• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 404
  • 222
  • 76
  • 43
  • 19
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 885
  • 89
  • 86
  • 83
  • 80
  • 78
  • 64
  • 63
  • 63
  • 62
  • 56
  • 55
  • 54
  • 52
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
781

The influence of composition, processing and temperature on the Young's modulus of elasticity of carbon-bonded refractories

Werner, Jörn 03 November 2014 (has links)
Thermal shock resistance is a key property of refractory materials. Its determination and prediction is essential for the design of structural refractories as well as lining materials. Young’s modulus of elasticity (E) is a crucial parameter for the calculation of thermal shock resistance. For all investigated carbon-bonded alumina composition a significant increase of E was observed. This increase was attributed to a mismatch of the coefficient of thermal expansion of the composite constituents. Besides others, the graphite content as well as the maximum alumina particle size were identified as crucial factors influencing E(T). Furthermore, the influence of the porosity on E was shown and existing models were fitted to the experimental data for future predictions of E. Finally a metal melt filter structure was investigated to investigate the relationship between its strut Young’s modulus and the structures’ E at high temperatures. Further research should address the filter topic since it was uncertain how to find the normal modes of those structures.
782

Assessment of optical coherence tomography for metrology applications in high-scattering ceramic materials

Su, Rong January 2012 (has links)
Large-scale and cost-effective manufacturing of ceramic micro devices based on tape stacking requires the development of inspection systems to perform high-resolution in-process quality control of embedded manufactured cavities, metal structures and defects. In this work, alumina ceramic samples are evaluated by optical coherence tomography (OCT) operating at 1.3μm wavelength and some dimensional data are obtained by dedicated image processing and segmentation. Layer thicknesses can be measured and laser-machined channels can be verified embedded at around 100μm depth. Moreover, detection of internal defects is enabled. Monte Carlo ray tracing simulations are employed to analyze the abilities of OCT in imaging of the embedded channels. The light scattering mechanism is studied for the alumina ceramics, and different scattering origins and models are discussed. The scattering parameters required as input data for simulations are evaluated from the integrating sphere measurements of collimated and diffuse transmittance spectra using a reconstruction algorithm based on refined diffusion approximation approach. / <p>QC 20120628</p>
783

A study on the Submerged Entry Nozzels (SEN) respecting clogging and decarburization

