• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 7
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 38
  • 35
  • 35
  • 33
  • 32
  • 32
  • 32
  • 31
  • 31
  • 31
  • 31
  • 31
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Effect of heat denaturation of bovine milk beta-lactoglobulin on its epithelial transport and allergenicity

Rytkönen, J. (Jani) 06 June 2006 (has links)
Abstract Beta-lactoglobulin (β-lg) is the main whey protein in bovine milk. It belongs to the lipocalin protein family, and it is one of the main milk allergens. Resistance to hydrolysis is a particular feature of β-lg making it possible that β-lg reaches the small intestine in its native form. Heat treatments during milk processing may change the native structure of bovine β-lg and change its intestinal transport properties. Heat induced conformational alterations may also expose new antigenic sites. However, there have been no previous studies on the effects of heat treatment on the transport of β-lg or on its sensitizing properties. Cow's milk allergy is one of the most important food allergies affecting about 2.4% of infants. Milk proteins, including β-lg, in breast milk substitute formulas are often the earliest foreign antigens in the diet of newborns. According to the hygiene hypothesis, natural infections and vaccinations may modify the immunological balance and decrease the risk of allergy. Isoelectric precipitations followed by anion exchange and gel filtration were used to purify bovine milk β-lg in its native form. Transport of native and heat-denatured β-lg was compared in two in vitro cell models, Caco-2 and M-cells. Sensitization properties of native and heat-denatured β-lg were studied with an animal model using Hooded-Lister rats. Effects of BCG vaccination in combination with the native β-lg were also studied. Effects of different sensitizations were assessed by antibody levels in serum and inflammation locally in the gastrointestinal tract. Heat denaturation of β-lg made its transport slower in both enterocytes and M-cells. M-cells were more effective transporters of both native and heat-denatured β-lg than caco-2 cells. Animals generated higher levels of IgE when sensitized with native β-lg, but heat-denatured β-lg induced a more intense inflammatory cell reaction in the gastrointestinal tract. Vaccination with BCG decreased serum IgE concentration and modified the predominant site of the inflammatory cell response in intestine. The results indicate that, heat denaturation of β-lg and BCG vaccination, change both the systemic and the mucosal response to bovine milk β-lg. The reasons for this remain speculative. The effect of BCG vaccination is consistent with the hygiene hypothesis. The observed alteration of transport properties could be one mechanism by which heat denaturation modifies the allergenic properties of this protein, but additional studies are necessary to assess whether other mechanisms, such as exposure of new antigenic determinants are also relevant.
22

Coacervats de B-lactoglobuline et de lactoferrine : caractérisation et application potentielle pour l'encapsulation de bioactifs / B-lactoglobulin and Lactoferrin complex coacervates : Characterization and putative applications as encapsulation device

Miranda Tavares, Guilherme 08 October 2015 (has links)
Le bénéfice de l’encapsulation des molécules bioactives a séduit les industries agroalimentaires depuis plusieurs décennies. Plus récemment des études ont montré la capacité de protéines alimentaires de charge opposée à s’assembler en microsphères par coacervation complexe. La compréhension des forces gouvernant le processus de coacervation entre protéines et l’influence exercée par la présence de bioactifs demeurent des prérequis pour l’utilisation des coacervats complexes comme agent d’encapsulation. Dans ce contexte, l’objectif de mon projet de thèse a été de comprendre le mécanisme de coacervation complexe entre la ¿-lactoglobuline (¿-LG) chargée négativement, et la lactoferrine (LF) chargée positivement, en absence et en présence de petits ligands. La LF a présenté une coacervation préférentielle avec le variant A de la¿¿-LG qui se distingue du variant B par la substitution de 2 acides aminés. Au niveau moléculaire, deux sites de fixation de la ¿-LG sur la LF ont été identifiés.En outre, par la mesure d’une part des coefficients de diffusion rotationnel et d’autre part de la cinétique de diffusion des entités moléculaires constituant les coacervats, il est suggéré que ces derniers sont formés à partir de -LG libre¿¿de pentamère, LF(-LG2)2, ainsi que des entités plus larges, (LF-LG2)n. Afin d’évaluer l’effet de la présence de petits ligands sur la coacervation complexe entre la -LG et la LF, des ligands modèles (ANS et acide folique) ont été utilisés. Dans les conditions expérimentales testées ces deux ligands n’ont pas d’affinité pour la -LG, mais après interact / Encapsulation of bioactives has been used by the food industries for decades and represents a great potential for the development of innovative products. Given their versatile functional properties, milk proteins in particular from whey have been used for encapsulation purposes using several encapsulation techniques. In parallel, recent studies showed the ability of oppositely charged food proteins to co-assemble into microspheres through complex coacervation. Understanding the driving forces governing heteroprotein coacervation process and how it is affected by the presence of ligands (bioactives) is a prerequisite to use heteroprotein coacervates as encapsulation device. In this context, the objective of my thesis work was to understand the mechanism of complex coacervation between -lactoglobulin (-LG) and lactoferrin (LF) in the absence and presence of small ligands. The conditions of optimal ¿-LG - LF coacervation were found at pH range 5.4-6 with a molar excess of ¿-LG. RemarkabAt molecular level, the presence of two binding sites on LF for -LG was evidenced. Moreover, the heterocomplexes such as pentamers LF(-LG2)2 and quite large complexes (LF-LG2)n were identified as the constituent molecular species of the coacervate phase. To evaluate the -LG - LF complex coacervation in the presence of small ligands, models of hydrophobic (ANS) and hydrophilic molecules (folic acid) were used. Although under the experimental conditions tested the small ligands did not interact with -LG, both interacted with LF inducing its self-association into nanoparticles. High relati
23

