesetzte Wasser spielte als Co-Lösemittel eine wichtige Rolle in der Nutzung der Ionischen Flüssigkeit, dessen Viskosität so reduziert wurde. Dies führte zu einem erhöhten Stoffübergang zwischen dem Lösemittel und dem Solvat. Zusätzlich sorgten die Anionen der Ionischen Flüssigkeit für ein saures Milieu in der wässrigen Lösung und ermöglichten so eine gleichzeitige Hydrolyse.
|
14 |
Caractérisation cinétique et structurale de verres sodo-silicatés soumis à un échange ionique au potassium / Structural characterization and kinetics of potassium ionic exchange on silica soda glassLeboeuf, Valérie 16 November 2015 (has links)
Le nouvel essor industriel du marché des applications mobiles telles que les smartphones ou les tablettes tactiles nécessite de nombreuses recherches afin de concevoir des écrans en verres encore plus résistant. Le procédé d’échange ionique au potassium permet d’améliorer la résistance mécanique des verres grâce à la substitution des ions Na⁺ par des ions K⁺, de plus gros rayon ionique. Elle permet ainsi de bloquer les fissures superficielles du verre et de réduire la casse du matériau. Ce travail est consacré à comprendre le principe de diffusion des ions K⁺ au sein de la structure silicatée de différents verres. Les paramètres, temps, température et composition verrière, influent sur la cinétique de l’échange ionique. Dans les mêmes conditions de trempe, la réduction de la composition à un formateur et à l’ion mobile permet d’améliorer la diffusion et la propagation des ions au sein du matériau. Les conditions de trempe, thermique et temporelle, agissent sur la cinétique de diffusion des ions. Elles réduisent la facilité de déplacement des ions à travers la structure silicaté du matériau avec un changement de comportement au-delà de 8h d’immersion dans les sels fondus. La substitution des Na⁺ par les ions K⁺ et leur différence de taille modifient l’environnement des sites laissés vacants par les ions Na⁺ et modifie la structure silicatée du verre. La spectroscopie IR permet de mettre en évidence les modifications structurales des verres soumis à ce procédé d’échange ionique. Lors de l’introduction des ions K⁺, la structure du verre se dépolymérise et crée des oxygènes non pontants. Ceci permet de montrer que l’échange ionique conduit à l’amélioration du renforcement mécanique des verres. / The new industrial boom of the market for mobile applications such as smartphones or tablets requires much research in order to touch-screens design more resistant. The potassium ion exchange process improves the mechanical strength of glass by Na⁺ ions substitution with K⁺ ions, of larger ionic radius. It thus helps to block surface cracks in glass and reduce breakage of the material. This work is devoted to understand the principle of K⁺ diffusion in the silicate structure of different glasses. The parameters: time, temperature and glass composition affect the kinetic of ion exchange process. In the same quenching conditions, the limitation of the composition just to a former network and a mobile ion can improve the diffusion and the penetration ions inside the material. The quenching conditions, temperature and time, act on the kinetic diffusion. They reduce the mobility of the ions through the structure of the silicate material with a change of behaviour above 8h immersion in molten salts. Substitution of Na⁺ by K⁺ ions having different size affect the environment of the sites left vacant by the Na⁺ ions and modifies the silicate structure of the glass. IR spectroscopy allows highlighting the structural modifications of the glass submitted to this ion exchange process. During the introduction of the K⁺ ions inside the glass, the silicate structure is depolymerized and creates no-bridging oxygens. This allows to demonstrate that the ion exchange lead to the mechanical improvement of the glass.
|
Page generated in 0.3254 seconds