• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 43
  • 7
  • 3
  • Tagged with
  • 156
  • 76
  • 58
  • 24
  • 19
  • 19
  • 18
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Le rôle des rivières dans les dynamiques du carbone, de l’azote, et du phosphore selon des gradients d’utilisation du territoire et des contrastes climatiques

Shousha, Stéphanie 04 1900 (has links)
Les rivières sont des écosystèmes dynamiques qui reçoivent, transforment, et exportent de la matière organique comprenant du carbone (C), de l’azote (N), et du phosphore (P). De par leur grande surface de contact entre l’eau et les sédiments, elles offrent un potentiel élevé pour les processus de transformation de ces éléments, dans lesquels ils sont souvent conjointement impliqués. Ces transformations peuvent retirer les éléments de la colonne d’eau et ainsi diminuer leurs concentrations pour améliorer la qualité de l’eau. Par contre, les conditions climatiques (débit, température, luminosité), la configuration du territoire (forêt, urbanisation, agriculture), et la durée des activités humaines sur terre affectent la quantité, composition, et proportion de C, N, et P livrés aux cours d’eau receveurs. Dans un contexte où un surplus de nutriments (N, P) peut surpasser la capacité des rivières à retirer les éléments de l’eau, et où les extrêmes climatiques s’empirent à cause des changements climatiques, cette thèse met en lumière le rôle des rivières dans les dynamiques de C, N, et P pour une meilleure compréhension de la réponse des écosystèmes lotiques aux pressions actuelles et futures. La Rivière du Nord draine séquentiellement des régions couvertes de forêt, d’urbanisation, et d’agriculture, et oscille entre quatre saisons distinctes, l’exposant à des utilisations du territoire et conditions climatiques contrastées. Nous avons échantillonné les formes de C, N, et P à 13 sites le long du tronçon principal (146 km), une fois par saison pour trois ans. De façon générale, les concentrations de N et P totaux ont augmenté d’amont vers l’aval, concordant avec l’activité humaine plus importante dans la deuxième moitié du bassin versant, mais les concentrations de C organique total sont restées constantes peu importe la saison et l’année. La stœchiométrie écosystémique du C : N : P était donc riche en C comparé au N et P en amont, et s’est enrichie en nutriments vers l’aval. L’étendue (2319 : 119 : 1 à 368 : 60 : 1) couvrait presque le continuum terre – océan à l’intérieur d’une seule rivière. Des formes différentes de C, N, et P dominaient la stœchiométrie totale dépendamment des saisons et de l’utilisation du territoire. En été, la composition du N était dominée en amont par sa forme organique dissoute et par le nitrate en aval, tandis qu’en hiver, l’ammonium et le P dissous avaient préséance sur l’entièreté du continuum. Malgré une concentration constante, la proportion des molécules composant le C différait aussi selon la saison et l’utilisation du territoire. L’été était dominé par des formes dégradées par l’action microbienne et l’hiver par des formes bio- et photo-labiles. Ceci fait allusion au potentiel de transformation de la rivière plus élevé dans la saison chaude plutôt que sous la glace, où les formes plus réactives avaient tendance de s’accumuler. La composition du C en amont était aussi distincte de celle en aval, avec un seul changement abrupt ayant lieu entre la section forestière et la section d’utilisation du territoire urbaine et agricole. Ces changements de compositions n’étaient pas présents durant le printemps de crue typique échantillonné, mais dans l’inondation de fréquence historique nous avons observés des apports nouveaux de molécules provenant soit des apports terrestres normalement déconnectés du réseau fluvial ou de surverses d’égouts. L’influence des facteurs naturels et anthropiques s’est aussi reflétée dans les flux historiques riverains de C, N, et P (1980 – 2020). La précipitation explique le plus les flux de C et les flux de N dans la section pristine. Les apports historiques au territoire de N anthropique (nécessaires pour soutenir la population humaine et les activités agricoles) expliquent fortement la tendance temporelle à la hausse des flux riverains de N dans la section urbaine. Durant les quatre dernières décennies, un peu plus du tiers des apports de N au territoire sont livrés à la rivière annuellement, suggérant que la source urbaine de N anthropique est encore peu gérée. Le manque de corrélation entre les flux de P dans la rivière et les précipitations ou les apports au territoire de P anthropique peut être expliqué par les usines de traitement des eaux usées installées dans la région vers la fin des années 1990 qui ont fait diminuer presque de moitié le P livré à la rivière. La variation de ces flux s’est reflétée dans la stœchiométrie écosystémique historique, qui varie de 130 : 23 : 1 en 1980 à 554 : 87 : 1 en 2007-08 après l’effet de l’usine d’épuration et du N qui a augmenté. À travers les axes historiques, spatiaux, et saisonniers, cette thèse contribue à la compréhension du rôle des rivières dans la réception, la transformation, et l’export du C, N, et P. Combinée aux concentrations, l’approche de stœchiométrie écosystémique propose une façon d’intégrer apports et pertes des éléments pour les étudier de pair