541 |
Structural and optoelectronic studies of lead chalcogenide thin films and nanocrystalsAkhtar, Javeed January 2010 (has links)
The work described herein deals with the synthesis and characterization of lead chalcogenide thin films and nanocrystals. The first part of thesis describes the properties of semiconductors followed by an analysis on the chemical vapour deposition and nanoparticulate formation. In the next part of thesis, single-source precursors of type thioselenophosphinato, selenoureato, dithiocarbamato and dithiocarbanato complexes of lead have been synthesised and characterised. As-synthesised compounds have been utilised for the fabrication of lead sulfide and lead selenide thin films by aerosol-assisted chemical vapour deposition as well as nanocrystals by colloidal injection method. Lead sulfide thin films were also deposited by liquid-liquid interface from lead dithiocarbanato at room temperature. The as grown thin films of lead sulfide and lead selenide have been characterised by XRD, SEM and energy dispersive x-ray (EDX) analysis. In the second part of the thesis, preparation of lead sulfide and lead selenide nanocrystals in olive oil at low growth temperatures (50-60°C) is described and have shown that by controlling experimental conditions, well-defined particles with tunable emission in mid and far-infrared region can be synthesised. Furthermore, compositionally-tuned PbSxSe1-x nanocrystals has also been prepared by adding controlled amount of sulur and selenium ingredients into lead oxide. Homogenous distribution of sulfur and selenium within alloyed nanocrystals is confirmed by transmission electron microscope studies. Moreover, attempts have been made to prepare quaternary (PbTe/Se/S) nanocrystals of lead chalcogenides and depth (1.9-5.8 nm) profile analysis by x-ray photoelectron spectroscopy confirmed the formation of core/shell/shell type structure i.e. PbTe/S/Se.
|
542 |
Élaboration d'objets massifs céramiques de type nanocomposite par la voie "polymère précéramique" / Elaboration of silicon-based nanocomposites through the "polymer-derived ceramics route"Bechelany, Mirna 13 December 2011 (has links)
Dans le cadre de ce travail, une méthode chimique, la voie « polymère précéramique » a été mise en oeuvre pour générer des nanocomposites céramiques à base de silicium et contenant des métaux de transition (Ti, Zr, Hf) sous forme d'objets massifs. Cette thèse consiste tout d'abord en un premier chapitre de bibliographie décrivant la méthode de préparation mise en oeuvre dans ce manuscrit ainsi que les matériaux étudiés. L'étude consiste dans un deuxième chapitre à synthétiser puis à caractériser des polymétallosilazanes qui, par des traitements thermiques appropriés, conduisent à des nanocomposites dans lesquels des nanocristaux de nitrures métalliques (nc-MN avec M = Ti, Zr et Hf) sont dispersés dans une phase amorphe ou cristallisée de nitrure de silicium. Ces nanocomposites sont alors caractérisés par différentes techniques afin de sélectionner les paramètres opératoires, allant de la synthèse des polymères à leur conversion en céramique, conduisant aux nanocomposites souhaités (e.g. matrice amorphe de nitrure de silicium) avec les propriétés visées (e.g. coloration). Dans un troisième chapitre, l'étude vise à modifier chimiquement ces polymétallosilazanes afin qu'ils soient adaptés à la conception d'objets massifs par compactage à chaud de polymetallosilazanes puis traitement thermique des compacts polymères. Des techniques de caractérisation sont alors mises en oeuvre sur l'ensemble du procédé pour suivre la transformation du compact polymère en objet massif. Les propriétés mécaniques de ces derniers sont notamment discutées. Dans chapitre 4, nous présentons des résultats préliminaires sur i) l'utilisation de la technique Spark Plasma Sintering pour optimiser la qualité des objets massifs à partir des poudres élaborées dans le chapitre 2, ii) l'ajout d'un second métal au système ternaire Si/Ti/N suivant le procédé d'élaboration étudié dans les chapitres 2 et 3 et iii) l'élaboration de ces nanocomposites à travers une voie d'élaboration dont le coût de préparation est plus abordable / In the present work, a chemical approach called the « Polymer Derived Ceramics » route, has been applied to prepare monolithic ceramic nanocomposites of the type nc-MN/a-Si3N4 with nc, nanocrystals, M, Transition Metal (Ti, Zr, Hf) and a being amorphous. After a literature review in the first chapter, we have designed preceramic polymers of the type polymetallosilazanes to provide after pyrolysis nanocomposites in form of powders in the second chapter. Each step of the process has been studied using characterization tools such as molecular weight measurements, solid-state NMR, and infrared spectroscopy. The structure of the polymers has been proposed. The pyrolysis has been investigated by thermogravimetric analysis and the final materials have been characterized by X-ray diffraction and TEM to confirm