Spelling suggestions: "subject:" electromyography""
51 |
A Revolutionary Step Towards the Prevention of Pressure Ulcer: from Bench to BedsideAhmetovic, Alisa Unknown Date
No description available.
|
52 |
Decomposição de sinais eletromiográficos de superfície utilizando Modelos ocultos de MarkovSá, ângela Abreu Rosa de 17 November 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The detection of physiological signals from the Motor System (electromyographic signals),
studied by electromyography, is being utilized in the practice clinic to guide the
therapist in a more precise and accurate diagnosis of motor disorders. In this context,
the process of decomposition of electromyographic signals (EMG) that includes the identification
and classification of Motor Unit Action Potential (MUAP) of EMG signals, is
very import to help the therapist in the evaluation of motor disorders
The EMG decomposition is a complex task due to the features of the EMG features
depend on the electrode type (needle or surface), its placement related to the muscle, the
contraction level and the health of the Neuromuscular System. To date the majority of
research on EMG decomposition utilizes EMG signals acquired by needle electrodes, due
to their advantages in processing this type of signal. However, relatively little research
has been conducted using surface based EMG signals.
As such this thesis aims to contribute to the clinical practice and Biofeedback therapies
by presenting a system permitting the decomposition of surface EMG signal via the use
of Hidden Markov Models. This process is supported by the use of Differential Evolution
and Spectral Clustering techniques.
The developed system presented coherent results in: a) Identification of the number
of Motor Units actives in the EMG signal; b) Presentation of the morphological patterns
of MUAPs in the EMG signal; c) Identification of the firing sequence of the Motor Units.
The Techniques utilized in this work have not yet been applied in the field of EMG decomposition and, in the end of this work, it was proved that they are excellent techniques
for the surface EMG decomposition. The model proposed in this work is an advance in
the research of decomposition of surface EMG signals. / A captação de sinais fisiológicos provenientes do Sistema Motor, que pode ser realizada
pela eletromiografia, tem sido cada vez mais utilizada na prática clínica para auxiliar o
terapeuta no diagnóstico de distúrbios motores. Desta forma, o processo de decomposição
de sinais eletromiográficos (EMG), que inclui a identificação e classificação dos potenciais
de ação de Unidade Motora (MUAP) de um sinal EMG de superfície é de extrema importância para a prática clínica, para auxiliar os profissionais na detecção de patologias
do Sistema Motor.
O processo de decomposição de um sinal EMG é uma tarefa complexa, pois as características de um sinal EMG dependem do tipo de eletrodo utilizado (intramuscular ou
de superfície), do seu posicionamento em relação ao músculo, o nível de contração e o
estado clínico do Sistema Neuromuscular do paciente. A maior parte dos sistemas de decomposição de sinais EMG são específicos para o sinal proveniente de eletrodos invasivos,
devido às facilidades e vantagens em processar este tipo de sinal. Assim, poucos esforços
foram concentrados no que tange à decomposição de sinais EMG de superfície.
Neste contexto, este trabalho apresenta um sistema de decomposição de sinais EMG
de superfície utilizando Modelos Ocultos de Markov, com o apoio das técnicas Evolução
Diferencial e Agrupamento Espectral, no intuito de auxiliar a prática clínica e as terapias
de Biofeedback.
O sistema desenvolvido apresentou resultados coerentes no que tange a: a) Identificação da quantidade de Unidades Motoras ativas no sinal EMG; b) Apresentação dos
padrões morfológicos de MUAPs presentes no sinal EMG; c) Identificação da seqüência
de disparos das Unidades Motoras no sinal EMG analisado.
