• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 300
  • 289
  • 59
  • 55
  • 23
  • 13
  • 13
  • 8
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 936
  • 278
  • 271
  • 197
  • 134
  • 128
  • 128
  • 121
  • 102
  • 98
  • 95
  • 88
  • 76
  • 68
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
821

Reducción de deflexiones en la base de pavimento flexible mediante el uso combinado de Geotextiles No Tejidos (GNT) y Base Macadam / Reduction of deflections at the base of the flexible pavement by using the combined use of now-woven geotextiles (NWG) and Macadam Base

Gallardo Quiroz, Angel Manuel, Lopez Cruz, Lizette Alessandra 04 May 2021 (has links)
Las deformaciones permanentes en las carreteras son las principales causas de daños a los pavimentos flexibles, especialmente en los que han sido construidos sobre suelos blandos saturados. La utilización de Geotextiles No Tejidos (GNT) en una Base Macadam, colocado de manera que envuelva todo el perímetro de la base, representa una solución para la gestión de daños de pavimentos, ya que, de manera vertical, reduce las deflexiones; mientras de manera horizontal, evita la migración de partículas finas para reducir el efecto de bombeo. Para comprobar esta hipótesis, se realizaron investigaciones con el fin de determinar los materiales a usar para optimizar el diseño del pavimento y los espesores finales de las capas; y ensayos a bases simuladas para hallar las deflexiones en un tramo reforzado con Geotextil y un tramo sin reforzar. La medición de las deflexiones se logró mediante el ensayo de Deflectometría liviana (LWD). Finalmente, se pudo hallar una diferencia porcentual de 25.25% entre ambos casos. / Permanent deformations in roads are the main causes of damage to flexible pavements, especially in those built on saturated soft soils. The use of Non-Woven Geotextiles (NWG) in a Macadam Base, placed in the way that it surrounds the entire perimeter of the base, represents a solution for the management of pavement damage, since vertically, it reduces deflections; while horizontally, it avoids the migration of fine particles to reduce the pumping effect. To verify this hypothesis, investigations were carried out in order to determine the materials to be used to optimize the design of the pavement and the final thicknesses of the layers; and simulated bases tests were made to find deflections in a section reinforced with Geotextile and another unreinforced section. Measurement of deflections was achieved by the Light Deflectometry (LWD) test. Finally, a percentage difference of 25.25% could be found between both cases. / Trabajo de investigación
822

Characterization and modeling of asphalt concrete from micro-to-macro scale

Canon Falla, Gustavo 15 June 2021 (has links)
The main objectives of this research were twofold: 1). to develop advanced material characterization techniques for bitumen, mastic and mortar aiming to improve the knowledge of the behavior of asphalt concrete at micro and meso scales, and 2). to develop an efficient macro-mechanical numerical model capable of determining flexible pavement responses to traffic and environmental loads.
823