Memarpour, Arashk January 2010 (has links)
The submerged entry nozzle (SEN) has been used to transport the molten steel from tundish to the mould. The main purpose of the SEN usage is both to prevent oxygen and nitrogen pick-up by molten steel and to achieve the desired flow condition in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. Furthermore, the steelmaking processes occur at high temperatures around 1873 K so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during pre-heating and casting is necessary for the design of the steelmaking processes. The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during pre-heating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied in supplement 1. The results of the study indicated the penetration of the formed alkaline-rich glaze into the Alumina/graphite base refractory during pre-heating. More specifically, the alkaline-rich glaze reacts with graphite to form carbon monoxide gas. Thereafter, dissociation of CO at the SEN/molten metal interface takes place. This leads to reoxidation of dissolved REM (Rare Earth Metal), which form the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to a formation of a high-viscous alumina-rich glaze during the SEN pre-heating process. This in turn, creates a very uneven surface at the SEN internal surface. The “In Situ” formation of the REM oxides together with the uneven internal surface of the SEN may facilitate the accumulation of the primary inclusions. Supplement 1 revealed the disadvantages of the glass/silicon powder layer. On the other hand the carbon oxidation is a main industrial problem for un-coated Alumina/Graphite Submerged Entry Nozzles (SEN) during pre-heating. This led to the proposal of a new refractory material for the SEN. In supplement 2, the effect of ZrSi2 antioxidant and the coexistence of antioxidant additive and (4B2O3 ·BaO) glass powder on carbon oxidation were investigated at simulated non-isothermal heating conditions in a  controlled atmosphere. Also, the effect of ZrSi2 antioxidant on carbon oxidation was investigated at isothermal temperatures at 1473 K and 1773 K. The specimens’ weight losses and temperatures were plotted versus time and compared to each others. The thickness of the oxide areas were measured and also examined using XRD, FEG-SEM and EDS. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina/Graphite base refractory materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by (4B2O3 ·BaO) glaze during green body sintering led to an excellent carbon oxidation resistance. In supplement 3, decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials constituting a commercial Submerged Entry Nozzle (SEN), have been investigated in different gas atmosphere consisting of CO2, O2 and Ar. The (CO2/O2) ratio values were kept the same as it is in propane combustion flue gas at Air Fuel Ratio (AFR) values equal to 1.5 and 1 for both Air-fuel and Oxygen-fuel combustions. Laboratory experiments were carried out non-isothermally in the temperature range 873 K to 1473 K at 15 K/min followed by isothermal heating at 1473 K for 60 min. The decarburization ratio (α) values of the three refractory types were determined by measuring the weight losses of the samples. The results showed that the decarburization ratio (α) values of the MgO-C refractory became 3.1 times higher for oxygen-fuel combustion compared to air-fuel combustion both at AFR equal to 1.5 in the temperature range 873 K to 1473 K. The decarburization ratio (α) values for Al2O3-C samples were the same as for the isothermal heating at 1473 K and non-isothermal heating in the temperature range 473  to 1773 K with a 15 K/min heating rate. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times instead of heating at lower temperatures for longer holding times. Jander’s diffusion model was proposed for estimating the decarburization rate of Al2O3-C refractory in the SEN. The activation energy for Al2O3-C samples heated at AFR equal to 1.5, for air-fuel and oxygen-fuel combustions were found to be 84.5 KJ/mol and 95.5 KJ/mol respectively during non-isothermal heating in the temperature range 873 K to 1473 K. / QC 20101008
784

Beitrag zur Bewertung und Beurteilung der gezielten Steigerung der mechanischen Festigkeit silikatkeramischer Werkstoffe