As técnicas utilizadas neste trabalho ainda não tinham sido fruto de pesquisa na área
de decomposição de sinais EMG, e se destacam como excelentes técnicas para processamento
de sinal EMG de superfície. A arquitetura do modelo proposto constitui um avanço
nas pesquisas de decomposição de eletromiografia de superfície. / Doutor em Ciências
|
53 |
Développement et validation d'un instrument non-invasifde caractérisation du comportement musculaire respiratoireAïthocine, Elise 09 1900 (has links)
Réalisé en cotutelle avec l'Université Joseph Fourier
École Doctorale Ingénierie pour la Santé,la Cognition et l'Environnement (France) / Les progrès en anesthésie et en réanimation ont pour objectifs la réduction de la
durée de surveillance et l'amélioration de la qualité de la récupération. Pour le cas
particulier de l'assistance respiratoire, la capacité de surveiller et d'optimiser l'adaptation
entre le patient et sa machine d'assistance est déterminante pour la qualité
et la conduite des soins. Ce travail de thèse concerne dans sa première partie la
mise en place et la validation d'un outil instrumental permettant de caractériser un
comportement respiratoire par l'étude cycle à cycle du délai d'activation inspiratoire
entre les muscles des voies aériennes supérieures et de la cage thoracique. Cet outil
doit prendre en compte les contraintes imposées par le milieu clinique telle qu'une
mesure non-invasive des muscles respiratoires. Il repose sur une mesure électromyographique
(EMG) de surface des muscles respiratoires. La mesure cycle à cycle et
par voie de surface du délai d'activation est un véritable challenge dans un environnement
clinique qui est fortement perturbé. La démarche choisie ici est double
avec en parallèle : i) La mise en place d'un outil de détection d'évènements menée
sous supervision. ii) La définition d'un protocole original sur sujets sains prenant en
compte les contraintes cliniques et permettant de valider l'outil et de constituer une
base de connaissances pour envisager l'automatisation des procédés dans un travail
futur. D'un point de vue physiologique, l'influence de la fréquence respiratoire sur le
délai d'activation de l'inspiration n'a pas été étudiée à ce jour. Ce délai a donc été
mesuré en condition de normocapnie à différentes fréquences respiratoires imposées
par un stimulus sonore. Une étude statistique montre que l'instrument permet de
distinguer deux situations physiologiques du protocole expérimental, ce qui en dé-
montre la sensibilité.
La deuxième partie de ce travail de thèse s'inscrit dans le cadre d'une optimisation
des méthodes de détection de singularités d'intérêt. La solution choisie ici se base sur
l'intensité structurelle qui calcule la "densité" de maxima d'ondelettes à différentes
échelles et permet une localisation des singularités d'un signal bruité. Une formulation
de cet outil qui utilise la transformée de Berkner est proposée. Celle-ci permet
le chaînage des maxima d'ondelette afin de positionner précisément les amers du
signal. Le filtrage de l'artefact ECG dans l'EMG diaphragmatique sans signal de
référence est proposé comme exemple d'application. / Better care in an anaesthesia and critical care could be achieved by reducing
monitoring duration and improving the quality of recovery. For the particular case
of respiratory assistance, the capacity to track and optimize patient-ventilator synchrony
is essential to quality care. As a first step, this thesis adresses the development
and validation of an instrument which characterizes respiratory behavior by
studying the time lag between onset of upper airway muscles and rib cage muscles,
cycle by cycle during respiration. This tool must take into account the constraints
imposed by the clinical environment ; measuring respiratory muscles by surface electromyographic
measurements (EMG). Measurement of the onset time lag, cycle by
cycle and non invasively, is a true challenge in a critical care clinical environment.
Here the approach is two-fold : i) The development of a tool for events detection.
ii) The definition of an original protocol on healthy subjects. The tool development
constitutes a knowledge bases to eventually develop automation of the processes in
future work. From a physiological point of view, the influence of respiratory rate on
the EMG onset time lag during inspiration has not been studied. Thus we measured
this time lag in normocapnia at various respiratory rates imposed by a sound stimulus.
Statistically, the instrumental tool can distinguish two physiological situations
in this experimental protocol, which confirms its sensitivity.