au niveau du bassin versant. Puis, comme certaines formes de C, N, et P sont associées à des sources terrestres spécifiques, ou à certains types de transformations, les inclure dans un cadre conceptuel combinant des extrêmes climatiques et des utilisations du territoire différentes offre un aperçu sur le résultat des sources et transformations des éléments. Enfin, les tendances décennales de C, N, et P riverains montrent l’influence des facteurs naturels et anthropiques sur la stœchiométrie écosystémique historique d’une rivière. / Rivers are dynamic ecosystems that receive, transform, and export organic matter that includes carbon (C), nitrogen (N), and phosphorus (P). Their high surface of contact between water and sediments offers important potential for transformation processes to occur, which usually include all three elements together. These transformations can remove elements from the water column, thus decreasing their concentrations and leading to improved water quality. However, climatic conditions (discharge, temperature, light), landscape configuration (forest, urbanisation, agriculture), and length of human activities on land affect the quantity, composition, and proportion of C, N, and P delivered to receiving waters. In a context where a surplus of nutrients (N, P) can surpass a river’s capacity to remove elements from the water column, and where climatic extremes are worsening because of climate change, this thesis shines a light on the role of rivers in the dynamics of C, N, and P for a better understanding of lotic ecosystems’ responses to present and future pressures. The Rivière du Nord sequentially drains forested, urban, and agricultural regions, and oscillates between four distinct seasons, exposing it to contrasting land use changes and climatic conditions. We sampled forms of C, N, and P at 13 sites along the mainstem (146 km), once per season for three years. Overall, concentrations of total N and P increased downstream, concurrent with higher human activities in the lower half of the watershed, but total organic C concentrations remained constant regardless of season or year. As a result, C: N: P ecosystem stoichiometry was rich in C compared to N and P upstream, but became enriched in nutrients downstream. Within a single river, the range spanned by the ratios (2319: 119: 1 to 368: 60: 1) almost covered the land – ocean continuum. Different forms of C, N, and P dominated overall stoichiometry depending on season and land use. In summer, upstream N composition was dominated by dissolved organic N and shifted to nitrate downstream. In winter, ammonium and dissolved P were dominant throughout the continuum. Despite constant concentrations, C composition also differed as a function of season and land use. Summer was dominated by microbial humic-like components and winter by bio- and photolabile ones, hinting at the river’s higher transformation potential in the warm season rather than under the ice, where more reactive forms tended to accumulate. Upstream C composition was also distinct from the downstream one, with a unique sharp change between the forested pristine section and the downstream impacted one. This marked shift in composition was not observed in the typical high spring flow, but in the historical flood sampled, we observed new inputs of molecules coming from either previously disconnected terrestrial sources or sewage overflows. The influence of natural and anthropogenic factors was also reflected in the historical riverine loads of C, N, and P (1980 – 2020). Precipitation explained more than half of C loads, and some N loads from the pristine section. Historical anthropogenic N inputs to land (necessary to sustain human population and agricultural activities) strongly explained the increasing trend in riverine N loads from the urban section. In the last four decades, just over a third of anthropogenic inputs to land are loaded to the river annually, suggesting that the urban source of N is still largely uncontrolled. The lack of correlation between riverine P loads and precipitation or anthropogenic P inputs to land could be explained by the installation of wastewater treatment plants in the region at the end of the 1990s, which reduced almost half the amount of P loaded to the river. The variation in riverine loads was reflected in the historical ecosystem stoichiometry, which varied from 130: 23: 1 in 1980 to 554: 87: 1 in 2007-08 due to both the impact of wastewater treatment and increasing N use. With its historical, spatial, and seasonal axes, this thesis contributes to the understanding of the role of rivers on C, N, and P loading, transformation, and export. In combination with concentrations, ecosystem stoichiometry represents an approach to study elements together and integrate their loadings and losses at the watershed scale. Because certain forms of C, N, and P are associated with specific land use sources or certain types of transformation pathways, including them in a conceptual framework that combines climatic extremes and gradients of land uses allows for insight on the net effect of sources of transformations. Lastly, decadal trends of riverine C, N, and P loads will reveal the influence of natural and anthropogenic factors on the historical ecosystem stoichiometry of a river.
132