Ulbrich, Christopher 27 April 2022 (has links)
Die vorliegende Abhandlung befasst sich mit der Thematik der gezielten Festigkeitssteigerung silikatkeramischer Werkstoffe. Dabei liegt das Interesse auf der Korrelation der Bruchspannung verschiedener Versuchswerkstoffe, mit den sich in Abhängigkeit der Rohstoffzusammensetzung bildenden Gefügemerkmalen. Die Grundlage der Versuche ist die Modifikation eines chemisch-technischen Feinsteinzeuges, bestehend aus bildsamen Rohstoffen, den Tonen und zweier unbildsamen Komponenten, den Schamotten. Durch die Substitution der unbildsamen Schamotten mit Feldspatrohstoffen und Aluminiumoxid gelingt die Veränderung der Gefüge bei gleichzeitiger Steigerung der Festigkeit gegenüber dem Referenzwerkstoff. Dabei korrelieren die Substitute eng miteinander. Die Feldspatrohstoffe liefern die erforderliche Menge Alkaliionen zur Intensivierung der Flüssigphasensinterung. In dieser Konsequenz entsteht ein vermehrter Anteil röntgenamorpher Phase. Zudem wird die Mullitkristallisation begünstigt. Das kristalline Al2O3 führt zu einem Verbund mit der amorphen Matrix, der deutlich geringeren Spannungen unterliegt, als es der Fall für den durch die Rohstoffe eingebrachten und ungelösten Restquarz ist. Dieser zeichnet sich vorrangig durch ein vollständiges oder teilweises Ablösen von der Matrix und damit einer kritischen Gefügeschädigung aus. Die damit einhergehende Beeinträchtigung der Werkstoffe wird durch den Vergleich mit einem Werkstoff höheren Quarzanteils bekräftigt. Eingehende röntgenografische Analysen der heterogenen Werkstoffe ermöglichen es, Tendenzen hinsichtlich der Diskrepanz des thermischen Dehnungsverhaltens zwischen Glas- und Mineralphasen aufzuzeigen und somit einen Bezug zu inneren Spannungen herzustellen. Neben derartigen Spannungen im Gefüge zeigt sich die Relevanz des sich während der Werkstoffkonsolidierung bildenden Sekundärmullits. Mikro- und nanoskalige Mullitnadeln, eingebettet in der amorphen Matrix, münden in deren Bewehrung, wodurch ein Beitrag zur Festigkeitssteigerung des Werkstoffes geleistet wird. Die Ergebnisse liefern die grundsätzliche Erkenntnis, dass die unterschiedlichen Wirkmechanismen zur Steigerung der Festigkeit in silkatkeramischen Werkstoffen in kausalem Zusammenhang stehen und nicht ausschließlich individuell betrachtet werden sollten.:1 Einleitung und Problemstellung 1 2 Grundlagen und Stand der Technik 4 2.1 Merkmale des Feinsteinzeugs und Porzellans . . . . . . . . . . . . . . . 4 2.2 Relevante Rohstoffe und deren Eigenschaften . . . . . . . . . . . . . . . 5 2.2.1 Tone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Schamotte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Aluminiumoxid . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 Feldspat und Feldspatvertreter . . . . . . . . . . . . . . . . . . . 9 2.3 Mechanische Eigenschaften keramischer Werkstoffe . . . . . . . . . . . 11 2.4 Bruchmechanisches Verhalten keramischer Werkstoffe . . . . . . . . . . 12 2.5 Festigkeitstheorien in Abhängigkeit bestimmter Gefügemerkmale . . . . 14 2.5.1 Mullit und die Mullithypothese . . . . . . . . . . . . . . . . . . 14 2.5.2 Gefügespannungstheorie . . . . . . . . . . . . . . . . . . . . . . 16 2.5.3 Dispersionsverstärkung der Matrix . . . . . . . . . . . . . . . . 19 2.5.4 Glasphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.5 Einfluss der Porosität . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.6 Statistische Auswertung der Bruchspannungsswerte - DieWeibull- Statistik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Grundlagen zur Bestimmung des Mineralphasengehaltes . . . . . . . . . 23 3 Experimentelle Methodik 25 3.1 Grundlagen und Vorgehensweise zur Entwicklung der Masseversätze . . 25 3.1.1 Auswahl der Rohstoffe . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Grundlagen der Versatzberechnung . . . . . . . . . . . . . . . . 26 3.1.3 Erläuterung der Versuchsbezeichnungen . . . . . . . . . . . . . . 28 3.1.4 Zusammenstellung der Versuchsversätze . . . . . . . . . . . . . 