LIGHTING STRATEGIES FOR NIGHTTIME CONSTRUCTION AND MAINTENANCE ACTIVITIES ON ROADWAYS

Franklin Vargas Davila (12466701) 27 April 2022 (has links)
<p>Over the last two decades, an increasing number of highway construction and maintenance projects in the United States have been completed at night to avoid or mitigate traffic congestion delays. Working at night entails several advantages, including lower traffic volumes at night, reduced impact on local businesses, more freedom for lane closures, longer possible work hours, lower pollution, cooler temperatures for equipment and material, and fewer overall crashes due to lower traffic volumes at night. Although nighttime roadway operations may minimize traffic disruptions, there are several safety concerns for motorists passing by and for workers in the nighttime work zone. For instance, just in 2019, there were 842 work zone fatalities reported in the United States, with 48% of these being associated with fatalities on night shifts. Additionally, 70% of these fatalities involved drivers/occupants under the age of 50. Moreover, improper lighting arrangements or excessive lighting levels produced by temporary lighting systems installed at the job site could cause harmful levels of glare for the traveling public and workers leading to an increase level of hazards and crashes in the vicinity of the work zone. </p> <p>To address the issue of glare, very few studies have been conducted to evaluate and quantify glare at work zones. Most of these studies were limited to the determination of disability glare levels of lighting systems (balloon lights and light towers) with a metal-halide type light source by using the veiling luminance ratio (<em>VL ratio</em>) as a criterion for limiting disability glare. However, deeper evaluation of the effects of driver’s age on the veiling luminance ratio, and the use of energy-efficient lighting systems which employ light-emitting diode (LED) type light sources were not performed.</p> <p>This thesis focuses on determining and evaluating disability glare on nighttime work zones as a step towards developing appropriate lighting strategies for improving the safety of workers and motorists during nighttime highway construction and maintenance projects. Disability glare is the glare that impairs our vision of objects without necessarily causing discomfort and it can be evaluated using the veiling luminance ratio (<em>VL ratio</em>). In this study, disability glare values were determined by using lighting data (vertical illuminance and pavement luminance measurements) from testing 49 lighting arrangements. Two LED balloon lights, a metal-halide light tower, and an LED light tower were utilized for the field lighting experiments. The disability glare level evaluation examines the effects of mounting height, power output, rotation angle, and aiming angle of luminaires on the veiling luminance ratio values (which is a criterion for limiting disability glare). </p> <p>The analysis of the disability glare values revealed four major findings regarding the roles played by the mounting height, power output, lighting system orientation, aiming angles of luminaries, and driver’s age on disability glare levels as follows: (i) an increase in mounting heights of both balloon lights and light towers resulted in lower veiling luminance ratio values (or disability glare); (ii) compared to the "perpendicular" and "away" orientations, orienting the light towers in a "towards" direction (45 degrees) significantly increases the disability glare levels of the lighting arrangement; (iii) increasing the tilt angles of luminaires of the portable light towers resulted in an increase in veiling luminance ratio values; (iv) for balloon lights, at observers ages over 50, <em>VL ratio</em> values were found to be greater than the maximum recommended; (v) for LED light towers oriented towards the traffic, at driver’s ages over 40, <em>VL ratio</em> values exceed the Illuminating Engineering Society (IES) recommended value; and (vi) for metal-halide light towers oriented towards the traffic, at driver’s ages over 50, <em>VL ratio</em> values exceed the IES recommended value. The results from this research study can provide State Transportation Agencies (STAs) and roadway contractors with a means to improve glare control strategies for nighttime work.</p>
824

Impacts of Tires and Axle Configurations on Perpetual Pavement Response

Tarawneh, Derar Mohammad Hamed 24 May 2022 (has links)
No description available.
825

Elaboración de una base de datos aplicando la técnica del método PCI con un sistema georeferenciado para conocer el estado actual de los pavimentos del distrito de Bellavista-Sullana / Elaboration of a database applying the technique of the PCI Method with a georeferenced system to know the current state of the rigid and flexible pavements of the district of Bellavista, Sullana

Nole Dávila, Kelly Margot, Sotomayor Solano, Yordan Luis 06 April 2021 (has links)
La presente tesis tiene por finalidad elaborar una base de datos en el Software Qgis, aplicando la técnica del Método PCI con un sistema georreferenciado para conocer el estado actual de los pavimentos rígidos y flexibles del distrito de Bellavista, Sullana. En primer lugar, se zonifica el área de análisis según el tipo de pavimento que presentan las vías y se realiza la clasificación de las calles y transversales donde es aplicable el Método PCI (Pavement condition Index). Seguido de la obtención de las cantidades de unidades de muestra por secciones (avenidas, calles o transversales), para posteriormente realizar el inventario de fallas en una hoja de registro y obtener el índice de condición de las unidades de muestra, y más adelante determinar la condición de toda la calle. Con la información recolectada en campo, y después de haber realizado el levantamiento topográfico de las secciones analizadas que es determinante para elaborar la base de datos en el software, se lleva a cabo el seguimiento a las fallas para determinar sus coordenadas UTM utilizando un GPS navegador. Una vez obtenida el detalle de las fallas y sus respectivas coordenadas se procede a realizar los trabajos de gabinete donde se modela en el Software Qgis el mapa catastro y se insertan las coordenadas de cada falla evaluada. Por lo que, el estudio se centra en crear una base de datos con los índices de condición de las vías que componen el distrito de Bellavista. Finalmente, a través de la base de datos se puede generar una herramienta útil y eficaz para la Municipalidad de Bellavista, ya que actualmente no cuenta con información suficiente para realizar el control y monitoreo de los pavimentos. / The purpose of this thesis is to elaborate a database in the Qgis Software, applying the PCI Method technique with a georeferenced system to know the current state of rigid and flexible pavements in the Bellavista district, Sullana. In the first place, the analysis area is zoned according to the type of pavement that the roads present and the classification of the streets and cross-sections where the PCI Method (Pavement condition Index) is applicable is carried out. Followed by obtaining the quantities of sample units by sections (avenues, streets or cross-sections), to later carry out the inventory of failures in a record sheet and obtain the condition index of the sample units, and later determine the condition of the entire street. With the information collected in the field, and after having carried out the topographic survey of the analyzed sections, which is decisive for preparing the database in the software, the faults are tracked to determine their UTM coordinates using a GPS navigator. . Once the details of the faults and their respective coordinates have been obtained, the cabinet work is carried out where the cadastre map is modeled in the Qgis Software and the coordinates of each evaluated fault are inserted. Therefore, the study focuses on creating a database with the condition indices of the roads that make up the Bellavista district. Finally, through the database, a useful and effective tool can be generated for the Municipality of Bellavista, since it currently does not have enough information to carry out the control and monitoring of the pavements. / Tesis
826