Sol-gel synthesized nanomaterials for environmental applications

Yang, Xiangxin January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Larry E. Erickson / Over the past decade, nanomaterials have been the subject of enormous interest. Their defining characteristic is a very small size in the range of 1-100 nm. Due to their nanometer size, nanomaterials are known to have unique mechanical, thermal, biological, optical and chemical properties, together with the potential for wide-ranging industrial applications. Here, we synthesized nanocrystalline metal oxides through the sol-gel process and used these materials as desulfurization adsorbents and photocatalysts. Deep desulfurization of fuels has received more and more attention worldwide, not only because of health and environmental consideration but also due to the need for producing ultra-low-sulfur fuels, which can only be achieved under severe operating conditions at high cost using hydrodesulfurization (HDS). Consequently, development of new and affordable deep desulfurization processes to satisfy the decreasing limit of sulfur content in fuels is a big challenge. Sol-gel derived Cu/Al[subscript]2O[subscript]3 and Zn/Al[subscript]2O[subscript]3 adsorbents have been demonstrated to be effective in the removal of thiophene from a model solution. Results showed that Cu[superscript]+ was the active site and thermal treatment under vacuum was critical for Zn/Al[subscript]2O[subscript]3 since a defective, less crystalline spinel led to stronger interaction between zinc ions and thiophene molecules in the adsorption process. The kinetic study suggested that most of the adsorption occurred in the first 30 min, and adsorption equilibrium was attained after 1.5 h. Both adsorbents showed good regenerative property. TiO2 is considered the most promising photocatalyst due to its high efficiency, chemical stability, non-toxicity, and low cost for degradation and complete mineralization of organic pollutants. However, the use of TiO[subscript]2 is impaired because it requires ultraviolet (UV) activation ([Lambda]<387 nm). The shift of optical response of TiO[subscript]2 from the UV to the visible light region would have a profound positive effect on the efficient use of solar energy in photocatalytic reactions. We shifted the optical response of TiO[subscript]2 and improved the photocatalytic efficiency through size modification and transition metal ion and nonmetal atom doping. Experimental results showed that C and V co-doped TiO[subscript]2 catalysts had much higher activity than commercial P25 TiO[subscript]2 towards the degradation of acetaldehyde under visible light irradiation. For the first time, we reported that activities were comparable in the dark and under visible light irradiation for co-doped TiO[subscript]2 with 2.0 wt% V. C and N co-doped TiO[subscript]2 exhibited higher activity for the degradation of methylene blue than pure TiO[subscript]2 under visible light and UV irradiation. Possible mechanisms were discussed based on the experimental results.
133

Speciation of phosphorus in reduced tillage systems: placement and source effect.