Selective cation-exchange adsorption of the two major whey proteins

El-Sayed, Mayyada January 2010 (has links)
Whey is a by-product of cheese manufacture, containing a mixture of proteins of commercial value, each having unique attributes for nutritional, biological and food ingredient applications. A tremendous amount of whey, normally treated as a waste product, is produced worldwide each year. This work describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of optimising a process for isolating them from whey. Adsorption of pure BLG and ALA was studied onto SP Sepharose FF using 0.1M acetate buffer. Batch experiments were carried out at various pH values for ALA and BLG, and the relevant Langmuir isotherm parameters, dissociation constant, Kd, and maximum binding capacity, qm, were determined. The optimum pH for separation was chosen to be pH 3.7. At pH 3.7, both Kd and qm pertaining to ALA were found to have higher numerical values than those of BLG, implying different characteristics of adsorption of the two proteins on this adsorbent. The Kd for the former protein was almost four times larger than the latter, while qm was 1.3 times higher. Packed-bed column adsorption was performed using a 1-ml column at pH 3.7, flow rate 1 ml/min and initial concentration of 3 mg/ml for BLG and 1.5 mg/ml for ALA both in 0.1M sodium acetate buffer. The t1/2 for the resulting ALA breakthrough was 75% longer than its BLG counterpart. The above results suggest the possibility of the occurrence of competitive adsorption between the proteins when adsorbed simultaneously. In traditional batch uptake experiments, the kinetic rate constants of ALA and BLG in both the single- and two-component systems were determined using the simple kinetic model. The values so obtained implied that BLG was adsorbed faster than ALA. In the confocal laser scanning microscopy experiments, the different behaviour of ALA and BLG in the single-component system with regard to their penetration within the adsorbent beads suggested that the two proteins have different transport mechanisms governing their adsorption. The two-component system results showed that ALA was able to displace BLG in spite of the lower affinity of the former protein to the adsorbent. The packed-bed adsorption and elution of a mixture of ALA and BLG were then investigated under the above conditions but using a 5-ml column. BLG breakthrough occurred first, and its concentration in the outlet exceeded its feed value by 1.6 fold before declining to the feed value, followed by the breakthrough of ALA. ALA displaced and eluted all the BLG from the column in a pure form. Pure ALA could then be eluted with good recovery. The single- and two-component breakthrough curves for ALA and BLG were simulated by the simple kinetic model using the isotherm parameters, but the overshoot phenomenon could only be predicted after correcting these parameters. The evidence of the competitive nature of adsorption observed in binary mixtures was used to develop a facile separation procedure for the two proteins from aqueous solutions of whey concentrate powders. A novel consecutive two-stage separation process was developed to separate ALA and BLG from whey concentrate mixtures. Almost all the BLG in the feed was recovered, with 78% being recovered at 95% purity and a further 20% at 86% purity. In addition, 67% of ALA was recovered, 48% at 54% purity and 19% at 60% purity. The correction factors employed for the pure binary mixture were used to simulate the breakthrough curves of the two proteins in experiments conducted with whey concentrate in each of the two stages of the novel separation process, and there was agreement between the experimental and theoretical results.
24

Structure and Rheology of complex liquids and gels containing polysaccharides and proteins / Structure et rhéologie des mélanges de la protéine b-lactoglobuline et du polysacchnaride k-carraghenane

