• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 300
  • 289
  • 59
  • 55
  • 23
  • 13
  • 13
  • 8
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 936
  • 278
  • 271
  • 197
  • 134
  • 128
  • 128
  • 121
  • 102
  • 98
  • 95
  • 88
  • 76
  • 68
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
831

Mechanical property relationships of cement or lime stabilized soils throughout a pavement's life

Ayers, Leigh E.W. 13 May 2022 (has links) (PDF)
Soil-cement is an integral part of pavement design, especially in areas that are aggregate deprived, such as Mississippi. Current designs are reliant on the relationship of unconfined compressive strength (UCS) to other mechanical properties. The other properties discussed in this dissertation are Modulus of Elasticity (E), Indirect Tensile Strength (St), and Modulus of Rupture (MOR). This dissertation includes a comprehensive review of past design methods and mechanical property relationships. While some mechanical property relationships were shown to be well understood (i.e. St to UCS), others were not as accurate, especially for the later life mechanical properties (i.e. MOR to UCS and E to UCS). This dissertation investigates the Plastic Mold (PM) Compaction (PM) Device and its ability to measure mechanical property relationships (UCS, E, St) for soil-cement as well as different materials, such as lime stabilized subgrade and Cold in Place Recycling (CIR) stabilized with cement. These mechanical property relationships were compared to soil-cement beam specimens, which are capable of being tested for the four previously mentioned mechanical properties from an individual specimen. Finally to have a better understanding of the later life mechanical properties and their relationships, PM and beam specimens were exposed to elevated temperatures to forecast out how these properties interrelate over time. These mechanical property values and relationship were then compared to Mississippi field cores ranging from 10 to 54 years old. These protocols, beam and elevated curing, were able to replicate what was seen for pavement cores that were extracted after decades of service. Over 1300 specimens were testing showing how these mechanical properties interacted from early ages and throughout a pavement’s life.
832

Development of Novel Green’s Functions and Their Applications to Multiphase and Multilayered Structures

Han, Feng 05 October 2006 (has links)
No description available.
833

Effects of Reclaimed Asphalt Pavement on Mechanical Properties of Base Materials

Cooley, Dane A. 17 November 2005 (has links) (PDF)
Reuse of reclaimed asphalt pavement (RAP) in the full-depth recycling (FDR) process is a cost-effective and environmentally responsible method of asphalt pavement reconstruction. Although FDR has been used for several years in some locations, the effect of RAP on the mechanical properties of recycled base materials has not been well documented. The purpose of this research was to investigate the influence of RAP on the mechanical properties of recycled base materials typical of northern Utah. Two sources of RAP, two sources of base, and RAP contents of 0, 25, 50, 75, and 100 percent were utilized in a full-factorial experimental design with three replicates of each unique combination. Testing procedures consisted of material classifications, compaction tests, and evaluations of strength, stiffness, and moisture susceptibility of each material blend. The California bearing ratio (CBR) test was used to measure strength, the free-free resonant column test was used to measure stiffness, and the tube suction test (TST) was used to measure moisture susceptibility. Once all the testing was completed, a fixed effects analysis of variance (ANOVA) was performed on each of the test results, or dependent variables. The independent variables were RAP content, RAP type, and base type, together with all their interactions. Results of the ANOVA were used to quantify the effects of RAP on the mechanical properties of the base materials. The data indicate that CBR values decrease as RAP content increases, with the greatest percentage reduction occurring with the addition of 25 percent RAP. For stiffness testing at the optimum moisture content determined for each blend, the general trend was a decrease in stiffness from 0 percent RAP to 25 percent RAP, followed by a steady increase in stiffness as the RAP content was increased from 25 to 100 percent. Following a 72-hr drying period at 140ºF, however, the general trend reversed; an increase in stiffness occurred as the RAP content was increased from 0 to 25 percent, and a steady decrease in stiffness was observed for RAP contents above 25 percent. The TST data suggest that additions of 25 and 50 percent RAP actually increase the moisture susceptibility of the recycled material compared to the neat base, although the blended material tested in this study was classified as non-moisture-susceptible when the RAP content was 75 percent or higher. Because of the marked impact of RAP content on the mechanical properties of recycled base materials, engineers should accurately determine asphalt layer thicknesses prior to pavement reconstruction and carefully determine the optimum blending depth for each project. While asphalt milling or base overlays may be required in some locations to avoid excessively high RAP contents, reduced blending depths may be warranted in other areas to prevent the use of low RAP contents. In summary, while the use of RAP in the FDR process is environmentally responsible and offers potentially significant cost savings, thicker pavement base layers, base stabilization, or both may be required in many instances to ensure adequate long-term pavement performance.
834