Propiedades mecánicas del concreto con fibras sintéticas para rehabilitar pavimento flexible mediante la técnica Whitetopping, en Avenida Central San Juan de Lurigancho, Lima, 2020 / Mechanical properties of concrete with synthetic fibers to rehabilitate flexible pavement using the Whitetopping technique, in Avenue Central San Juan de Lurigancho, Lima, 2020

Pirca Ramos, Wilmer, Chinchay Liviapoma, Landys Noé 28 April 2021 (has links)
En la investigación actual se realizó un estudio de las propiedades mecánicas del concreto utilizado para la rehabilitación de pavimentos flexibles, a través de la metodología de Whitetopping, mediante la adición de fibras sintéticas. Esta nueva técnica se aplicó en la Avenida Central de San Juan de Lurigancho, en Lima, para lo cual se planteó como objetivo general determinar el cambio de las propiedades mecánicas del concreto con adición de las mencionadas fibras sintéticas para rehabilitar pavimentos flexibles. Los resultados fueron satisfactorios, obteniéndose para las resistencias a la tracción un aumento de 27.30 kg/cm2 sin fibra a 33.80 kg/cm2 con fibra al 4 %, y 41.71 kg/cm2 con fibra al 7 %. Con respecto a la resistencia a flexión, aumentó de 33.3 kg/cm2 sin fibra a 41.4 kg/cm2 con fibra al 4 %, y 50.6 kg/cm2 con fibra al 7 %. Y, por último, en el módulo de elasticidad mejoró de una deformación de 24.9 GPa sin fibra a 25.2 GPa con fibra al 4 % y 25.6 GPa al 7%. Finalmente se calculó el espesor del pavimento Whitetopping en función al estudio del tráfico y todas las variables definidas en la ecuación establecida por AASHTO 93, donde se obtuvo que el espesor del pavimento Whitetopping es de 17 cm, por lo tanto, se logró un Whitetopping delgado. Se concluyó que, con el uso de fibra sintéticas en el concreto Whitetopping, se mejoraron las propiedades del concreto. / In the current research, a study of the mechanical properties of the concrete used for the rehabilitation of flexible pavements was carried out, through the Whitetopping methodology, by means of the addition of synthetic fibers. This new technique was applied in the Central Avenue of San Juan de Lurigancho, in Lima, for which the general objective was to determine the change in the mechanical properties of concrete with the addition of the aforementioned synthetic fibers to rehabilitate flexible pavements. The results were satisfactory, obtaining for the tensile strengths an increase of 27.30 kg/cm2 without fiber to 33.80 kg/cm2 with 4% fiber, and 41.71 kg/cm2 with 7% fiber. Regarding flexural strength, it increased from 33.3 kg/cm2 without fiber to 41.4 kg/cm2 with 4% fiber, and 50.6 kg/cm2 with 7% fiber. And, finally, the modulus of elasticity improved from a deformation of 24.9 GPa without fiber to of 25.2 GPa with fiber at 4% and 25.6 GPa at 7%. Finally, the thickness of the Whitetopping pavement was calculated based on the traffic study and all the variables defined in the equation established by AASHTO 93, where it was obtained that the thickness of the Whitetopping pavement is to 17 cm, therefore, a slim whitetopping was achieved. It was concluded that, with the use of synthetic fiber in the whitetopping concrete, the properties of the concrete were improved. / Tesis
827