Nguyen, Trong Bach 16 September 2014 (has links)
Les protéines et les polysaccharides constituent avec les lipides les principaux ingrédients de l’alimentation et lui confèrent à la fois ses propriétés de nutrition et de texture. Une tendance actuelle de l’industrie agroalimentaire est d’élaborer des aliments plus sains c'est-à-dire moins gras et moins salés. A ce titre, les polysaccharides sont des agents detexturation efficaces lorsqu’ils sont utilisés seuls ou en combinaison avec des protéines. Le développement de nouveaux produits alimentaires nécessite donc de rationaliser et mieux comprendre les propriétés physico-chimiques des solutions et des gels mixtes à base de protéines et de polysaccharides. Au cours de ce travail de thèse, nous avons étudié des mélanges de protéines globulaires (la β-lactoglobuline: β-lac) et de polysaccharide (le κ-carraghénane: κ-carr). Ce dernier provient d’algues et, en solution, il conduit à des gels au dessous d’une température critique qui dépend de la nature du sel ajouté. Le κ-carr est un additif important dans l’industrie alimentaire et plus particulièrement comme texturants des produits laitiers. Il est donc essentiel de comprendre les interactions qu’il développe avec les protéines du lait comme la β-lac.L’objectif de ce travail est d’étudier la structure et les propriétés mécaniques d’agrégats ou de gels de β-lac mélangés avec du κ-carr et d’étudier leur influence sur la gélification de ce dernier. Nous nous sommes plus particulièrement intéressés à la sensibilité des mélanges aux ions calcium. Des agrégats protéiques ont été formés soit indépendamment puis mélangés au κ-carr soit directement in situ en dénaturant thermiquement des mélanges κ-carr/β-lac native. Les deuxméthodes de préparation ont été comparées pour des compositions constantes des mélanges. La diffusion de la lumière, la rhéologie et la microscopie laser confocale ont été mises en oeuvre pour étudier la texture des mélanges.La taille et la morphologie des agrégats protéiques dépendent fortement de la concentration en ions calcium ajoutés qui se lient spécifiquement aux protéines. Nous avons montré que les très grands agrégats protéiques formés en présence de calcium conduisent à une microséparation de phase quand ils sont mélangés avec du κ-carr même à très faible concentration. Ainsi, la structure des systèmes mixtes est très sensible à la quantité de calcium en présence. Lesagrégats protéiques renforcent les gels de κ-carr formés en présence de potassium tout comme l’ajout de calcium. Ce renforcement dans le cas des agrégats protéiques est dû au transfert des ions calcium de la β-lac vers le κ-carr. De plus, nous avons montré que la gélification du β-carr induite par des ions potassium continuait à avoir lieu en refroidissantdes mélanges κ-carr/β-lac où cette dernière est dénaturée in situ. Cela conduit à des réseaux interpénétrés qui sont plus forts mécaniquement que la somme des deux réseaux pris individuellement. En conclusion, nous avons montré que la compétition entre la β-lac et le κ-carr pour les ions calcium était le paramètre de contrôle des propriétés texturales desgels mixtes. / Protein and polysaccharide are together with lipids the main ingredients of food and procure both nutrition and texture. A recent tendency in the food industry is to develop more healthy products that contain less fat and salt. The addition of polysaccharides is recognized as a good way to control the texture of food products. The texture of many food products is determined by gelation of either the proteins or the polysaccharides, or both. When both are present, gelation of the protein or the polysaccharide will be influenced by the presence of the other type. Understanding of the physical chemical properties of aqueous solutions and gels containing protein and polysaccharides by themselves and in mixtures is needed for a rational development of novel food products. This thesis describes an investigation of mixtures of the globular protein β-lactoglobulin (β-lg) and the polysaccharide κ-carrageenan (κ-car). κ-car is a polysaccharide isolated from algae that is often used as an additive in food industry. In solution it forms a gel below a critical temperature that depends on the amount and the type of salt. Addition of κ-car can improve the smoothness, creaminess, and body of food products and is often usedmodify the texture of dairy products. Therefore it is important to understand the interaction of κ-car with milk proteins such as β-lg, which is the main protein component of whey. The objective of the present investigation was to study the structure andthe mechanical properties of β-lg aggregates or gels when mixed with κ-car and to study the influence of the former on the gelation of κ-car. The focus was on the sensitivity of the system to calcium ions Protein particles were either formed separately and subsequently mixed with κ-car or formed directly in mixtures of κ-car and native β-lg by heating. The two different methods of preparation were compared with the same composition of polymers. The research presented in this thesis is essentially experimental using scattering techniques and confocal laser scanning microscopy to study the structure and shear rheology to study the dynamic mechanical properties.The size and morphology of protein aggregates formed by heating β-lg is strongly dependent on the concentration of Ca2+ that binds specifically to the proteins. It is shown that larger aggregates formed in the presence of Ca2+ micro-phase separate already at low κ-car concentrations. Therefore the structure of mixed systems is extremely sensitive to the amount of Ca2+ present in the system. The presence of protein aggregates was found to reinforce potassium induced κ-car gels, but it was also found that addition of CaCl2 strengthens potassium induced pure κ-car gels. We show that the reinforcement by addition of protein aggregates is caused by the transfer of a fraction of Ca2+ from β-lg to κ-car. It was shown that potassium induced gelation of κ-car also occurs during cooling heat-set β-lg gels formed in mixtures at higher protein concentrations leading to interpenetrated networks that are stronger than the sum of the individual networks. Themain conclusion of the investigation reported here is that the competition of κ-car and β-lg for calcium ions determines both the structure and the mechanical properties of the mixed systems.
25