Comparison of Winter Temperature Profiles in Asphalt and Concrete Pavements

Dye, Jeremy Brooks 12 August 2010 (has links) (PDF)
Because winter maintenance is so costly, Utah Department of Transportation (UDOT) personnel asked researchers at Brigham Young University to determine whether asphalt or concrete pavements require more winter maintenance. Differing thermal properties suggest that, for the same environmental conditions, asphalt and concrete pavements will have different temperature profiles. Climatological data from 22 environmental sensor stations (ESSs) near asphalt roads and nine ESSs near concrete roads were used to 1) determine which pavement type has higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and concrete pavements to determine the pavement type below which more freeze-thaw cycles of the underlying soil occur. Twelve continuous months of climatological data, primarily from the 2009 calendar year, were acquired from the road weather information system operated by UDOT, and erroneous data were removed from the data set. To predict pavement surface temperature, a multiple linear regression was performed with input parameters of pavement type, time period, and air temperature. Similarly, a multiple linear regression was performed to predict the number of subsurface freeze-thaw cycles, based on month, latitude, elevation, and pavement type. A finite-difference model was created to model surface temperatures of asphalt and concrete pavements based on air temperature and incoming radiation. The statistical analysis predicting pavement surface temperatures showed that, for near-freezing conditions, asphalt is better in the afternoon, and concrete is better for other times of the day, but that neither pavement type is better, on average. Asphalt and concrete are equally likely to collect snow or ice on their surfaces, and both pavements are expected to require equal amounts of winter maintenance, on average. Finite-difference analysis results confirmed that, for times of low incident radiation (night), concrete reaches higher temperatures than asphalt, and for times of high incident radiation (day), asphalt reaches higher temperatures than concrete. The regression equation predicting the number of subsurface freeze-thaw cycles provided estimates that did not correlate well with measured values. Consequently, an entirely different analysis must be conducted with different input variables. Data that were not available for this research but are likely necessary in estimating the number of freeze-thaw cycles under the pavement include pavement layer thicknesses, layer types, and layer moisture contents.
835

Evaluation of Portable Devices for Monitoring Microcracking of Cement-Treated Base Layers

Hope, Charles A. 17 March 2011 (has links) (PDF)
A relatively new method used to reduce the amount of cement-treated base (CTB) shrinkage cracking is microcracking of the CTB shortly after construction. Three portable instruments used in this study for monitoring the microcracking process include the heavy Clegg impact soil tester (CIST), portable falling-weight deflectometer (PFWD), and soil stiffness gauge (SSG). The specific objectives of this research were 1) to evaluate the sensitivity of each of the three portable instruments to microcracking, and 2) to compare measurements of CTB stiffness reduction obtained using the three devices. The test locations included in this study were Redwood Drive and Dale Avenue in Salt Lake City, Utah; 300 South in Spanish Fork, Utah; and a private access road in Wyoming. Experimental testing in the field consisted of randomized stationing at each site; sampling the CTB immediately after the cement was mixed into the reclaimed base material; compacting specimens for laboratory testing; and testing the CTB immediately after construction, immediately before microcracking, immediately after each pass of the vibratory roller during the microcracking process, and, in some instances, three days after microcracking. Several linear regression analyses were performed after data were collected using the CIST, PFWD, and SSG during the microcracking process to meet the objectives of this research. Results from the statistical analyses designed to evaluate the sensitivity of each of the three portable instruments to microcracking indicate that the PFWD and SSG are sensitive to microcracking, while the CIST is insensitive to microcracking. Results from the statistical analyses designed to compare measurements of CTB stiffness reduction demonstrate that neither of the instrument correlations involving the CIST are statistically significant. Only the correlation between the PFWD and SSG was shown to be statistically significant. Given the results of this research, engineers and contractors should utilize the PFWD or SSG for monitoring microcracking of CTB layers. The heavy CIST is unsuitable for monitoring microcracking and should not be used. For deriving target CTB stiffness reductions measured using either the PFWD or SSG from specified targets measured using the other, engineers and contractors should utilize the correlation chart developed in this research.
836