29 3.1.5 Aufbereitung der experimentellen Versätze . . . . . . . . . . . . 30 3.2 Charakterisierung der Werkstoffeigenschaften . . . . . . . . . . . . . . . 31 3.2.1 Vorgehensweise zur Bestimmung und statistischen Auswertung der Festigkeitswerte . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2 Bestimmung des Wärmeausdehnungskoeffizienten der Glasmatrix 33 3.2.3 Bestimmung der Deformation während des Sinterprozesses . . . 35 3.2.4 Analyse des Erweichungsverhalten mit dem Erhitzungsmikroskop 36 3.2.5 Wasseraufnahme, Rohdichte und offene Porosität . . . . . . . . 36 3.2.6 Reindichtebestimmung . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Röntgenographische Untersuchungen . . . . . . . . . . . . . . . . . . . 37 3.3.1 Röntgenbeugungsanalytik . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Rasterelektronenmikroskopie . . . . . . . . . . . . . . . . . . . . 40 3.3.3 Röntgenfluoreszenzanalyse . . . . . . . . . . . . . . . . . . . . . 40 4 Darstellung und Diskussion der Ergebnisse 42 4.1 Betrachtung der mechanischen Festigkeit . . . . . . . . . . . . . . . . . 42 4.2 Reproduzierbarkeit der Ergebnisse der Bruchspannungsmessungen . . . 48 4.3 Festigkeitsentwicklung in Abhängigkeit der Porosität . . . . . . . . . . 49 4.4 Ergebnisse der mineralogischen Zusammensetzung . . . . . . . . . . . . 55 4.4.1 Qualitative Darstellung der Mineralogie . . . . . . . . . . . . . . 55 4.4.2 Quantitative Darstellung der Mineralogie . . . . . . . . . . . . . 58 4.4.3 Verifizierung der Ergebnisse aus der Mineralphasenquantifizierung nach der modifizierten RIR-Methode . . . . . . . . . . . . 66 4.5 Elektronenmikroskopische Aufnahmen . . . . . . . . . . . . . . . . . . 67 4.5.1 Vergleichende Betrachtung der Gefüge in Abhängigkeit der unterschiedlichen Rohstoffe . . . . . . . . . . . . . . . . . . . . . . 68 4.5.2 Vergleich der Werkstoffgefüge mit Al2O3 und Feldspatrohstoff . 79 4.5.3 Betrachtung der Mullitkristallisation . . . . . . . . . . . . . . . 80 4.6 Wärmdehnungsverhalten der Glasphase . . . . . . . . . . . . . . . . . . 82 4.7 Deformationsverhalten während des Sinterprozesses . . . . . . . . . . . 87 5 Zusammenfassung und Ausblick 90 Literatur- und Quellenverzeichnis 95 Appendix 108 / The theme of the present work is the strength of silicate ceramic materials. In this regard it is of interest to correlate the fracture stress of various experimentally investigated materials with microstructural characteristics dependent on different raw material compositions. The basis of these investigations is the modification of a porcelain stoneware consisting of different types of clay and non plastic chamottes. Substitution of the chamottes with different types of feldspar and alumina leads to significant changes of the microstructure and to an associated increase in mechanical strength relative to the reference material. The feldspar raw materials provide the required concentration of alkali ions to enhance the liquid-phase sintering. As a result, the amount of the amorphous phase inreases and the crystallisation of mullite is promoted. The crystalline alumina becomes embedded in the glassy matrix and thereby leads to significantly lower stresses than would be the case for undissolved residual quartz introduced by the raw materials. Quartz is characterised by a complete or partial detachment from the matrix and thus a critical material failure. This is confirmed by comparison with a material consisting of a high quartz concentration. X-ray analysis of the heterogenous materials reveals trends regarding thermal expansion mismatch between the amorphous and crystalline phases. Thus a relationship to internal stresses is established. In addition, the relevance of the secondary mullite formed during the consolidation process is shown. Micro- and nanoscaled mullite needles, embedded in the amorphous matrix, contribute to the strength of the materials by reinforcing the matrix. The results provide the fundamental insight that the different mechanisms of increasing the strength in silicate ceramic materials are causally related and should not be considered in isolation.:1 Einleitung und Problemstellung 1 2 Grundlagen und Stand der Technik 4 2.1 Merkmale des Feinsteinzeugs und Porzellans . . . . . . . . . . . . . . . 