Khatiwada, Raju January 1900 (has links)
Master of Science / Department of Agronomy / Ganga M. Hettiarachchi / Phosphorus (P) management in reduced tillage systems has been a great concern for farmers. Conclusive results for benefits of deep banding of P fertilizers for plant yield in reduced tillage system are still lacking. Knowledge of the dominant solid P species present in soil following application of P fertilizers and linking that to potential P availability would help us to design better P management practices. The objectives of this research were to understand the influence of placement (broadcast- vs. deep band-P or deep placed-P), fertilizer source (granular- versus liquid-P), and time on reaction products of P. Greenhouse and field based experiments were conducted to study P behavior in soils. Soil pH, resin extractable P, total P, and speciation of P were determined at different distances from the point of fertilizer application at 5 weeks (greenhouse and field) and 6 months (field) after P application (at rate 75 kg/ha) to a soil system that was under long-term reduced tillage. X-ray absorption near edge structure spectroscopy technique was used to speciate reaction products of fertilizer P in the soil. The reaction products of P formed upon addition of P fertilizers to soils were found to be influenced by soil pH, P placement methods, and P sources. Acidic pH (below~5.8) tended to favor formation of Fe-P and Al-P like forms whereas slightly acidic near neutral pH soils favored formation of Ca-P like forms. Scanning electron microscope with energy dispersive X-ray analysis of applied fertilizer granules at 5-wk showed enrichment of Al, Fe and Ca in granule- indicating these elements begin to react with applied P even before granules dissolve completely. The availability of an applied P fertilizer was found to be enhanced as a result of the deep banding as compared to the surface broadcasting or deep placed methods. Deep banded liquid MAP was found to be in more adsorbed P like forms and resulted greater resin extractable P both at 5 wk and 6 month after application. Deep banding of liquid MAP would most likely result both agronomically and environmentally efficient solution for no-till farmers.
134

Toxicité, transfert et gestion subcellulaire de l’yttrium (Y) chez trois organismes d’eau douce

Cardon, Pierre-Yves 11 1900 (has links)
No description available.
135

Controlled Human Exposures to Concentrated Ambient Fine Particles and Ozone: Individual and Combined Effects on Cardiorespiratory Outcomes

Urch, R. Bruce 17 February 2011 (has links)
Epidemiological studies have shown strong and consistent associations between exposure to air pollution and increases in morbidity and mortality. Key air pollutants that have been identified include fine particulate matter (PM) and ozone (O3), both major contributors to smog. However, there is a lack of understanding of the mechanisms involved and the relative contributions of individual pollutants. A controlled human exposure facility was used to carry out inhalation studies of concentrated ambient fine particles (CAP), O3, CAP+O3 and filtered air following a randomized design. Exposures were 2 hrs in duration at rest. Subjects included mild asthmatics and non-asthmatics. This thesis focuses on acute cardiovascular responses including blood pressure (BP), brachial artery reactivity (flow-mediated dilatation [FMD]) and markers of systemic inflammation (blood neutrophils and interleukin [IL]-6). Results showed that for CAP-containing exposures (CAP, CAP+O3) there were small but significant transient increases in diastolic BP (DBP) during exposures. Furthermore, neutrophils and IL-6 increased 1 - 3 hrs after and FMD decreased 20 hrs after CAP-containing exposures. Responses to O3 were smaller, comparable to filtered air. The data suggests that adverse responses were mainly driven by PM. The DBP increase was rapid-developing and quick to dissipate, which points to an autonomic irritant response. The magnitude of the DBP increase was strongly negatively associated with the high frequency component of heart rate variability, suggesting parasympathetic withdrawal as a mechanism. In comparison, IL-6, neutrophil and FMD responses were slower to develop, indicative of an inflammatory mechanism. An intriguing finding was that IL-6 increased 3 hrs after CAP, but not after CAP+O3. Further investigation revealed that exposure to CAP+O3 in some individuals may trigger a reflex inhibition of inspiration, decreasing their tidal volume and inhaled pollutant dose, leading to a reduction in systemic IL-6, a potential protective mechanism. Together the findings support the epidemiological evidence of adverse fine PM health effects. Many questions remain to be answered about the health effects of air pollution including a better understanding of how inhaled pollutants result in cardiovascular effects. It is hoped that the insights gained from this thesis will advance the understanding of air pollution health effects.
136

Effects of an Early Season Heat Wave on Ecophysiological Parameters Related to Productivity in Sugar Maple (Acer saccharum Marsh.)

