• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 75
  • 30
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 297
  • 129
  • 33
  • 30
  • 29
  • 25
  • 22
  • 20
  • 19
  • 18
  • 17
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Miniaturized 3D culture of stem cells with biomaterials derived from alginate

Dumbleton, Jenna K. 01 September 2015 (has links)
No description available.
192

Corrosion inhibition of aluminum alloy 2024-T3 based on smart coatings, hybrid corrosion inhibitors, and organic conversion coatings

Guo, Xiaolei 19 September 2016 (has links)
No description available.
193

Microencapsulation of an omega-3 polyunsaturated fatty acid source with polysaccharides for food applications

Hannah, Sabrina 30 November 2009 (has links)
Omega-3 polyunsaturated fatty acids (ω3 PUFAs) provide important health benefits, but dietary consumption is low. Supplementing foods with ω3 PUFAs is of interest, but intervention strategies are necessary to preserve the integrity of these unstable compounds. Microencapsulation of ω3 PUFA sources is one means of improving their stability. In this work, ω3 PUFA microcapsules were prepared by spray drying with chitosan and blends of chitosan, high-amylose starch, and pullulan as wall materials. The primary objectives of this research were (1) to evaluate the effect of chitosan type and oil:wall ratio on ω3 PUFA microcapsule properties, (2) to evaluate the effect of blending chitosan with high-amylose starch and pullulan on ω3 PUFA microcapsule properties, and (3) to evaluate the oxidative stability of ω3 PUFA microcapsules by monitoring primary and secondary oxidation products during storage. Microcapsule encapsulation efficiencies (EE) ranged from 63% to 79% with the highest EEs observed for microcapsules prepared from chitosan with higher degree of deacetylation (DD) and lower molecular weight (MW). Median microcapsule size ranged from 3 μm to 11 μm. Moisture contents were all below 7% and water activities (a<sub>w</sub>) were below 0.27. Microcapsules prepared from blends of chitosan with starch and/or pullulan had lower aw values than those prepared from chitosan alone. Oxidative stability was evaluated by measuring oxidation induction time (OIT) using pressure differential scanning calorimetry. OIT values ranged from 14 to 20 minutes. Microcapsules prepared from chitosan with lower DD and higher MW had longer OITs than those prepared from chitosan with higher DD and lower MW. Microcapsules prepared from blends of chitosan, starch, and pullulan had longer OITs than those prepared from chitosan alone. Oxidative stability of microcapsules during long term storage was evaluated on one microcapsule formulation by monitoring peroxide value (PV) and secondary oxidation products by HS-SPMEGC/ MS. Volatiles including propanal, 1-penten-3-ol, pentanal, hexanal, and 2,4-heptadienal were detected in the headspace of the microcapsules; however, PVs did not indicate substantial oxidation of the ω3-PUFA source during 5 weeks of storage. Chitosan, high-amylose starch, and pullulan are effective materials for microencapsulation of ω3 PUFA sources. / Ph. D.
194

Cryopreservation of microencapsulated bovine spermatozoa

Pandolfi, Susan M. 01 November 2008 (has links)
The ultimate design of a microencapsulated AI dose is to continuously release sperm over a period of time in the female reproductive tract, thus alleviating the need for estrus detection. The objective of Trial 1 was to determine in vitro sperm release times for three microcapsule membranes. Semen was collected from four bulls, pooled, extended in 20% egg yolk TEST to a concentration of 80 = 10⁶ cells/ml, and encapsulated. Microcapsule membranes were constructed from isomers of polylysine: .1% poly-L-lysine (PLL), .1% poly-D-lysine (PDL), and a 50:50 mixture of the isomers (PLPD). Microcapsules were incubated at 37°C in a buffer containing .5% heparin or .5% trypsin and evaluated at 0.5, 1, 2, 4, 8, and 16 h post-encapsulation. For sperm encapsulated there were no significant differences in sperm motility. However, peak time of maximum sperm release differed between PLL and PDL membranes at 2 and 4 h of incubation. In Trial 2, sperm viability and microcapsule membrane stability were assessed post-thaw using PLL or PDL, two encapsulating temperatures (5°C or 23°C) and two times of glycerol addition (prior or post encapsulation at 5°C). Semen was extended to 80 = 10⁶ cells/ml and encapsulated. Capsules from all treatment combinations were incubated in .5% trypsin and evaluated as in Trial 1. In addition, motility was estimated at 1, 3, 6, and 9 h post-thaw. Motility from the unencapsulated control and capsules with glycerol addition prior to encapsulation, was superior (P < .05). Additionally, sperm release from capsules prepared at 5°C with glycerol addition post encapsulation was greater than all other treatments (P < .05). Time of peak sperm release for capsules was similar to the previous trial. There was a positive correlation between average capsule diameter and sperm release for both trials (P < .05). These data suggest that a combination of PLL and PDL capsules may complement each other in timing of sperm release and may be utilized in an inseminate mixture for extending the effective release in the female / Master of Science
195