The second step of this thesis is part of an optimization of events detection methods
with singularities of interest. The chosen solution is based on structural intensity
which computes the "density" of the locations of the modulus maxima of
a wavelet representation along various scales in order to identify singularities of an
unknown signal. An improvement is proposed by applying Berkner transform which
allows maxima linkage to insure accurate localization of landmarks. An application
to cancel ECG interference in diaphragmatic EMG without a reference signal is also
proposed.
|
54 |
Développement et validation d'un instrument non-invasifde caractérisation du comportement musculaire respiratoireAïthocine, Elise 09 1900 (has links)
Les progrès en anesthésie et en réanimation ont pour objectifs la réduction de la
durée de surveillance et l'amélioration de la qualité de la récupération. Pour le cas
particulier de l'assistance respiratoire, la capacité de surveiller et d'optimiser l'adaptation
entre le patient et sa machine d'assistance est déterminante pour la qualité
et la conduite des soins. Ce travail de thèse concerne dans sa première partie la
mise en place et la validation d'un outil instrumental permettant de caractériser un
comportement respiratoire par l'étude cycle à cycle du délai d'activation inspiratoire
entre les muscles des voies aériennes supérieures et de la cage thoracique. Cet outil
doit prendre en compte les contraintes imposées par le milieu clinique telle qu'une
mesure non-invasive des muscles respiratoires. Il repose sur une mesure électromyographique
(EMG) de surface des muscles respiratoires. La mesure cycle à cycle et
par voie de surface du délai d'activation est un véritable challenge dans un environnement
clinique qui est fortement perturbé. La démarche choisie ici est double
avec en parallèle : i) La mise en place d'un outil de détection d'évènements menée
sous supervision. ii) La définition d'un protocole original sur sujets sains prenant en
compte les contraintes cliniques et permettant de valider l'outil et de constituer une
base de connaissances pour envisager l'automatisation des procédés dans un travail
futur. D'un point de vue physiologique, l'influence de la fréquence respiratoire sur le
délai d'activation de l'inspiration n'a pas été étudiée à ce jour. Ce délai a donc été
mesuré en condition de normocapnie à différentes fréquences respiratoires imposées
par un stimulus sonore. Une étude statistique montre que l'instrument permet de
distinguer deux situations physiologiques du protocole expérimental, ce qui en dé-
montre la sensibilité.
La deuxième partie de ce travail de thèse s'inscrit dans le cadre d'une optimisation
des méthodes de détection de singularités d'intérêt. La solution choisie ici se base sur
l'intensité structurelle qui calcule la "densité" de maxima d'ondelettes à différentes
échelles et permet une localisation des singularités d'un signal bruité. Une formulation
de cet outil qui utilise la transformée de Berkner est proposée. Celle-ci permet
le chaînage des maxima d'ondelette afin de positionner précisément les amers du
signal. Le filtrage de l'artefact ECG dans l'EMG diaphragmatique sans signal de
référence est proposé comme exemple d'application. / Better care in an anaesthesia and critical care could be achieved by reducing
monitoring duration and improving the quality of recovery. For the particular case
of respiratory assistance, the capacity to track and optimize patient-ventilator synchrony
is essential to quality care. As a first step, this thesis adresses the development
and validation of an instrument which characterizes respiratory behavior by
studying the time lag between onset of upper airway muscles and rib cage muscles,
cycle by cycle during respiration. This tool must take into account the constraints
imposed by the clinical environment ; measuring respiratory muscles by surface electromyographic
measurements (EMG). Measurement of the onset time lag, cycle by
cycle and non invasively, is a true challenge in a critical care clinical environment.
Here the approach is two-fold : i) The development of a tool for events detection.
ii) The definition of an original protocol on healthy subjects. The tool development
constitutes a knowledge bases to eventually develop automation of the processes in
future work. From a physiological point of view, the influence of respiratory rate on
the EMG onset time lag during inspiration has not been studied. Thus we measured
this time lag in normocapnia at various respiratory rates imposed by a sound stimulus.
Statistically, the instrumental tool can distinguish two physiological situations
in this experimental protocol, which confirms its sensitivity.