the nature of the nanocomposites. In a third chapter, polymers have been tested with regard to warm-pressing as shaping process to form green compacts which have been treated under ammonia then nitrogen at high temperatures to produce the desired ceramic nanocomposites (e.g. amorphous silicon nitride matrix) with specified properties (e.g. decorative properties) in form of monolith. Structural, mechanical and decorative properties have been finally studied. In the fourth chapter, we presented preliminary results on i) the use of Spark Plasma Sintering technique on the powders prepared in chapter 2 to optimize the quality of the solid objects ii) the introduction of two types of transition metals in the same polymetallosilazane leading to a new type of nanocomposite according to the process described in chapters 2 and 3 and iii) the elaboration of these nanocomposites through a cost-effective “two-step” process by dispersing transition metal nanoparticles within polycarbosilazanes
|
543 |
Synthèse et fonctionnalisation des nanocristaux émettant dans le proche infrarouge pour l'imagerie biologique / Synthesis and functionalisation of near infrared emitting nanocrystals for biological imaging.Tamang, Sudarsan 24 June 2011 (has links)
Cette thèse concerne le développement de nanocristaux (NCs) cœur/coquille d'InP/ZnS émettant dans le proche infrarouge pour l'imagerie biologique. Dans la synthèse chimique des NCs cœur d'InP, nous avons utilisé la phosphine générée in situ comme précurseur de phosphore en combinaison avec le myristate d'indium comme précuseur d'indium et l'1-octadécène comme solvant. Les NCs obtenus sont hautement cristallins et présentent une fluorescence dans la gamme 720-750 nm, selon leur taille. La croissance d'une ou deux monocouches (coquille) de ZnS sur la surface des NCs d'InP a considérablement amélioré leur rendement quantique de fluorescence. Nous avons de plus étudié le transfert de phase de ces NCs InP/ZnS du milieu organique au milieu aqueux en utilisant diverses molécules hydrophiles contenant un groupe thiol. En particulier, nous nous sommes intéressés au transfert de phase avec des molécules zwitterioniques tels que la penicillamine et la cystéine afin d'obtenir une taille hydrodynamique compacte, et de réduire les interactions non-spécifiques en milieu biologique. Dans l'étude du transfert de phase, l'accent a été mis sur la stabilité colloïdale des NCs et sur la préservation de leur efficacité de fluorescence en milieu aqueux. La cytotoxicité des NCs InP/ZnS fonctionnalisés avec la pencillamine a été évaluée en culture cellulaire. Puis la bio-distribution de ces NCs a été étudiée dans des souris vivantes par imagerie de fluorescence grâce à leur émission dans le proche infrarouge. Pour finir, les fonctionnalisations de NCs InP/ZnS d'une part avec un peptide de pénétration cellulaire, d'autre part avec des agents de contraste IRM (complexes de gadolinium) et enfin avec un nombre contrôlé de molécules streptavidine ont été explorées, démontrant le grand intérêt de ces NCs pour l'imagerie biologique. Mots clés: phosphure d'indium, boîtes quantiques, nanocristaux, imagerie biologique de fluorescence, infrarouge, transfert de phase, fonctionnalisation de surface / This thesis concerns the development of near infrared (NIR) emitting InP/ZnS core/shell nanocrystals for biological imaging. In situ generated phosphine gas was used as the phosphorous precursor, indium myristate as the In precursor and 1-Ocadecene as the solvent to produce InP NCs with emission in the range of 720-750 nm. Growth of 1-2 monolayers of a ZnS shell on the surface of the InP NCs strongly improves their quantum yield. Next, we studied the phase transfer of the obtained InP/ZnS NCs to aqueous medium with various thiol group containing ligands. Emphasis is put on the colloidal stability and the retention of fluorescence quantum efficiency during the transfer. Zwitterionic ligands such as pencillaime and cysteine have been studied in view of their biological interest in providing compact size and reduced non-specific interaction with cells. The cytotoxicity of pencillamine capped InP/ZnS NCs has been evaluated in cell culture. The NIR emitting properties of the QDs have been exploited to their study bio-distribution in mice by fluorescence imaging. In addition, functionalisation of the InP/ZnS NCs with a cell penetrating peptide, with a MRI contrast agent (gadolinium complex) and with a controlled number of streptavidin molecules have been explored to demonstrate the large interest of InP/ZnS NCs in biology. Key words: Indium phosphide, quantum dots, near infrared fluorescence imaging, phase transfer, surface functionalisation
|
544 |
3D assembly of silica encapsulated semiconductor nanocrystalsRengers, Christin, Voitekhovich, Sergei V., Kittler, Susann, Wolf, André, Adam, Marion, Gaponik, Nikolai, Kaskel, Stefan, Eychmüller, Alexander 15 December 2015 (has links)
Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures.