The Effect of Poly-L-Lysine Concentration, Molecular Weight, and Encapsulation Temperature on Microencapsulated Bovine Spermatozoa

Fultz, Stanley Wakefield 29 July 2013 (has links)
A series of in vitro studies were conducted to evaluate the effect of poly-l-lysine concentration, molecular weight, and encapsulation temperature on the post encapsulation survivability of spermatozoa. Viability of spermatozoa encapsulated at 2012 C using four poly-l-lysine concentrations (.05%, .15%, .25%, and .35%) did not differ over the 8 h incubation period. However, the viability of each of the four treatments was lower than that of the unencapsulated control (p<.05 and p<.01; percentage motility and percentage intact acrosomes, respectively), indicating spermatozoal damage occurred during the encapsulation process. Capsule wall thickness and integrity for the .15%, .25%, and .35% concentrations were greater (p<.Ol) than that of the .05% capsules. / Master of Science
196

Développement d'une matrice prébiotique pour l'encapsulation des probiotiques bactériocinogènes, destinée à l'alimentation animale : de la physicochimie à la biopharmacie

Atia, Abdelbasset 24 April 2018 (has links)
L’antibiorésistance est un problème de santé publique majeur, causé principalement par l’usage abusif d’antibiotiques dans les élevages. Les probiotiques sont une alternative potentielle aux antibiotiques. Cependant, acheminer ces microorganismes vivants et fonctionnels jusqu’au côlon est un grand défi, à cause du pH et des sels biliaires à affronter lors du passage gastro-intestinal. L’objectif de ce travail était de développer une matrice prébiotique capable de maintenir la survie et l’activité des probiotiques pendant le transit gastro-intestinal et de permettre leur libération dans le côlon. Pour atteindre cet objectif, cinq types de matrices sphériques (A, AI5, AI10, AI15, AI20) à base d’inuline (0 %, 5 %, 10 %, 15 % et 20 %) et d’alginate (2 %) ont été préparés par la méthode d’extrusion/gélification ionotropique. Trois souches probiotiques ont été utilisées au cours du développement des billes : Pediococcus acidilactici UL5 (UL5), Lactobacillus reuteri (LR) et Lactobacillus salivarius (LS). Dans un premier temps, toutes les formulations ont été caractérisées d’un point de vue physicochimique et microbiologique. Ces analyses ont permis de révéler une distribution homogène de l’inuline et de l’alginate au sein des matrices et ont démontré que la viabilité et la capacité antimicrobienne des souches utilisées n’étaient pas affectées par l’encapsulation. À la lumière de ces résultats, trois formulations A, AI5 et AI20 ont été sélectionnées pour la suite de l’étude. Dans un deuxième temps, la mucoadhésion et le comportement des billes A, AI5 et AI20 ont été étudiés dans les parties supérieures du tractus gastro-intestinal. Ces études ont démontré que la présence de l’inuline améliore les propriétés mucoadhésives des billes. Elles ont également établi que seule la formulation AI5 résiste jusqu’à la fin de la digestion. Ce comportement est expliqué en partie par l’interaction alginate-inuline décelée par spectroscopie infrarouge à transformée de Fourier (FTIR). Cette interaction était stable pour les billes AI5 au pH 6,8 mais instable pour la formulation