Recyklace asfaltových směsí s vyšším množstvím R-materiálu / Recycling of asphalt mixtures with higher amount of RAP

Klimek, Matěj January 2022 (has links)
The theoretical part of the diploma thesis recapitulates the existing literature in the field of recycling asphalt mixtures with a higher content of RAP (Reclaimed asphalt pavement). The practical part of the diploma thesis examines changes in the properties of asphalt mixtures with a higher content of RAP, due to changes in mixing time. Five mixtures have been proposed for this research. It is an asphalt mixture intended for the road abrasive layer (ACO 11+). Reference mixture "A" without RAP, with a standard mixing time of 25 seconds. Mixture "B" with 40% RAP, without rejuvenator, with an extended mixing time of 40 seconds. Mixture "C" with 40% RAP, with rejuvenator and standard mixing time. Mixture "D" with 40% RAP with rejuvenator and extended mixing time of 40 seconds. Mixture "E" with 40% RAP, with rejuvenator and extended mixing time of 55 seconds.
828

Permanent Deformation Behaviour of Unbound Granular Materials in Pavement Constructions

Werkmeister, Sabine 07 April 2003 (has links)
A new simple design approach will be described that utilizes test results from the Repeated Load Triaxial Apparatus to establish the risk level of permanent deformations in the unbound granular layers (UGL) in pavement constructions under consideration of the seasonal effects. From this data a serviceability limit line (plastic shakedown limit) stress boundary for the unbound granular materials (UGM) was defined for different moisture contents. Below this line the material will have stable behavior. The serviceability limit line was applied in a finite-element (FE)-program FENLAP to predict whether or not stable behavior occurs in the UGM. To calculate the stress in the UGL, a nonlinear elastic model (Dresden Model), which is described in the paper, was implemented into the FE-program. The effects of changing moisture content during Spring-thaw period and asphalt temperature on pavement structural response were investigated. Additionally, permanent deformation calculations for the UGL were performed taking the stress history into consideration. The results clearly demonstrate that, for pavement constructions with thick asphalt layers, there is no risk of rutting in the granular base, even at high number of load repetitions. The study showed that the proposed design approach is a very satisfactory simple method to assess the risk against rutting in the UGL, even without the calculation of the exact permanent deformation of the pavement construction.
829

Quantification of the Role of The Effective Binder in the Performance of RAP – WMA Mixtures

ALSALIHI, MOHAMMED, 0000-0003-1930-5392 January 2020 (has links)
Over the past decades, several new technologies/materials (such as WMA, RAP, rubber, polymers, bio-binders…etc.) were incorporated into asphalt mixtures. However, current mix-design specifications evaluate all mixtures containing these different additives/technologies based on volumetric. Further, RAP incorporation in asphalt mixtures is still limited, and the influence of lowered production temperatures on RAP contribution in RAP-WMA mixtures is understudied. To tackle these issues, this study presents a comprehensive evaluation of the effect of production factors ( RAP content and source, binder grade, and production temperatures) on the effective binder in WMA-RAP mixtures, and the role of the effective binder in controlling mixture performance.The experimental program included evaluation of the compaction, cracking, and rutting performance of WMA-RAP mixtures produced with a different combination of the production factors. The Semi-Circular Bend (SCB) test at intermediate temperatures was used for cracking evaluation, while the Indirect Tension Test at High Temperatures (IDT-HT) was used for rutting evaluation. Further, the study included rheological characterization of extracted binder from the mixtures to investigate the role of the effective binder on cracking performance. The results showed that the effective binder properties are changed significantly with changes in the production factors, as measured by the extracted binder rheological properties. Also, the properties of the effective binder showed a direct control of the mixture performance as measured by the IDT-HT strength and the flexibility index obtained from the SCB test. Binder selection limits were developed for lab-produced WMA-RAP mixtures based on the Glover-Rowe parameter. Finally, a validation study was conducted using data from four different projects, including a field project in Texas, FHWA’s accelerated loading facility, a laboratory mixture study in Wisconsin, and a New Hampshire DOT study to confirm the refine the findings of this study. / Civil Engineering
830