|
545 |
Optimalizace zařízení pro měření studené emise elektronů z povrchu GaN nanokrystalů / Optimization of device for measurement field emission from GaN nanocrystals surfaceHorák, Stanislav January 2018 (has links)
This diploma thesis deals with the design and optimization of the device for measurement of field emission from gallium nitride (GaN) nanocrystals surface. The first part of the thesis is the topic review, which contains the introduction to the problematics of field emissio focused on GaN. Then there were designed, constructed and optimized two versions of the device for the measurement of field emission. Through the optimization phase, the first successful test has been performed with zinc oxide (ZnO) nanowires. Simultaneously GaN nanocrystals were fabricated on the silicon substrate Si(111) with 2 nm of silicon dioxide SiO2 and also on the copper foil covered by graphene by molecular beam epitaxy (MBE). In the last chapter, there are presented the results of the measurement for emission of GaN nanocrystals. Finally, this study is comparing results with the current research in the area of field emission, which displays the improved characteristics for field emission of GaN nanocrystals on the copper foil covered by graphene.
|
546 |
CdTe Back Contact Engineering via Nanomaterials, Chemical Etching, Doping, and Surface PassivationBastola, Ebin January 2020 (has links)
No description available.
|
547 |
Molecular Transportation in Polymer and Composite Materials: Barrier Performance and Mechanical Property EvaluationMd Nuruddin (8738436) 21 April 2020 (has links)
<p>Transport of gasses and liquids through polymers and
composites is an important factor to be considered when designing a material
for structure and packaging applications. For structural engineering
applications, more focus has been given to the transportation of water, vapor
and organic liquids rather than gases as diffusion of these liquids into the
polymers and polymer-based composites can significantly lower service life. In
addition, much attention has been given to the leaching of unreacted reactant
molecules, solvents, additives, degradation products from the polymers and
composites to the atmosphere (water, soil etc.). We studied the transport of volatile
organic compounds and water in cured-in-place-pipe (CIPP) (a representative of
FRPC) and gas permeability of highly engineered cellulose nanocrystals (CNC)
films.</p>
<p>Cured-in-place-pipe (CIPP) is a popular technology which
uses fiber reinforced polymer composite to repair sanitary sewer, stormwater,
and drinking water pipe. The liner is installed in the field and exposed to
flowing water immediately after installation (curing of the liner) is done.
Curing conditions dictate liner properties as undercured liners can contain
unreacted styrene monomers, additives, degradation products. These agents can
leach out and enter the environment (soil, water, air). The objective of this
work was to investigate the curing behavior, volatile content, thermal
stability of steam-cured and UV-cured CIPP liners collected from Indiana and
New York installation sites. The liner specimens were also exposed to water and
other aggressive environmental conditions (saltwater, concrete pore solution at
50 °C) to explore the leaching of unreacted styrene and other organic chemicals
from the liners. The influence of transportation of water, salt solution and
pore solution through liners on mechanical and thermo-mechanical properties was
also examined to study the durability of the liners. Study suggested that the
durability of the liners depends on the curing condition and exposed
environment conditions.</p>
<p>The function of polymer packaging materials is mainly to
inhibit gas and moisture permeation through the films. Cellulose nanocrystals
(CNCs) have drawn growing interest for the packaging due to their non-toxicity,
abundance in nature, biodegradability and high barrier properties. The
objective of this work was to corelate the alignment of CNC with free volume
and barrier performance of the film. Furthermore, citric acid (CA) was added to
the CNC suspensions with varying quantity to explore the effect of CA on
coating quality and barrier performance of CNC coated polypropylene (PP) film.