4 2.2 Relevante Rohstoffe und deren Eigenschaften . . . . . . . . . . . . . . . 5 2.2.1 Tone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Schamotte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Aluminiumoxid . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.4 Feldspat und Feldspatvertreter . . . . . . . . . . . . . . . . . . . 9 2.3 Mechanische Eigenschaften keramischer Werkstoffe . . . . . . . . . . . 11 2.4 Bruchmechanisches Verhalten keramischer Werkstoffe . . . . . . . . . . 12 2.5 Festigkeitstheorien in Abhängigkeit bestimmter Gefügemerkmale . . . . 14 2.5.1 Mullit und die Mullithypothese . . . . . . . . . . . . . . . . . . 14 2.5.2 Gefügespannungstheorie . . . . . . . . . . . . . . . . . . . . . . 16 2.5.3 Dispersionsverstärkung der Matrix . . . . . . . . . . . . . . . . 19 2.5.4 Glasphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.5 Einfluss der Porosität . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.6 Statistische Auswertung der Bruchspannungsswerte - DieWeibull- Statistik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Grundlagen zur Bestimmung des Mineralphasengehaltes . . . . . . . . . 23 3 Experimentelle Methodik 25 3.1 Grundlagen und Vorgehensweise zur Entwicklung der Masseversätze . . 25 3.1.1 Auswahl der Rohstoffe . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Grundlagen der Versatzberechnung . . . . . . . . . . . . . . . . 26 3.1.3 Erläuterung der Versuchsbezeichnungen . . . . . . . . . . . . . . 28 3.1.4 Zusammenstellung der Versuchsversätze . . . . . . . . . . . . . 29 3.1.5 Aufbereitung der experimentellen Versätze . . . . . . . . . . . . 30 3.2 Charakterisierung der Werkstoffeigenschaften . . . . . . . . . . . . . . . 31 3.2.1 Vorgehensweise zur Bestimmung und statistischen Auswertung der Festigkeitswerte . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2 Bestimmung des Wärmeausdehnungskoeffizienten der Glasmatrix 33 3.2.3 Bestimmung der Deformation während des Sinterprozesses . . . 35 3.2.4 Analyse des Erweichungsverhalten mit dem Erhitzungsmikroskop 36 3.2.5 Wasseraufnahme, Rohdichte und offene Porosität . . . . . . . . 36 3.2.6 Reindichtebestimmung . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Röntgenographische Untersuchungen . . . . . . . . . . . . . . . . . . . 37 3.3.1 Röntgenbeugungsanalytik . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Rasterelektronenmikroskopie . . . . . . . . . . . . . . . . . . . . 40 3.3.3 Röntgenfluoreszenzanalyse . . . . . . . . . . . . . . . . . . . . . 40 4 Darstellung und Diskussion der Ergebnisse 42 4.1 Betrachtung der mechanischen Festigkeit . . . . . . . . . . . . . . . . . 42 4.2 Reproduzierbarkeit der Ergebnisse der Bruchspannungsmessungen . . . 48 4.3 Festigkeitsentwicklung in Abhängigkeit der Porosität . . . . . . . . . . 49 4.4 Ergebnisse der mineralogischen Zusammensetzung . . . . . . . . . . . . 55 4.4.1 Qualitative Darstellung der Mineralogie . . . . . . . . . . . . . . 55 4.4.2 Quantitative Darstellung der Mineralogie . . . . . . . . . . . . . 58 4.4.3 Verifizierung der Ergebnisse aus der Mineralphasenquantifizierung nach der modifizierten RIR-Methode . . . . . . . . . . . . 66 4.5 Elektronenmikroskopische Aufnahmen . . . . . . . . . . . . . . . . . . 67 4.5.1 Vergleichende Betrachtung der Gefüge in Abhängigkeit der unterschiedlichen Rohstoffe . . . . . . . . . . . . . . . . . . . . . . 68 4.5.2 Vergleich der Werkstoffgefüge mit Al2O3 und Feldspatrohstoff . 79 4.5.3 Betrachtung der Mullitkristallisation . . . . . . . . . . . . . . . 80 4.6 Wärmdehnungsverhalten der Glasphase . . . . . . . . . . . . . . . . . . 82 4.7 Deformationsverhalten während des Sinterprozesses . . . . . . . . . . . 87 5 Zusammenfassung und Ausblick 90 Literatur- und Quellenverzeichnis 95 Appendix 108
785