The second step of this thesis is part of an optimization of events detection methods
with singularities of interest. The chosen solution is based on structural intensity
which computes the "density" of the locations of the modulus maxima of
a wavelet representation along various scales in order to identify singularities of an
unknown signal. An improvement is proposed by applying Berkner transform which
allows maxima linkage to insure accurate localization of landmarks. An application
to cancel ECG interference in diaphragmatic EMG without a reference signal is also
proposed. / Réalisé en cotutelle avec l'Université Joseph Fourier
École Doctorale Ingénierie pour la Santé,la Cognition et l'Environnement (France)
|
55 |
Smart control of a soft robotic hand prosthesis / Contrôle intelligent d’une prothèse de main robotique soupleRubiano Fonseca, Astrid 09 December 2016 (has links)
Le sujet principal de cette thèse est le développement d’un contrôle commande intelligentpour une prothèse de main robotique avec des parties souples qui comporte: (i) uneinterface homme–machine permettant de contrôler notre prothèse, (ii) et des stratégiesde contrôle améliorant les performances de la main robotique. Notre approche tientcompte : 1. du développement d’une interaction intuitive entre l'homme et la prothèse facilitantl'utilisation de la main, d'un système d’interaction entre l’utilisateur et la mainreposant sur l'acquisition de signaux ElectroMyoGrammes superficiels (sEMG) aumoyen d'un dispositif placé sur l'avant-bras du patient. Les signaux obtenus sontensuite traités avec un algorithme basé sur l'intelligence artificielle, en vued'identifier automatiquement les mouvements désirés par le patient.2. du contrôle de la main robotique grâce à la détection du contact avec l’objet et de lathéorie du contrôle hybride.Ainsi, nous concentrons notre étude sur : (i) l’établissement d’une relation entre lemouvement du membre supérieur et les signaux sEMG, (ii) les séparateurs à vaste margepour classer les patterns obtenues à partir des signaux sEMG correspondant auxmouvements de préhension, (iii) le développement d'un système de reconnaissance depréhension à partir d'un dispositif portable MyoArmbandTM, (iv) et des stratégieshybrides de contrôle commande de force-position de notre main robotique souple. / The target of this thesis disertation is to develop a new Smart control of a soft robotic hand prosthesis for the soft robotic hand prosthesis called ProMain Hand, which is characterized by:(i) flexible interaction with grasped object, (ii) and friendly-intuitive interaction between human and robot hand. Flexible interaction results from the synergies between rigid bodies and soft bodies, and actuation mechanism. The ProMain hand has three fingers, each one is equipped with three phalanges: proximal, medial and distal. The proximal and medial are built with rigid bodies,and the distal is fabricated using a deformable material. The soft distal phalange has a new smart force sensor, which was created with the aim to detect contact and force in the fingertip, facilitating the control of the hand. The friendly intuitive human-hand interaction is developed to facilitate the hand utilization. The human-hand interaction is driven by a controller that uses the superficial electromyographic signals measured in the forearm employing a wearable device. The wearable device called MyoArmband is placed around the forearm near the elbow joint. Based on the signals transmitted by the wearable device, the beginning of the movement is automatically detected, analyzing entropy behavior of the EMG signals through artificial intelligence. Then, three selected grasping gesture are recognized with the following methodology: (i) learning patients entropy patterns from electromyographic signals captured during the execution of selected grasping gesture, (ii) performing a support vector machine classifier, using raw entropy data extracted in real time from electromyographic signals.
|
56 |
Seleção de características para identificação de diferentes proporções de tipos de fibras musculares por meio da eletromiografia de superfícieFreitas, Amanda Medeiros de 14 August 2015 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Skeletal muscle consists of muscle fiber types that have different physiological and
biochemical characteristics. Basically, the muscle fiber can be classified into type I and
type II, presenting, among other features, contraction speed and sensitivity to fatigue
different for each type of muscle fiber. These fibers coexist in the skeletal muscles
and their relative proportions are modulated according to the muscle functionality and
the stimulus that is submitted. To identify the different proportions of fiber types in the
muscle composition, many studies use biopsy as standard procedure. As the surface
electromyography (EMGs) allows to extract information about the recruitment of different
motor units, this study is based on the assumption that it is possible to use the
EMG to identify different proportions of fiber types in a muscle.
The goal of this study was to identify the characteristics of the EMG signals which
are able to distinguish, more precisely, different proportions of fiber types. Also was
investigated the combination of characteristics using appropriate mathematical models.