Investigation of Skid Resistance on Asphalt Pavements in Utah

Smith, Aaron B 02 May 2022 (has links)
Friction is one of the essential aspects of pavement performance and safety. Unfortunately, the rate at which the friction data are being collected exceeds the rate at which the data can be proficiently analyzed. Furthermore, the Utah Department of Transportation (UDOT) lacks long-term trend analysis for the many years of locked-wheel skid trailer (LWST) data collected in Utah. In addition, UDOT is missing a statistically adequate correlation equation between friction-testing devices. Likewise, only one method is used in Utah to prequalify aggregates for use in pavements. Finally, there has not been an investigation of the potential use of lithium silicate solution in Utah as a hardening agent to decrease the rate of friction loss. This research consists of five objectives. The first objective was to investigate pavement friction factors that influence skid resistance; methods of measuring skid resistance in the laboratory and the field, including correlations between test results; methods of evaluating aggregate sources; and methods of enhancing skid resistance of asphalt pavements through a comprehensive literature review on these subjects. The second objective was to investigate temporal trends in skid numbers measured using the LWST on Utah highways with different surface treatment types. The third objective was to develop a three-way correlation between the skid number measured with the LWST in the field, the British pendulum number measured with the British pendulum tester (BPT) in the field, and the polish value measured with the BPT in the laboratory. The fourth objective was to investigate selected performance-related properties of aggregates used to produce surface treatments at several field sites representing Utah conditions. The fifth objective was to examine the potential benefits of lithium silicate treatment for improving the resistance of aggregates to polishing. The scope of the research for the five objectives included statistical analysis, field testing, and laboratory experimentation. The findings include, first, a literature review that identified four critical deficiencies in Utah’s friction-related literature, which formed the basis of the remaining four objectives. Second, a statistical analysis of 9 years of LWST data indicated above-average skid values across Utah’s pavement network. Third, correlations were evaluated for multiple friction-testing devices. Fourth, X-ray diffraction testing methods were found to compare favorably to the accelerated polish test. Fifth and finally, the effects of lithium silicate solution on polish-susceptible aggregates were documented. This research has substantially advanced the body of knowledge on pavement friction testing and improving the resistance of aggregates to polishing in Utah through laboratory and field experimentation
837

Modelling the Hydraulic Response of Permeable Pavements: a Numerical and Experimental Approach for Model Comparison and Sensitivity Analysis to Design Parameters