Heat-induced gelation of proteins

Adams, James David January 2012 (has links)
In this study the heat-induced gelation of two (readily available) proteins, which contain disulphide bonds, has been investigated over a range of protein concentrations in the presence and absence of the presence of the reductant, dithiothreitol at neutral pH. The proteins selected in this study were: β-Lactoglobulin and bovine serum albumin. These proteins have different number of disulphide bonds and possess different protein secondary structures. The influences of the reductant and protein concentration on their heat-induced gelation were explored to see whether the proteins were able to form protein hydrogels and that the mechanical properties of the resulting protein hydrogels were controllable. The tilting test tube method revealed that both proteins formed macroscopic hydrogels, at protein concentrations above the critical gelation concentration and that the critical gelation concentration was constantly lower in the presence of the reductant. Micro-DSC revealed that both proteins had completely denatured upon heating and that the denaturation temperature and enthalpy were significantly lower in the presence of the reductant. IR spectroscopy revealed that both proteins undergo major secondary structure transitions that resulted in the formation of fibers that are rich in β-sheet structure upon heating and that the protein lost some secondary structure before any heating and gained more β-sheet structure in the presence of the reductant. Both proteins had partially denatured before any heating in the presence of the reductant and that β-LG underwent aggregation that was accompanied by the loss of native β-sheet structure and the formation of intermolecular β-sheet structure, while that BSA underwent aggregation that was accompanied by the loss of native α-helix structure and the formation of intermolecular β-sheet structure. Cryo-TEM revealed that both proteins formed fibers (10 nm in diameter) that exist as single entities at low protein concentrations and become entangled into macroscopic networks, at protein concentrations above the critical gelation concentration and that more fibers and denser macroscopic networks were formed in the presence of the reductant. Oscillatory rheology revealed that both proteins formed macroscopic networks exhibit viscoelastic behaviour and that their elastic modulus had increased in the presence of the reductant and with increasing protein concentration.
26

A study of protein aggregation processes using Dynamic Light Scattering : Validation of the technique and experimental trial with an active pharmaceutical ingredient

Arnroth, Cornelia January 2020 (has links)
Protein pharmaceuticals is one of the fastest growing class of therapeutics today. However, they pose a lot of challenges in production lines due to their poor stability. Protein aggregation is one of the most common results of protein instability and is a risk factor regarding the quality of therapeutics. This master thesis at RISE focused on validating the techniques Dynamic Light Scattering (DLS) and multi angle DLS (MADLS) with respect to detection of aggregation. The model protein B-lactoglobulin was used to assess the robustness and accuracy of DLS. A comparison between two instruments from Malvern, Zetasizer Nano (2006) and Zetasizer Ultra (2018) was done with respect to DLS. It was determined that they were in many ways equivalent, but the newer model Ultra was favourable due to reduced noise and its ability to detect a lower concentration of aggregates. MADLS produced more precise results which is reflected in narrower distributions and has a higher sensitivity than DLS with regards to separating particles near in size. Both techniques proved sensitive enough to differentiate between aggregates and native protein. Experimental trials were performed with an active pharmaceutical ingredient, API. The experimental trials with the API aimed to investigate what conditions and surface-interfaces that might pose a risk for aggregation. Despite efforts put in creating an environment where aggregation could be monitored, aggregation could not be established. Measurements with the API generated less reliable results due to noisy data and a lack of reproducibility between individual measurements.
27