To achieve the proposed objective, simulated signals were developed with different
proportions of motor units recruited and with different signal-to-noise ratios. Thirteen
characteristics in function of time and the frequency were extracted from emulated
signals. The results for each extracted feature of the signals were submitted to the
clustering algorithm k-means to separate the different proportions of motor units recruited
on the emulated signals. Mathematical techniques (confusion matrix and analysis
of capability) were implemented to select the characteristics able to identify different
proportions of muscle fiber types. As a result, the average frequency and median frequency
were selected as able to distinguish, with more precision, the proportions of
different muscle fiber types.
Posteriorly, the features considered most able were analyzed in an associated way
through principal component analysis. Were found two principal components of the signals emulated without noise (CP1 and CP2) and two principal components of the
noisy signals (CP1 and CP2 ). The first principal components (CP1 and CP1 ) were
identified as being able to distinguish different proportions of muscle fiber types.
The selected characteristics (median frequency, mean frequency, CP1 and CP1 )
were used to analyze real EMGs signals, comparing sedentary people with physically
active people who practice strength training (weight training). The results obtained
with the different groups of volunteers show that the physically active people obtained
higher values of mean frequency, median frequency and principal components compared
with the sedentary people. Moreover, these values decreased with increasing
power level for both groups, however, the decline was more accented for the group
of physically active people. Based on these results, it is assumed that the volunteers
of the physically active group have higher proportions of type II fibers than sedentary
people.
Finally, based on these results, we can conclude that the selected characteristics
were able to distinguish different proportions of muscle fiber types, both for the emulated
signals as to the real signals. These characteristics can be used in several studies,
for example, to evaluate the progress of people with myopathy and neuromyopathy
due to the physiotherapy, and also to analyze the development of athletes to improve
their muscle capacity according to their sport. In both cases, the extraction of these
characteristics from the surface electromyography signals provides a feedback to the
physiotherapist and the coach physical, who can analyze the increase in the proportion
of a given type of fiber, as desired in each case. / A musculatura esquelética é constituída por tipos de fibras musculares que possuem
características fisiológicas e bioquímicas distintas. Basicamente, elas podem
ser classificadas em fibras do tipo I e fibras do tipo II, apresentando, dentre outras
características, velocidade de contração e sensibilidade à fadiga diferentes para cada
tipo de fibra muscular. Estas fibras coexistem na musculatura esquelética e suas proporções
relativas são moduladas de acordo com a funcionalidade do músculo e com
o estímulo a que é submetido. Para identificar as diferentes proporções de tipos de
fibra na composição muscular, muitos estudos utilizam a biópsia como procedimento
padrão. Como a eletromiografia de superfície (EMGs) nos permite extrair informações
sobre o recrutamento de diferentes unidades motoras, este estudo parte da hipótese
de que seja possível utilizar a EMGs para identificar diferentes proporções de tipos de
fibras em uma musculatura.
O objetivo deste estudo foi identificar as características dos sinais EMGs que sejam
capazes de distinguir, com maior precisão, diferentes proporções de tipos de fibras.
Também foi investigado a combinação de características por meio de modelos
matemáticos apropriados.
Para alcançar o objetivo proposto, sinais emulados foram desenvolvidos com diferentes
proporções de unidades motoras recrutadas e diferentes razões sinal-ruído.
Treze características no domínio do tempo e da frequência foram extraídas do sinais
emulados. Os resultados de cada característica extraída dos sinais emulados foram
submetidos ao algorítimo de agrupamento k-means para separar as diferentes proporções
de unidades motoras recrutadas nos sinais emulados. Técnicas matemáticas
(matriz confusão e técnica de capabilidade) foram implementadas para selecionar as
características capazes de identificar diferentes proporções de tipos de fibras musculares.
Como resultado, a frequência média e a frequência mediana foram selecionadas como capazes de distinguir com maior precisão as diferentes proporções de tipos de
fibras musculares.
Posteriormente, as características consideradas mais capazes foram analisadas
de forma associada por meio da análise de componentes principais. Foram encontradas
duas componentes principais para os sinais emulados sem ruído (CP1 e CP2) e
duas componentes principais para os sinais com ruído (CP1 e CP2 ), sendo as primeiras
componentes principais (CP1 e CP1 ) identificadas como capazes de distinguirem
diferentes proporções de fibras.