AI20. Enfin, le comportement et la dynamique bactérienne de la formulation AI5 dans les milieux coliques fermenté et non fermenté ont été étudiés. Cette étude a révélé que les billes AI5 se dégradent et libèrent la totalité des bactéries après environ 4 heures d’incubation dans le milieu fermenté. Cette dégradation est due aux enzymes très abondantes dans ce milieu. En conclusion, la formulation AI5 s’est avérée être un très bon véhicule pour protéger les bactéries dans les parties supérieures du tube digestif et favoriser leur libération dans le côlon. Elle pourrait donc, être utilisée pour une application en alimentation animale. / Antibioresistance is a major public health issue, principally caused by the abusive use of antibiotics in farming. Probiotics are a potential alternative to antibiotics. However, delivering them alive and functional to the colon is a great challenge because of the pH and bile salts faced within the gastrointestinal tract. This work aims to develop a prebiotic matrix able maintain the probiotics alive and active during the gastrointestinal transit and able to release them in the colon. To reach this objective, five types of beads (A, AI5, AI10, AI15, AI20) were made of inulin (0 %, 5 %, 10 %, 15 % and 20 %) and alginate (2%) by extrusion/ionotropic gelation method. Three probiotic strains were used during the conception of the beads: Pediococcus acidilactici UL5 (UL5), Lactobacillus reuteri (LR) and Lactobacillus salivarius (LS). Firstly, all the formulations underwent physicochemical and microbiologic characterizations. These first characterizations revealed high yields of the inulin trapped in the beads. They also revealed the homogeneous distribution of inulin and alginate inside the matrix and demonstrated that the encapsulation did not affect the viability and the antimicrobial activity of the used strains. In the light of these results, the A, AI5 and AI20 formulations were chosen to continue the study. Secondly, the mucoadhesiveness and the behaviour of the A, AI5 and AI20 within the upper parts of the intestinal tract were studied. These studies demonstrated that the presence of inulin improve the mucoadhesiveness of the beads. They also demonstrated that only the AI5 formulation was able to resist until the end of the digestion. This behaviour was partly explained by the interaction of the alginate and the inulin found by the FTIR. This interaction was stable for the AI5 beads in pH 6.8 but unstable for the AI20 formulation. Finally, the behaviour and the bacterial dynamics of the AI5 formulation in the fermented and unfermented colonic medium were studied. This study revealed that the AI5 beads were degraded and released all of the bacteria after around 4 hours in the fermented medium. This degradation is probably due to the enzymes abundantly present in this medium. In conclusion, the abilities of AI5 formulation to protect the bacteria in the upper parts of the digestive tract and to release them to the colon can be affirmed. It could be used for an application in animal feeding.
197

Etude et fonctionnalisation de protéines végétales en vue de leur application en microencapsulation / Study and functionalization of vegetable proteins and their application in microencapsulation