Crystal structure determination of β-lactoglobulin from electron micrographs

Roeter, Richard 01 January 1971 (has links)
Often electron micrographs exhibit a repeating structure. Sometimes this repeating structure satisfies the definition of a crystal in that it has a three dimensional repeating structure. If the unit cell structure of this repeating structure can be determined it can be used to help categorize different sections of a particular sample. In some cases, the use of optical diffraction analysis of electron micrographs with repeating structure is a method of determining the unit cell structure. Samples of β-Lactoglobulin were prepared for viewing in the electron microscope using both the crystalline material and carbon replicas of the crystal surface. Because the crystalline material was very unstable in the electron beam, images adequate for use as diffraction gratings could not be obtained. Electron images from the replicas were used to generate the optical diffraction patterns in this paper. The structure of β-Lactoglobulin has been determined previously by X-ray diffraction analysis. This information was used to assist in the interpretation of the optical diffraction patterns. Electron micrographs and optical diffraction patterns were recorded which were found to be consistent with the structure of β-Lactoglobulin which were found to be consistent with the structure of β-Lactoglobulin as determined by X-ray diffraction analysis. The unit cell dimensions were determined to be a = 58±4Å, b = 59±3Å and c = 102±12Å.
28

Monitoring Heat-Induced Conformational Changes and Binding of Milk Fat Globule Membrane and β-lactoglobulin using Quartz Crystal Microbalance with Dissipation

Fishel, Simone 22 December 2022 (has links)
No description available.
29

Designing Novel Emulsion Performance by Controlled Hetero-Aggregation of Mixed Biopolymer Systems

Mao, Yingyi 01 September 2013 (has links)
The increase in obesity and overweight in many countries has led to an upsurge of interest in the development of reduced fat food products. However, the development of these products is challenging because of the many roles that fat droplets normally plays in these food products, including contributing to flavor, texture, appearance, and bioactivity. The goal of this research was to develop novel reduced-fat emulsions based on hetero-aggregation of oppositely charged food-grade colloidal particles or polymers. Initially, lactoferrin (LF) and β-lactoglobulin (β-Lg) were selected as emulsifiers to form protein-coated fat droplets (d43 ≈ 0.38 μm) with opposite charges at neutral pH: pKaβ-Lg ≈ 5 < pH 7 < pKaLF ≈ 8.5. Droplet aggregation occurred when these two emulsions were mixed together due to electrostatic attraction. The structural organization of the droplets in these mixed emulsions depended on the positive-to-negative particle ratio, particle concentration, pH, ionic strength, and temperature. The nature of the structures formed influenced the rheology, stability, and appearance of the mixed emulsions, which enabled some control over emulsion functionality. The largest microclusters were formed at particle ratios of 40% LF-coated and 60% β-Lg-coated fat droplets, which led to mixed emulsions with the highest apparent viscosity or gel strength. At low total particle concentrations (0.1%), there was a relatively large distance between microclusters and the mixed emulsions were fluid. At high particle concentrations (>20%), a three-dimensional network of aggregated droplets formed that led to gel-like or paste-like properties. The influence of environmental stresses on the physicochemical stability of the microclusters formed by hetero-aggregation was investigated: pH (2-9); ionic strength (0-400 mM NaCl); and temperature (30-90 ºC). Large microclusters were obtained at pH 7 (d43 ≈ 10 μm) with the absence of salt at room temperature. More acidic (< pH 6) or alkaline (> pH 8.5) solutions resulted in smaller aggregates by minimizing the electrostatic attraction between the protein-coated fat droplets. Microclusters dissociated upon addition of intermediate levels of salt, which was attributed to screening of attractive electrostatic interactions. Heating the microclusters above the thermal denaturation temperature of the proteins led to an increase in gel-strength, which was attributed to increased hydrophobic attraction. The influence of hetero-aggregation of lipid droplets on their potential biological fate was studied using a simulated gastrointestinal tract (GIT). Results showed that the mixed emulsions had high viscosity in the simulated oral environment but exhibited similar rheological properties and particle characteristics as single-protein emulsions in the simulated gastric and small intestinal tract regions. The mixed emulsions also had similar lipid digestion rates in the simulated small intestine as single-protein emulsions suggesting that they could be used as delivery systems for bioactive lipophilic compounds in reduced fat food products. The possibility of using more practical food ingredients to promote heteroaggregation system was also examined. Whey protein isolate (positive) and modified starch (negative) were selected as building blocks due to their opposite charges at pH 3.5. The largest aggregates and highest viscosities occurred at a particle ratio of 70% MS and 30% WPI, which was attributed to strong electrostatic attraction between the oppositely charged droplets. Particle aggregation and viscosity decreased when the pH was changed to reduce the electrostatic attraction between the droplets. Finally, the influence of interfacial properties on the chemical stability of bioactive components in emulsion-based delivery systems containing mixed proteins was studied. Lactoferrin (LF: pI ≈ 8) and β-lactoglobulin (β-Lg: pI ≈ 5) were selected to engineer the interfacial properties. Interfaces with different structures were formed: LF only; β-Lg only; LF-β-Lg (laminated); β-Lg -LF (laminated); β-Lg /LF (mixed). The influence of pH, ionic strength, and temperature on the physical stability of β-caroteneenriched emulsions was then investigated. LF- emulsions were stable to the pH change from 2 to 9 but the aggregation was occurred in intermediate pH for other emulsions. β- Lg- emulsions aggregated at low salt concentration (≥ 50mM NaCl), however other emulsions were stable (0 - 300mM NaCl). β-Lg /LF (mixed) emulsions were unstable to heating (≥ 60 ºC), but all other emulsions were stable (30 to 90 ºC). Color fading due to β-carotene degradation occurred relatively quickly in β-Lg-emulsions (37 ºC), but was considerably lower in all other emulsions, which was attributed to the ability of LF to bind iron or interact with β-carotene. Overall, this study shows that hetero-aggregation may be a viable method of creating novel structures and rheological properties that could be used in the food industry.
30