As características selecionadas (frequência mediana, frequência média, CP1 e
CP1 ) foram utilizadas para analisar sinais EMGs reais, comparando pessoas sedentárias
com pessoas fisicamente ativas praticantes de treinamentos físicos de força (musculação).
Os resultados obtidos com os diferentes grupos de voluntários mostram que
as pessoas fisicamente ativas obtiveram valores mais elevados de frequência média,
frequência mediana e componentes principais em comparação com as pessoas sedentárias.
Além disto, estes valores decaíram com o aumento do nível de força para
ambos os grupo, entretanto, o decaimento foi mais acentuado para o grupo de pessoas
fisicamente ativas. Com base nestes resultados, presume-se que os voluntários
do grupo fisicamente ativo apresentam maiores proporções de fibras do tipo II, se
comparado com as pessoas sedentárias.
Por fim, com base nos resultados obtidos, pode-se concluir que as características
selecionadas foram capazes de distinguir diferentes proporções de tipos de fibras
musculares, tanto para os sinais emulados quanto para os sinais reais. Estas características
podem ser utilizadas em vários estudos, como por exemplo, para avaliar a
evolução de pessoas com miopatias e neuromiopatia em decorrência da reabilitação
fisioterápica, e também para analisar o desenvolvimento de atletas que visam melhorar
sua capacidade muscular de acordo com sua modalidade esportiva. Em ambos
os casos, a extração destas características dos sinais de eletromiografia de superfície
proporciona um feedback ao fisioterapeuta e ao treinador físico, que podem analisar
o aumento na proporção de determinado tipo de fibra, conforme desejado em cada
caso. / Mestre em Ciências
|
57 |
Análise dos efeitos da fadiga muscular no sinal eletromiográfico de superfície em contrações dinâmicas do bíceps braquialLinhares, Nicolai Diniz 27 February 2015 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / The muscle fatigue can be caused by multiple factors, and the most common one is bodywork. As a result, the muscle stress signal becomes part of atlets life. However, this phenom may show injuries incident, neuromuscular diseases, and it is related to the general human being health, as well as with its nutrition. To determine the fatigue level from a muscle or from a person is not that simple, because multiple subjective factors are envolved, including psychological and hormonal matters, thus maybe is not possible to determine an universal method for quantification of muscle fatigue.
The electromyographic signal (EMG) is well known and studied for reflecting the musculature condition from which it was generated. The electromyography is an important tool for the health muscle assessment, and counts on various studies and advances in its formation and interpretation understanding.Thus, it is expected that the muscle fatigue that affects the natural muscle behavior, affects also the EMG signal.
This work aims to understand how the fatigue action appears in the signal, through the study of different EMG signal characteristics. From literature, several studies analyzed isometric contractions, thus it was decided to make a dynamic contractions evaluation, which are more natural in the daily life. For the sake of simplicity, the biceps braquii was chosen. This muscle was estimulated by a scott biceps curl exercise, an exercise known to well isolate the working muscle, so that the weight lifting is almost all done by the biceps action. Pilot trial was done, collecting EMG signals from both biceps braquii, and also measuring the force applied to the bar.
For the EMG signal analysis, three software packages were developed. One of them was a programm for the electromyographer control, and for the signals record- ing in text files without header. For this development were used C Sharp and
.NET. One library for signals processing was developed using Matlab, including fil- ter functions, muscle activity detection and features extraction, such as amplitude, frequency, entropy, and stationarity. Finally, was developed a programm for feature analysis that uses the previous mentioned library, and that also applies the Kohonen algorithm of self-organizing maps.This programm was also developed using Matlab. All created programms are open source, and they are available for download on GitHub platform.
A temporal analysis of the features was performed in order to cluster the results of the features extracted from the signals of 21 volunteers. This analysis showed that signal s amplitude increases as the fatigue occurs while there is a spectral shift for the left. This shift indicates that the main frequencies have decreased. The trends observed for amplitude and frequency are the same reported in the literature.
The results also show decreasing in the entropy as effect of the fatigue progres- sion. Two stationarity features indicate decreasing in the stationarity, these were influenced by the amplitude raise, though. A third stationarity feature, which is not dependent on amplitude, show that there is not significant modification on the stationarity.