Nesterenko, Alla 05 December 2012 (has links)
Les protéines extraites des végétaux sont des matériaux relativement peu coûteux, non toxiques, biocompatibles et biodégradables. Elles représentent une bonne alternative aux protéines d’origine animale et aux polymères dérivés du pétrole. Dans le cadre de cette étude, les protéines extraites de graines de soja et de tournesol ont été utilisées en tant que matériaux enrobants pour la microencapsulation de la matière active hydrophobe (α-tocophérol) ou hydrophile (acide ascorbique) par le procédé d’atomisation. Les protéines de soja sont largement utilisées dans les applications alimentaires et non-alimentaires, notamment en microencapsulation. Elles sont donc étudiées dans ce travail comme matériau enrobant de référence. Les protéines de tournesol n’ont quant à elles pas d’application industrielle concrète, si ce n’est sous la forme de tourteaux dans l’alimentation animale. C’est pourquoi il nous semble pertinent de trouver des nouvelles voies de valorisation pour ce coproduit d’origine agricole. Plusieurs modifications des protéines, telles que l’hydrolyse enzymatique, l’acylation, la réticulation enzymatique et la cationisation ont été étudiées dans le but d’améliorer les propriétés encapsulantes du matériau enrobant. Dans le contexte de la chimie verte, toutes les modifications ont été effectuées sans utilisation de solvants organiques ni de catalyseurs chimiques. L’influence des modifications chimiques et enzymatiques des protéines, et des paramètres du procédé (pression d’homogénéisation, ratio matériau enrobant/matière active et concentration en protéines) sur les différentes caractéristiques des préparations liquides et des microparticules (viscosité, taille des gouttelettes dans le cas des émulsions, morphologie et taille des microparticules), ainsi que sur les paramètres liés au procédé d’atomisation (rendement et efficacité de microencapsulation) a été particulièrement étudiée au cours de ce travail. Les résultats obtenus confirment que l’extrait protéique de tournesol est tout à fait pertinent comme matériau enrobant et permet d’obtenir des efficacités de microencapsulation significativement plus élevées par rapport à celles obtenues avec l’extrait protéique de soja. / Proteins extracted from vegetables are relatively low-cost, non-toxic, biocompatible and biodegradable raw materials. They represent a good alternative to animal-based proteins and petroleum-extracted polymers. In this study, proteins derived from soybean and sunflower seeds were used as wall materials for microencapsulation of hydrophobic (-tocopherol) or hydrophilic (ascorbic acid) active material by spray-drying technique. Soybean proteins are widely used in food and non-food applications, especially in microencapsulation. They were studied in this work as wall material of reference. Sunflower proteins are not actually used in industrial application, but only in the form of oil-cake for animal feeding. That’s why new ways of valorization of this agricultural by-product should be investigated. Several proteins’ modifications such as enzymatic hydrolysis, acylation, cross-linking and cationization were studied in order to improve encapsulating properties of wall material. In the context of green chemistry, all the modifications and preparations were performed without use of organic solvents and chemical catalysts. The effect of protein chemical and enzymatic modifications, and process parameters (homogenization pressure, wall/core ratio and protein concentration) on different characteristics of liquid preparations and microparticles (viscosity, emulsion droplet size, microparticle size and morphology) and on parameters related to the spray-drying process (yield and efficiency of microencapsulation) was particularly investigated in this study. The obtained results confirmed that sunflower proteins are quite suitable as encapsulating agent and provide the microencapsulation efficiencies significantly higher compared to those obtained with soy proteins.
198

Optimisation de la pH-sensibilité de protéines végétales en vue d'améliorer leurs capacités d'encapsulation de principes actifs destinés à la voie orale / Optimization of pH-sensitivity of vegetable proteins in order to improve their capacity to encapsulate Active Pharmaceutical Ingredients for oral administration