Madrazo Uribeetxebarria, Eneko 04 September 2023 (has links)
Tesis por compendio / [ES] Los Pavimentos Permeables (PP) son una técnica de los denominados Sistemas Urbanos de Drenaje Sostenible (SUDS). A diferencia de otras técnicas de este tipo, proporciona una superficie dura transitable a la vez que gestiona las aguas pluviales superficiales, siendo sus propiedades hidráulicas fundamentales para su rendimiento como SUDS. Esta tesis explora el rendimiento hidráulico de los PP, basándose en el modelo hidrológico-hidráulico de PP proporcionado en el ampliamente utilizado Storm Water Management Model (SWMM). La tesis se presenta en un formato de tres artículos. Así, tras una aproximación a la pregunta general de investigación dada en el primer capítulo introductorio, el segundo capítulo del documento analiza qué parámetros son los más influyentes y cuáles son despreciables en el modelo, proporcionando un análisis de sensibilidad general. El siguiente capítulo explora la relación entre el modelo de PP de SWMM y el modelo de número de curva (CN), ampliamente utilizado, en lo que respecta a la escorrentía deducida por ambos modelos en función de la permeabilidad del pavimento. En el cuarto capítulo se analiza la respuesta del PP en condiciones experimentales controladas y se compara con el modelo de PP dado en SWMM. Tras una discusión general de los resultados en el quinto capítulo, se ofrecen unas conclusiones generales en el último. La tesis profundiza en el conocimiento del comportamiento hidráulico de los PP para ayudar a profesionales e investigadores en su caracterización. / [CA] Els Paviments Permeables (PP) són una tècnica dels denominats Sistemes Urbans de Drenatge Sostenible (SUDS). A diferència d'altres tècniques d'aquest tipus, proporciona una superfície dura transitable alhora que gestiona les aigües pluvials superficials, sent les seues propietats hidràuliques fonamentals per al seu rendiment com SUDS. Aquesta tesi explora el rendiment hidràulic dels PP, basant-se en el model hidrològic-hidràulic de PP proporcionat en l'àmpliament utilitzat Storm Water Management Model (SWMM). La tesi es presenta en un format de tres articles. Així, després d'una aproximació a la pregunta general d'investigació donada en el primer capítol introductori, el segon capítol del document analitza quins paràmetres són els més influents i quins són menyspreables en el model, proporcionant una anàlisi de sensibilitat general. El següent capítol explora la relació entre el model de PP de SWMM i el model de número de corba (CN), àmpliament utilitzat, pel que fa a l'escolament deduït per tots dos models en funció de la variable permeabilitat del paviment. En el quart capítol s'analitza la resposta del PP en condicions experimentals controlades i es compara amb el model de PP donat en SWMM. Després d'una discussió general dels resultats en el cinqué capítol, s'ofereixen unes conclusions generals en l'últim. La tesi aprofundix en el coneixement del comportament hidràulic dels PP per a ajudar a professionals i investigadors en la seua caracterització. / [EN] Permeable Pavements (PP) are a Sustainable Urban Drainage System (SUDS) technique. Unlike other such techniques, it provides a transitable hard surface while managing surface stormwater, being its hydraulic properties fundamental for its performance as a SUDS. This dissertation explores the hydraulic performance of PPs, based on the hydrologic-hydraulic model of PP provided in the widely used Storm Water Management Model (SWMM). The dissertation is presented in a \textit{three-paper} format. Accordingly, after an approach to the general research question given in the first introductory chapter, the second chapter of the document analyses which parameters are the most influential and which are negligible in the model by providing a general sensitivity analysis. The next chapter explores the relation between the PP model from SWMM and the widely used Curve Number (CN) model regarding runoff generated by both models and examines the relationship between both approaches based on the pavement permeability variable. The fourth chapter analyses the PP response under controlled experimental conditions and compares it with the PP model given in SWMM. After a general discussion of the results in the fifth chapter, general conclusions are given in the last chapter. The dissertation deepens the understanding of the hydraulic behaviour of PPs to help practitioners and researchers with its characterisation. / Madrazo Uribeetxebarria, E. (2023). Modelling the Hydraulic Response of Permeable Pavements: a Numerical and Experimental Approach for Model Comparison and Sensitivity Analysis to Design Parameters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196085 / Compendio
838

Selection of High Performance Repair Materials for Pavements and Bridge Decks

Alice , Sommerville Elizabeth 30 May 2014 (has links)
No description available.
839

Multi-Scale Approach to Design Sustainable Asphalt Paving Materials

Holcombe, Evan W. 19 September 2017 (has links)
No description available.
840

Mechanical-Empirical Performance of U.S. 50 Joint Sealant Test Pavement

Sander, Jason Andrew 08 October 2007 (has links)
No description available.

Page generated in 0.0571 seconds