The data clustering attempt using the Kohonen algorithm was frustrated, gener- ating inconclusive results. It can be concluded that the features related to amplitude, frequency and entropy are somehow related to the muscular fatigue. So that it is possible, during future work, the development of a fatigue classifier based on these features. / A fadiga muscular pode ser causada por diversos fatores, e o mais comum deles e
o exercício físico. Isso faz com que esse sinal de estresse muscular faça parte da
vida de atletas. No entanto, esse fenômeno pode indicar a ocorrência de lesões,
doenças neuro-musculares e está ligado à saúde geral do indivíduo, bem como com
a alimentação. Determinar o nível de fadiga de um músculo ou de um indivíduo
em geral não é simples, pois vários aspectos subjetivos estão envolvidos, incluindo
questões psicológicas e hormonais, e talvez não seja possível a determinação de um
método universal de quanticação da fadiga muscular.
O sinal eletromiográfico (EMG) é conhecido e estudado por refletir o estado
da musculatura que o gerou. A eletromiografia é uma ferramenta importante para
a avaliação da saúde muscular e conta com diversos estudos e avanços tanto no
entendimento de sua formação quanto na sua interpretação. Assim, de antemão,
espera-se que a fadiga muscular, que afeta o comportamento natural dos músculos,
afete também o sinal eletromiográfico.
Nesse trabalho, procurou-se entender, por meio do estudo de diferentes características
do sinal EMG, como a ação da fadiga se manifesta no sinal. Na literatura,
vários estudos analisam as contrações isométricas, assim decidiu-se por fazer uma
avaliação de contrações dinâmicas, as quais são mais naturais no cotidiano. Por uma
questão de simplicidade, o músculo escolhido foi o bíceps braquial. Esse músculo foi
estimulado por um exercício de rosca em banco scott, um exercício conhecido por
isolar bem o músculo trabalhado, de forma que o levantamento do peso é quase todo
feito por ação do bíceps. Coletas piloto foram realizadas, nas quais o sinal EMG dos
dois bíceps foi registrado em conjunto com a medida de força aplicada na barra.
Para a análise dos sinais EMG, três pacotes de software foram desenvolvidos.
Um deles foi um programa para controle do eletromiógrafo e registro dos sinais em
arquivos texto com cabecalho. Para esse desenvolvimento, utilizou-se C Sharp e
.NET. Uma biblioteca para processamento de sinais biológicos foi desenvolvida em
Matlab, na qual encontram-se funções de filtragem, detecção de atividade muscular
e extração de características tais como amplitude, frequência, entropia e estacionaridade.
Por fim, desenvolveu-se um programa para análise de características que usa
a biblioteca mencionada e também aplica o algortimo de mapas auto-organizáveis de
Kohonnen. Esse programa também foi desenvolvido em Matlab. Todos os programas
criados sâo de código aberto e estão disponíveis para download na plataforma
GitHub.
Uma analise temporal das características foi realizada de forma a agrupar os
resultados das características extraídas dos sinais dos 21 voluntários. Essa análise
mostrou que a amplitude do sinal aumentou com o avanço da fadiga muscular enquanto
a frequência dos sinais se deslocou para esquerda no espectro. Isso indica que
as frequências principais diminuiram. Essas tendências para amplitude e frequência
são as mesmas registradas na literatura.
O estudo mostrou ainda que a entropia diminui com a progressão da fadiga.
Duas características de estacionaridade indicaram diminuição, no entanto foram influenciadas pela amplitude. Uma terceira característica, indepentende da amplitude,
mostrou que não há alteração signicativa na estacionaridade.
A tentativa de agrupamento dos dados com o algortimo de Kohonnen foi frustrada,
ja que gerou resultados inconclusivos. Concluiu-se que as características de amplitude,
frequência e entropia estão relacionadas com a fadiga muscular. Assim
acredita-se ser possível desenvolver, em estudos futuros, um classificador de sinais
EMG que faca inferência do nível de fadiga baseado nessas características. / Mestre em Ciências
|
Page generated in 0.0716 seconds