Atividade antioxidante da vanilina e do ácido vanílico e o efeito da complexação por proteínas do soro do leite na desativação de radicais e ferrilmioglobina em condições simulando o trato gastrointestinal / Antioxidant activity of vanillin and vanillic acid and the effect of complexation by milk whey proteins in the deactivation of radicals and ferrylmyoglobin under conditions simulating the gastrointestinal tract

Libardi, Silvia Helena 23 July 2010 (has links)
O presente trabalho procurou investigar influência da presença de proteínas do soro do leite na atividade antioxidante da vanilina e ácido vanílico frente ao radical DPPH&bull; e a espécie de ferro hipervalente ferrilmioglobina MbFe(IV)=O em meio simulando o trato gastrointestinal. A constante de associação (KA) entre a vanilina e a &beta;-lactoglobulina (BLG) foi determinada utilizando-se as técnicas de espectroscopia de emissão molecular (KA = 400 &plusmn; 12&middot;102 L&middot;mol-1) e microcalorimétria (KA = 5,6&plusmn;0,3&middot;102 L&middot;mol-1) ambas em tampão fosfato com CH+ = 10-7,4 mol&middot;L-1 e força iônica 0,32 (NaCl). Para a interação entre a vanilina e albumina de soro bovino (BSA) encontrou-se o valor de 340 &plusmn; 13&middot;102 L&middot;mol-1 em meio de tampão fosfato com CH+ = 10-6,4 mol&middot;L-1 e força iônica 0,32 (NaCl), obtido por espectroscopia de emissão molecular. Constatou-se pela técnica de microcalorimetria que a complexação possui caráter exotérmico e as contribuições de interações hidrofóbicas para a complexação são fracas. A reatividade da vanilina e ácido vanílico com o radical DPPH&bull; foi investigada em meio de emulsão aquosa Tween-20&reg; com CH+ = 10-2,0 mol&middot;L-1. Os resultados obtidos demonstraram que a vanilina não pode ser considerada um bom antioxidante frente ao DPPH&bull; (k298 = 1,42&plusmn;0,04&middot;10-1 L&middot;mol-1&middot;s-1), no entanto, o ácido vanílico apresentou maior reatividade frente ao radical DPPH&bull; (k298 = 17,1&plusmn;0,3 &middot;10-1 L&middot;mol-1&middot;s-1). A presença das proteínas BLG e BSA nas reações de redução do radical DPPH&bull; pela vanilina e ácido vanílico conduziu a um efeito antagônico na constante de velocidade de reação. Os parâmetros termodinâmicos do estado de transição da reação com DPPH&bull; apresentaram valores relativamente altos de entalpia de ativação e moderados valores de entropia de ativação: &Delta;H&Dagger;298 = 34,0 &plusmn; 0,3 kJmol-1 para a vanilina e 46,2 &plusmn; 0,1 kJmol-1 no complexo com BSA e 51,0 &plusmn; 0,6 kJ&middot;mol-1 no complexo com BLG, valores negativos de entropia &Delta;S&Dagger;298 = -147,4 &plusmn; 0,9 J&middot;mol-1&middot;K-1, -105,3 &plusmn; 0,5 J&middot;mol-1&middot;K-1 e -90 &plusmn; 2 J&middot;mol-1&middot;K-1 respectivamente. Os valores de entalpia e entropia de ativação encontrados para o ácido vanílico foram: &Delta;H&Dagger;298= 19,6 &plusmn; 0,2 kJ&middot;mol-1, 10,2 &plusmn; 0,03 kJ&middot;mol-1 e 37,6 &plusmn; 0,3 kJ&middot;mol-1 para os complexos com BSA e BLG respectivamente e valores negativos de entropia &Delta;S&Dagger;298=-174 &plusmn; 0,5 J&middot;mol-1&middot;K-1, -206,0 &plusmn; 0,1 J&middot;mol-1&middot;K-1 e -116 &plusmn; 1 J&middot;mol-1&middot;K-1. A partir destes valores de entalpia e entropia de ativação o mecanismo