Anaya Castro, Maria Antonieta 21 February 2018 (has links)
Dans le domaine pharmaceutique, la voie orale demeure la voie d’administration de prédilection, car plus simple et mieux acceptée par les patients. Cependant, ce mode d’administration pose problème pour de nombreux principes actifs (PA) présentant une faible solubilité, une faible perméabilité et/ou une instabilité dans l’environnement gastro-intestinal. Leur micro-encapsulation dans des matrices polymériques peut permettre d’y répondre, notamment si les microparticules générées résistent aux environnements rencontrés lors du tractus gastro-intestinal et jouent alors un rôle protecteur, tant pour le principe actif que pour les muqueuses rencontrées. La recherche de nouveaux excipients, issus des agro-ressources tels que les polymères naturels, est en plein essor. Les protéines végétales, grâce à leurs propriétés fonctionnelles telles qu’une bonne solubilité, une viscosité relativement basse, et des propriétés émulsifiantes et filmogènes, représentent des candidats privilégiés. De plus, la grande diversité de leurs groupements fonctionnels permet d’envisager des modifications chimiques ou enzymatiques variées. L’objectif de ce travail était d’étudier l’intérêt de la protéine de soja en tant que matériau enrobant de principes actifs pharmaceutiques destinés à la voie orale, et plus particulièrement en tant que candidat pour l’élaboration de formes gastro-résistantes. Un isolat protéique de soja (SPI) été utilisé comme matière enrobante et l’atomisation comme procédé. L’ibuprofène, anti-inflammatoire non stéroïdien, a été choisi comme molécule modèle du fait de sa faible solubilité nécessitant une amélioration de sa biodisponibilité, et de ses effets indésirables gastriques nécessitant une mise en forme entérique. Deux modifications chimiques des protéines (l’acylation et la succinylation) ont été étudiées dans le but de modifier la solubilité de la protéine de soja. Ces modifications ont été effectuées dans le respect des principes de la Chimie Verte, notamment en absence de solvant organique. Les microcapsules obtenues par atomisation ont été caractérisées en termes de taux et efficacité d'encapsulation, morphologie et distribution de tailles des particules, état physique du PA encapsulé et capacité de libération en milieu gastrique et intestinal simulé. Les résultats obtenus ont permis de valider l’intérêt des modifications chimiques de la protéine de soja pour moduler les cinétiques de libération d’actif. Les modifications chimiques sont apparues particulièrement adaptées pour l’encapsulation de principes actifs hydrophobes, et ont permis de l’obtention de cinétiques de libération d’ibuprofène ralenties à pH acide (gastrique). La dernière partie de ce travail a permis de valider cette dernière hypothèse par la réalisation de formes gastro-résistantes sur le modèle des comprimés MUPS (multiple unit pellet system). Les résultats de ce travail exploratoire démontrent que les protéines de soja, associées à un procédé de mise en forme multi-particulaire couplé à de la compression directe, peuvent constituer une alternative biosourcée, respectueuse de l’environnement (manipulation en solvant aqueux, temps de séchage et étapes de compression réduits) et sûre à l’enrobage utilisé dans les formes gastro-résistantes traditionnelles. / In the pharmaceutical field, the oral route remains the preferred route of administration because it is simpler and better accepted by patients. However, this mode of administration is problematic for many active pharmaceutical ingredients (API) with low solubility, low permeability and/or instability in the gastrointestinal environment. Their microencapsulation in polymeric matrices can make them able to respond to these factors, especially if the microparticles generated resist the environments encountered during the gastrointestinal tract and then play a protective role, both for the API and for the mucous membranes encountered. The search for new excipients, from agroresources such as natural polymers, is booming. Vegetable proteins, thanks to their functional properties such as good solubility, relatively low viscosity, and emulsifying and film-forming properties, are preferred candidates. In addition, the great diversity of their functional groups makes it possible to envisage various chemical or enzymatic modifications. The aim of this work was to study the interest of soy protein as a coating material for API intended for the oral route, and more particularly as a candidate for the development of gastro-resistant forms. A soy protein isolate (SPI) was used as a coating material and the atomization as a process. Ibuprofen, a nonsteroidal anti-inflammatory drug, was chosen as a model molecule because of its low solubility requiring an improvement in its bioavailability, and its gastric side effects requiring an enteric shaping. Two chemical modifications of proteins (acylation and succinylation) have been studied in order to modify the solubility of the soy protein. These modifications were carried out in accordance with the principles of Green Chemistry, especially in the absence of organic solvent. The microcapsules obtained by spray-drying were characterized in terms of rate and encapsulation efficiency, morphology and size distribution of the particles, physical state of the encapsulated API and capacity of release in simulated gastric and intestinal medium. The results obtained validated the interest of the chemical modifications of the soy protein to modulate the release kinetics of API. The chemical modifications appeared particularly suitable for the encapsulation of hydrophobic active ingredients, and allowed to obtain ibuprofen release kinetics decreased to acidic pH (gastric). The last part of this work allowed to validate this last hypothesis by the realization of gastro-resistant forms on the model of MUPS tablets (multiple unit pellet system). The results of this exploratory work demonstrate that soy protein, combined with a multiparticle shaping process coupled with direct compression, can be a biosourced, environmentally friendly alternative (aqueous solvent handling, drying and compression steps reduced) and confident to the coating used in traditional gastroresistant forms.
199