Evaluation of Alumina Nanofluids and Surfactant Drag Reducing Solutions to Improve Heat Transfer for Aircraft Cooling Systems

Narvaez, Javier Artemio January 2018 (has links)
No description available.
786

Design, Evaluation, and Particle Size Characterization of an In-Duct Flat Media Particle Loading Test System for Nuclear-Grade Asme Ag-1 Hepa Filters

Wong, Matthew Christopher 06 May 2017 (has links)
The design and performance evaluation of in-duct, isokinetic samplers capable of testing flat sheet, nuclear-grade High Efficiency Particulate Air (HEPA) filters simultaneously with a radial filter testing system is discussed in this study. Evaluations within this study utilize challenge aerosols of varying particle diameters and masses such as hydrated alumina, Arizona test dust, and flame-generated acetylene soot. Accumulated mass and pressure drop for each in-duct sampler is correlated to the full-scale radial filter accumulated mass from initial to 10 in w. c. of loading. SEM imaging of samples at 25%, 50%, 75% and 100% loading verifies particle sizes with instrumentation used, revealing filter clogging resulting from particle impaction and interception. The U.S Department of Energy requires prototype nuclear-grade HEPA filters to be qualified under ASME AG-1 standards. The data obtained can be used to determine baseline performance characteristics on pleated radial filter medium for increased loading integrity and lifecycle endurance.
787

Spectroscopic Characterization of Metal Oxide Nanofibers

Bender, Edward Thomas 18 May 2006 (has links)
No description available.
788

Metal Oxide Nanofibers as Filters, Catalyst and Catalyst Support Structures

Swaminathan, Sneha 05 August 2010 (has links)
No description available.
789

Mineral-Scale Sr Isotopic Study of Plagioclase in the Mafic Dikes of the North American Wall and the Diorite of the Rockslides, Yosemite Valley, California.

Nelson, Wendy Rae 16 March 2006 (has links) (PDF)
The North American Wall mafic dikes and the diorite of the Rockslides mafic complex in the intrusive suite of Yosemite Valley show evidence of mixing with their host granites as well as with earlier components. Whole rock major element variation diagrams indicate the mafic rocks mixed with a more silicic component, but extrapolating to the silica end member does not yield the same result with each element. Trace element concentrations show a wide variation in concentration of Cr and Ni, with two samples showing enrichment in Cr (>300 ppm) and Ni (~44 ppm) compared to other samples (Cr =13-94 ppm; Ni = 5-26 ppm). These samples have the most primitive epsilon Nd values (-3.3, -3.5 at 100 Ma) analyzed thus far for the intrusive suite, indicating the suite has a larger range of isotopic values than previously thought. Delta 18 oxygen for Rockslides samples vary from 6.6 to 7.5 per mille (6 samples, average 7.03), higher than the 5.5 + 0.3 range for the mantle, indicating the presence of a crustal component in the system. Plagioclase phenocrysts within each unit display bimodal compositional populations. Subhedral to euhedral partially resorbed calcic cores (mode = An84-88) are reminiscent of a mafic magma, while sodic rims (mode = An48-50) are the product of a more silicic component. Very little to no intermediate zoning is present between cores and rims. Mineral-scale 87Sr/86Sr analysis of plagioclase cores and rims are consistent with previously published enriched bulk-rock ratios for the suite (0.7065-0.7078), but are unable to distinguish between mixing components. The plagioclase isotopic data show no direct evidence for a depleted mantle melt component contaminated by crustal assimilation. However, the mafic rocks are comparable to high-alumina basalts, whose generation involves crystal fractionation and magma mixing/crustal assimilation. The evolution of these high-alumina basalts provides an opportunity for magma contamination to take place before plagioclase crystallization, thus explaining why plagioclase core-rim analysis could not distinguish between mixing components. Therefore, it is possible but not necessary to derive the rocks from an enriched mantle source, especially since the bulk-rock oxygen isotopic values indicate a significant crustal component is present.
790

Erosion-Corrosion experiments on Steels in liquid lead and Development of Slow Strain Rate testing rig

Christopher, Petersson January 2019 (has links)
No description available.

Page generated in 0.0289 seconds