de redução do radical DPPH&bull; foi atribuído a um processo de abstração de átomo de hidrogênio (HAT/PCET). A reação de desativação da espécie MbFe(IV)=O pela vanilina apresentou constante de velocidade de k298 = 57&plusmn;1 L&middot;mol-1&middot;s-1 sendo superior quando comparada ao ácido vanílico k298 = 15&plusmn;1 L&middot;mol-1&middot;s-1, fato este atribuído as cargas totais, negativa, do redutor e da proteína nas presentes condições experimentais. Observa-se um efeito antagônico da complexão da vanilina pelas proteínas na atividade antioxidante frente à ferrilmioglobina, onde o efeito reduziu, mas não impediu a reação de transferência de elétrons por esfera-externa à longa distância. Em contrapartida, a presença das proteínas BLG e BSA não influenciaram a reatividade do ácido vanílico frente à espécie MbFe(IV)=O. Os parâmetros de ativação encontrados para a reação de redução da MbFe(IV)=O com a vanilina apresentaram valores de &Delta;H&Dagger;298 = 58,8 &plusmn; 0,3 kJmol-1 e &Delta;S&Dagger;298 = -14 &plusmn; 1 J&middot;mol-1&middot;K-1, &Delta;H&Dagger;298 = 45,5 &plusmn; 0,3 kJ&middot;mol-1 e &Delta;S&Dagger;298 = -60 &plusmn; 1 J &middot;mol-1&middot;K-1, &Delta;H&Dagger;298 = 68,6 &plusmn; 0,4 kJ&middot;mol-1 e &Delta;S&Dagger;298 = 17 &plusmn; 1 J &middot;mol-1&middot;K-1 para vanilina \"livre\", complexo com BSA, e complexo com BLG respectivamente. Para a redução com ácido vanílico foram determinados os seguintes valores de entalpia e entropia de ativação: &Delta;H&Dagger;298 = 41,8 &plusmn; 0,2 kJ&middot;mol-1 e &Delta;S&Dagger;298 = -82,4 &plusmn; 0,7 J&middot;mol-1&middot;K-1, &Delta;H&Dagger;298 = 37,7 &plusmn; 0,3 kJ&middot;mol-1 e &Delta;S&Dagger;298 = -96 &plusmn; 1,0 J&middot;mol-1&middot;K-1, &Delta;H&Dagger;298 = 53,5 &plusmn; 0,2 kJ&middot;mol-1 e &Delta;S&Dagger;298 = -44 &plusmn; 1,0 J&middot;mol-1&middot;K-1 para vanilina \"livre\", complexo com BSA, e complexo com BLG respectivamente. / The present study evaluate the influence of the presence of whey proteins in the antioxidant activity of vanillin and vanillic acid towards the DPPH&bull; radical species and the hypervalent iron species ferrylmyoglobin, MbFe(IV)=O under conditions simulating the gastrointestinal tract. The association constant (KA) between vanillin and &beta;- lactoglobulin (BLG) was obtained using molecular emission spectroscopy (KA = 400 &plusmn; 12&middot;102 L&middot;mol-1) and microcalorimetric titration (KA = 5.6&plusmn;0.3&middot;102 L&middot;mol-1) both in phosphate buffer CH + = 10-7.4 mol&middot;L -1 and ionic strength 0.32 (NaCl). For the interaction between vanillin and bovine serum albumin (BSA) it was founded value of 340 &plusmn; 13&middot;102 L&middot;mol-1 in phosphate buffer with CH+ = 10-6,4 mol&middot;L-1 and ionic strength 0.32 (NaCl), as obtained by molecular emission spectroscopy. It was founded by microcalorimetry tritation that the complexation has a exothermic character and the contributions of hydrophobic interactions for complexation are weak. The reactivity of vanillin and vanillic acid toward DPPH&bull; radical was studied in aqueous emulsion using Tween-20&reg; with CH + = 10-2.0 mol&middot;L-1. The results show that vanillin can not be considered a good antioxidant (k298 = 1.42&plusmn;0.04&middot;10-1 