A SYNERGETIC APPROACH TO PRODUCE DURABLE, HIGHLY RECYCLED PAVEMENT MIXTURES

Abdalla, Ahmed, 0000-0001-5558-2405 January 2022 (has links)
Recently, Sustainable engineering has become a necessity due to the limited availability of virgin materials, environmental concerns, and the lack of economic resources. According to the United Nations, "Sustainable engineering is the process of using resources in a way that does not compromise the environment or deplete the materials for future generations." However, developing cost-efficient and long-term road infrastructure has always been a challenge. Therefore, novel solutions are required to extend the pavement life cycle and minimize raw materials utilization to overcome this challenge. This research focuses on integrating the waste material to produce rheological engineered asphalt mixtures as pavement material. This study utilized three wastes, which are Off-spec fly ash (OFA), Reclaimed Asphalt Pavement (RAP), and finally, a bio-oil extracted from Spent Coffee Ground (SCG). OFA is a viable source for recycling due to the quantities produced yearly and deposited in landfills. For many years fly ash has been effectively used as a partial replacement for Portland cement in producing different types of concrete, embankments, and soil stabilization. Most of the underutilized fly ash is Off-Spec. That was the motive behind adopting the OFA in this study. This study aims to investigate the fly ash's interaction with the asphalt binder as an additive rather than a filler. Few studies evaluated this hypothesis regarding fly ash as an additive. Moreover, this research's novelty comes as there is a lack of research evaluating the fly ash-asphalt physio-chemical interaction. RAP utilization in roads infrastructure became a current state of practice. Most state Departments of Transportation (DOTs) have been using RAP at a composition average of about 20% of the mix by mass. This study focuses on maximizing the utilization of the RAP content through using a bio-oil extracted from the SCG as a new promising rejuvenator. Spent coffee ground is not well recycled, and almost six million tons are sent to landfills every year. This waste was found to release methane into the atmosphere; methane is the second-most abundant greenhouse gas and has a global warming potential up to 86 times greater than CO2, which is highly harmful to the environment. In this study, the overreaching goal is to develop a green, innovative, and sustainable approach by recycling three different types of wastes (OFA, RAP, and SCGO) to achieve high-performance asphalt pavements. In addition, this study documents the science-based approach to successfully integrating these wastes as substitutes to the asphalt binder. Results show that some OFAs are associated with improved rheological performance, damage healing, and cracking resistance as an asphalt binder additive. The improvement is attributed to the level of interaction between the binder and the physical and chemical characteristics of the OFA. The use of rejuvenators further improved the aging resistance of the ash blends, suggesting high potential synergy, especially the proposed SCGO rejuvenator, which promotes utilizing it as a promising eco-friendly rejuvenator in the asphalt pavement industry. After engineering a product built by OFA and rejuvenators, these results have been validated by mixtures’ scale testing. 62% optimum RAP content is suggested to be utilized with an 11% dosage of the proposed SCGO rejuvenator as binder replacement. For the new engineered OFA/rejuvenators products, a 30% optimum RAP content is suggested to be used. Finally, Life Cycle Assessment (LCA) is conducted to evaluate the environmental potential of utilizing multi recycled materials in the Hot Mix Asphalt (HMA) industry. The results show a reduction in environmental impacts with RAP utilization and the new eco-friendly products (OFA and SCGO rejuvenator). Shifting HMA plant fuel to natural gas instead of Heavy Fuel Oil (HFO) offers considerable potential environmental benefits. Adopting the Ultrasonic Assisted-oil Extraction (UAE) as SCGO rejuvenator extraction method showed less energy and solvent consumption than the Soxhlet extraction, resulting in less environmental impacts. / Civil Engineering

Page generated in 0.0436 seconds