Développement d’un microréacteur à base d’enzyme microencapsulée en vue d’un couplage en ligne à un système d’électrophorèse capillaire

Gusetu, Georgiana 10 1900 (has links)
Réalisé en codirection avec Karen C. Waldron et Dominic Rochefort. / L’objectif principal de ce projet de recherche est d’étudier l’efficacité de la microencapsulation, technique d’immobilisation d’enzymes utilisée pour la réalisation des nouveaux biocapteurs électrochimiques. Généralement, l’analyte d’intérêt produit ou consomme des électrons, et la réponse électrochimique est mesurée, afin d’identifier ou quantifier l’analyte. Dans le développement d’un biocapteur, il est désirable de quantifier la conversion du substrat (analyte) et/ou la formation de produit de réaction enzymatique. Les similarités structurales entre le substrat et le produit de réaction dans les réactions redox demandent que la technique utilisée pour les identifier soit très sélective. Le haut pouvoir de résolution de l’électrophorèse capillaire (EC) pour des séparations rapides de produits similaires en fait une méthode de choix, spécialement quand le substrat et le produit peuvent être suivis pendant et après la réaction catalysée par l’enzyme immobilisée. Un choix judicieux du substrat, compte tenu de son comportement en EC peut fournir des informations autant sur l’activité de l’enzyme que sur l’efficacité de la microencapsulation. Pour cette raison, nous avons choisi le substrat o-phenylènediamine qui est oxydé par la laccase, pour former le produit 2,3-diaminophenazine, tout en réduisant l’oxygène en eau. Pour commencer, nous avons préparé les microcapsules et évalué l’impact de la microencapsulation sur le comportement de l’enzyme. Ensuite, nous avons développé une méthode de séparation en EC afin de quantifier la conversion de l’OPD en DAP par la laccase libre. La même méthode d’analyse a été utilisée pour caractériser la laccase immobilisée dans les microcapsules. Par la suite, afin de suivre la réaction enzymatique, un microréacteur à base d’enzyme microencapsulée a été couplé hors ligne au système d’EC. Finalement, nous avons essayé l’implémentation du système en ligne et les résultats préliminaires seront présentés. / The principal objective of this research project is to study the efficiency of microencapsulation, technique used for enzyme immobilization in order to create new types of electrochemical biosensors. Generally, the target analyte involved either produces or consumes electrons and the electrochemical response is measured to identify or quantify the analyte. In the development of a biosensor, it is desirable to quantify the conversion of substrate (analyte) and/or the formation of product of the enzymatic reaction. The structural similarity between substrate and product in redox reactions means that the technique used to determine these species must be very selective. The high resolving power of capillary electrophoresis (CE) for rapidly separating similar compounds is thus an attractive method, particularly if substrate and product can both be monitored during or following the reaction catalyzed by microencapsulated enzyme. A judicious choice of substrate with respect to its behaviour in CE separations can help provide information on enzyme activity as well as microencapsulation efficiency. To achieve this, we chose the substrate o-phenylenediamine (OPD), which is oxidized by laccase to form the product 2,3-diaminophenazine (DAP) concomitant with the reduction of molecular oxygen to water. We firstly prepared the microcapsules and evaluate the impact of microencapsulation on the behaviour of the enzyme. After that, we developed a CE based separation method to quantify the conversion of OPD to DAP by free laccase. We also used the CE method to characterize laccase immobilized in microcapsules. Subsequent, the microencapsulated laccase was packed into a microreactor format permitting its off-line coupling with CE as a means to follow the enzymatic reaction. Finally, we tried to implement the on-line system and the preliminaries results are presented.
200

Microencapsulation d’agent antimicrobien pour le développement de conditionnements primaires fonctionnalisés / Antimicrobial agent microencapsulation for the development of functionalized primary containers