Study revealed that CA addition in CNC suspension can enhance the
hydrophobicity and gas barrier performance of coated PP films while retaining
the high optical transparency. </p>
|
548 |
Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscapeSchweinefuß, Maria E., Springer, Sergej, Baburin, Igor A., Hikov, Todor, Huber, Klaus, Leoni, Stefano, Wiebcke, Michael 27 November 2019 (has links)
We report a rapid additive-free synthesis of nanocrystals (NCs) of RHO-type ZIF-71 (1) of composition [Zn(dcim)₂] (dcim = 4,5-dichloroimidazolate) in 1-propanol as solvent at room temperature. NC-1 has a size of 30–60 nm and exhibits permanent microporosity with a surface area (SBET = 970 m² g−¹) comparable to that of microcrystalline material. When kept under the mother solution NC-1 undergoes transformation into a novel SOD-type polymorph (2), which in turn converts into known ZIF-72 (3) with lcs topology. It is shown that microcrystals (MCs) of 2 can be favourably synthesised using 1-methylimidazole as a coordination modulator. NC-2 with size <200 nm was prepared using NC-ZIF-8 as a template with SOD topology in a solvent assisted ligand exchange-related process. DFT-assisted Rietveld analysis of powder XRD data revealed that novel polymorph 2 possesses an unusual SOD framework conformation. 2 was further characterised with regard to microporosity (SBET = 597 m² g−¹) and thermal as well as chemical stability. DFT calculations were performed to search for further potentially existing but not-yet synthesised polymorphs in the [Zn(dcim)₂] system.
|
549 |
3D Assembly of All-Inorganic Colloidal Nanocrystals into Gels and AerogelsSayevich, Vladimir, Cai, Bin, Benad, Albrecht, Haubold, Danny, Sonntag, Luisa, Gaponik, Nikolai, Lesnyak, Vladimir, Eychmüller, Alexander 01 February 2017 (has links)
We report on an efficient assembly approach to a variety of electrostatically stabilized all-inorganic semiconductor nanocrystals (NCs) via their linking with appropriate ions into multibranched gel networks. These all-inorganic non-ordered 3D assemblies can combine strong interparticle coupling which facilitates charge transport between the NCs with their diverse morphology, composition, size, and functional capping ligands. Moreover, the resulting dry gels (aerogels) are highly porous monolithic structures, which preserve the quantum confinement of their building blocks. The inorganic semiconductor aerogel made of 4.5 nm CdSe colloidal NCs, capped with iodide ions and bridged with Cd2+ ions, exhibited a surface area as high as 146 m2/g.
|
550 |
Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd₁₋ₓHgₓTe and PbS quantum dots: method- and material-inherent challengesHatami, Soheil, Würth, Christian, Kaiser, Martin, Leubner, Susanne, Gabriel, Stefanie, Bahrig, Lydia, Lesnyak, Vladimir, Pauli, Jutta, Gaponik, Nikolai, Eychmüller, Alexander, Resch-Genger, Ute 16 December 2019 (has links)
Bright emitters with photoluminescence in the spectral region of 800–1600 nm are increasingly important as optical reporters for molecular imaging, sensing, and telecommunication and as active components in electrooptical and photovoltaic devices. Their rational design is directly linked to suitable methods for the characterization of their signal-relevant properties, especially their photoluminescence quantum yield (Φf ). Aiming at the development of bright semiconductor nanocrystals with emission >1000 nm, we designed a new NIR/IR integrating sphere setup for the wavelength region of 600–1600 nm. We assessed the performance of this setup by acquiring the corrected emission spectra and Φf of the organic dyes |trybe, IR140, and IR26 and several infrared (IR)-emissive Cd₁₋ₓHgₓTe and PbS semiconductor nanocrystals and comparing them to data obtained with two independently calibrated fluorescence instruments absolutely or relative to previously evaluated reference dyes. Our results highlight special challenges of photoluminescence studies in the IR ranging from solvent absorption to the lack of spectral and intensity standards together with quantum dot-specific challenges like photobrightening and photodarkening and the size-dependent air stability and photostability of differently sized oleate-capped PbS colloids. These effects can be representative of lead chalcogenides. Moreover, we redetermined the Φf of IR26, the most frequently used IR reference dye, to 1.1 × 10⁻³ in 1,2-dichloroethane DCE with a thorough sample reabsorption and solvent absorption correction. Our results indicate the need for a critical reevaluation of Φf values of IR-emissive nanomaterials and offer guidelines for improved Φf measurements.
|
Page generated in 0.0436 seconds