L&middot;mol-1&middot;s-1), however vanillic acid show higher reactivity than vanillin towards the radical DPPH&bull; (k298 = 17.1&plusmn;0.3&middot;10-1 L&middot;mol-1&middot;s-1). The presence of the proteins BLG and BSA in the reduction reactions of the DPPH&bull; radical by vanillin and vanillic acid led to an antagonic effect in the reaction rate constant. The thermodynamic parameters for the transition state of the reaction with DPPH&bull; showed relatively high values of enthalpy of activation and moderately negative entropy of activation: &Delta;H&Dagger;298= 34.0 &plusmn; 0.3 kJmol-1 for vanillin and 46.2 &plusmn; 0.1 kJmol-1 for complex with BSA and 51.0 &plusmn; 0.6 kJ&middot;mol-1 for complex with BLG, negatives values of entropy &Delta;S&Dagger;298 = -147.4 &plusmn; 0.9 J&middot;mol-1&middot;K-1, -105.3 &plusmn; 0.5 J&middot;mol-1&middot;K-1 and -90 &plusmn; 2 J&middot;mol-1&middot;K-1 respectively. The values of enthalpy and entropy of activation found for vanillic acid were: &Delta;H&Dagger;298 = 19.6 &plusmn; 0.2 kJ&middot;mol-1, 10.2 &plusmn; 0.03 kJ&middot;mol-1 and 37.6 &plusmn; 0.3 kJ&middot;mol-1 for BSA and BLG respectively and negative values of entropy &Delta;S&Dagger;298 = -174 &plusmn; 0.5 J&middot;mol-1&middot;K-1, -206.0 &plusmn; 0.1 J&middot;mol-1&middot;K-1 and -116 &plusmn; 1 J&middot;mol-1&middot;K-1. From these values of enthalpy and entropy of activation the mechanism of radical DPPH&bull; reduction was assigned to a process of hydrogen atom transfer (HAT/PCET). The deactivation reaction of the MbFe(IV)=O species by vanillin shown rate constant of k298 = 57&plusmn;1 L&middot;mol-1&middot;s-1, which it is higher than vanillic acid k298 = 15&plusmn;1 L&middot;mol-1&middot;s-1. This fact is assigned to the total negative charges of the reductor and the protein under the experimental conditions. It is observed an antagonistic effect of the complexation of vanillin by proteins in the antioxidant activity, in which the effect diminish, but not avoid the long range electron transfer by out-sphere reaction. On the other hand, the presence of BLG and BSA do not affect the reactivity of vanillic acid towards the MbFe(IV)=O species. The activation parameters found for the reduction of MbFe(IV)=O by vanillin revealed values of &Delta;H&Dagger;298 = 58.8 &plusmn; 0.3 kJmol-1 and &Delta;S&Dagger;298 = -14 &plusmn; 1 J&middot;mol-1&middot;K-1, &Delta;H&Dagger;298 = 45.5 &plusmn; 0.3 kJ&middot;mol-1 e &Delta;S&Dagger;298 = -60 &plusmn; 1 J &middot;mol-1&middot;K-1, &Delta;H&Dagger;298 = 68.6 &plusmn; 0.4 kJ&middot;mol-1 and &Delta;S&Dagger;298 = 17 &plusmn; 1 J &middot;mol-1&middot;K-1 for free vanillin, complex with BSA and complex with BLG respectively. For the reduction by vanillic acid it were with the following values of enthalpy and entropy of activation: &Delta;H&Dagger;298 = 41.8 &plusmn; 0.2 kJ&middot;mol-1 and &Delta;S&Dagger;298 = -82.4 &plusmn; 0.7 J&middot;mol-1&middot;K-1, &Delta;H&Dagger;298 = 37.7 &plusmn; 0.3 kJ&middot;mol-1 and &Delta;S&Dagger;298 = -96 &plusmn; 1.0 J&middot;mol-1&middot;K-1, &Delta;H&Dagger;298 = 53.5 &plusmn; 0.2 kJ&middot;mol-1 and &Delta;S&Dagger;298 = -44 &plusmn; 1.0 J&middot;mol-1&middot;K-1 for free vanillin, complex with BSA and complex with BLG respectively.

Page generated in 0.0661 seconds