Bile, Jessica 21 October 2015 (has links)
Dans un premier temps, ce travail a concerné la réalisation de microparticules chargées en agent antimicrobien suivant la technique de microencapsulation par évaporation de solvant en émulsion simple. Différentes morphologies ont été obtenues avec des microparticules éloignées du standard lisse, démontrant des cicatrices et des défauts, de la rugosité ou encore des trous. Les paramètres ainsi que les mécanismes physico-chimiques responsables des dégradations morphologiques ont été identifiés et discutés. Il a été démontré que les paramètres de formulation tels que la masse et masse molaire du polymère ou encore la présence de tensioactifs ainsi que les paramètres du procédé tels que la force et la vitesse de cisaillement modifient l'état de surface finale des microparticules. Ce travail a notamment prouvé qu'il existe une compétition entre la cinétique d'évaporation du solvant et la vitesse de coalescence des gouttelettes d'émulsion qui est à l'origine des dégradations morphologiques. Suite à cette étude, les microsphères résultantes contenant de l'alcool phényléthylique ont été enduites à la surface du conditionnement primaire polyoléfine sous forme de films minces de différentes épaisseurs grâce à la technique de revêtement par immersion. L'introduction de microparticules au sein du liant ralentit la diffusion de l'agent antimicrobien en augmentant le nombre de matrices polymériques à traverser pour atteindre le milieu extérieur. La réalisation de telles couches a permis d'obtenir des libérations sur des périodes supérieures à au moins trois mois ce qui est 15 fois plus important que celles obtenues pour l'agent antimicrobien non encapsulé. Ce travail de thèse a également étudié l'activité antimicrobienne de l'alcool phényléthylique au sein d'une émulsion. Il a été mesuré le partage de l'alcool phényléthylique entre les phases aqueuse, huileuse et micellaire de l'émulsion. Les résultats obtenus ont permis de développer un modèle mathématique calculant la fraction en agent antimicrobien libre présent en solution aqueuse. Ce dernier a été corrélé à des dosages de l'émulsion et des mesures microbiologiques utilisant les cinq souches microbiennes du challenge test sur 14 jours. Ainsi, il a été démontré que les calculs permettent de prédire la concentration en conservateur nécessaire afin d'assurer la protection antimicrobienne des formulations. Cette étude a notamment prouvé que la quantité d'alcool phényléthylique nécessaire à la conservation des formulations est respectivement 1,6 et 4,3 fois plus importante dans une solution micellaire et une émulsion par rapport à une solution aqueuse / First, this work focused on the formulation of microparticles loaded with antimicrobial agent using the emulsion/solvent evaporation method. Several morphologies have been obtained with nonsmooth microparticles characterized by scars and defects, roughness and holes. The parameters and the physico-chemical mechanisms involved in these morphological deteriorations have been identified and discussed. It has been shown that the formulation and processing parameters as the polymer mass and molar mass, the surfactant as well as the speed and shear rate of the propeller play a key role in the final microparticles surface states. This study proved that there is a competition between solvent evaporation and the coalescence of emulsion droplets which is responsible for the morphological degradations. Following this study, the resulting microspheres loaded with phenylethyl alcohol were dispersed in a binder and coated as thin films of various thicknesses by the dip-coating method at the polyolefin surface. It has been measured that the use of microparticles slows the antimicrobial agent diffusion by increasing the number of polymeric matrices that have to be crossed in order to reach the external medium. Such thin films resulted in an antimicrobial agent delivery up to 3 months which is 15 times higher than the delivery obtained for the non-encapsulated antimicrobial agent. The antimicrobial activity of the phenylethyl alcohol in an emulsion has also been investigated. The phenylethyl alcohol partition between the water phase, the oil phase and the micellar phase of an emulsion has been measured. These results led to the development of a mathematical model calculating the fraction of free antimicrobial agent present in the aqueous phase. It has been correlated with emulsion dosages and microbiological measurements using the five microorganisms of the challenge test during 14 days. It has been demonstrated that calculations enable the prediction of the antimicrobial agent concentration needed to ensure the antimicrobial protection. In particular, this work proved that the phenylethyl alcohol quantity necessary for antimicrobial protection is respectively 1.6 and 4.3 times higher for a micellar solution and an emulsion compared to an aqueous solution

Page generated in 0.1159 seconds