Filewod, Benjamin A. 07 December 2011 (has links)
Anticipated increases in the frequency, duration or intensity of high temperature events ('heat waves') have the potential to significantly impact forest form and functioning, but these events remain virtually unstudied in forest ecosystems. This thesis presents the results of an event-driven research effort into the impacts of three days of record-setting high temperatures in late May 2010 on key ecophysiological parameters in Sugar Maple (Acer saccharum. Marsh). High temperatures reduced photosynthetic capacity by ~66% versus previous years and total end-of-season leaf litter production by ~33% versus prior measurements. It is predicted that these reductions substantially reduced productivity for Sugar Maple in 2010. These results constitute the first description of the impacts of a short-duration heat wave on productivity-related parameters in a temperate forest tree. The predicted increase in high temperature events could make such impacts a significant, though so far overlooked, pathway of climate change impacts on temperate forests.
137

Effects of an Early Season Heat Wave on Ecophysiological Parameters Related to Productivity in Sugar Maple (Acer saccharum Marsh.)

Filewod, Benjamin A. 07 December 2011 (has links)
Anticipated increases in the frequency, duration or intensity of high temperature events ('heat waves') have the potential to significantly impact forest form and functioning, but these events remain virtually unstudied in forest ecosystems. This thesis presents the results of an event-driven research effort into the impacts of three days of record-setting high temperatures in late May 2010 on key ecophysiological parameters in Sugar Maple (Acer saccharum. Marsh). High temperatures reduced photosynthetic capacity by ~66% versus previous years and total end-of-season leaf litter production by ~33% versus prior measurements. It is predicted that these reductions substantially reduced productivity for Sugar Maple in 2010. These results constitute the first description of the impacts of a short-duration heat wave on productivity-related parameters in a temperate forest tree. The predicted increase in high temperature events could make such impacts a significant, though so far overlooked, pathway of climate change impacts on temperate forests.
138

Controlled Human Exposures to Concentrated Ambient Fine Particles and Ozone: Individual and Combined Effects on Cardiorespiratory Outcomes

Urch, R. Bruce 17 February 2011 (has links)
Epidemiological studies have shown strong and consistent associations between exposure to air pollution and increases in morbidity and mortality. Key air pollutants that have been identified include fine particulate matter (PM) and ozone (O3), both major contributors to smog. However, there is a lack of understanding of the mechanisms involved and the relative contributions of individual pollutants. A controlled human exposure facility was used to carry out inhalation studies of concentrated ambient fine particles (CAP), O3, CAP+O3 and filtered air following a randomized design. Exposures were 2 hrs in duration at rest. Subjects included mild asthmatics and non-asthmatics. This thesis focuses on acute cardiovascular responses including blood pressure (BP), brachial artery reactivity (flow-mediated dilatation [FMD]) and markers of systemic inflammation (blood neutrophils and interleukin [IL]-6). Results showed that for CAP-containing exposures (CAP, CAP+O3) there were small but significant transient increases in diastolic BP (DBP) during exposures. Furthermore, neutrophils and IL-6 increased 1 - 3 hrs after and FMD decreased 20 hrs after CAP-containing exposures. Responses to O3 were smaller, comparable to filtered air. The data suggests that adverse responses were mainly driven by PM. The DBP increase was rapid-developing and quick to dissipate, which points to an autonomic irritant response. The magnitude of the DBP increase was strongly negatively associated with the high frequency component of heart rate variability, suggesting parasympathetic withdrawal as a mechanism. In comparison, IL-6, neutrophil and FMD responses were slower to develop, indicative of an inflammatory mechanism. An intriguing finding was that IL-6 increased 3 hrs after CAP, but not after CAP+O3. Further investigation revealed that exposure to CAP+O3 in some individuals may trigger a reflex inhibition of inspiration, decreasing their tidal volume and inhaled pollutant dose, leading to a reduction in systemic IL-6, a potential protective mechanism. Together the findings support the epidemiological evidence of adverse fine PM health effects. Many questions remain to be answered about the health effects of air pollution including a better understanding of how inhaled pollutants result in cardiovascular effects. It is hoped that the insights gained from this thesis will advance the understanding of air pollution health effects.
139

Effects of Aqueous Organic Coatings on the Interfacial Transport of Atmospheric Species

Reeser, Dorea Irma 14 January 2014 (has links)
Species must interact with air—aqueous interfaces in order to transport between either phase, however organic coated water surfaces are ubiquitous in the environment, and the physical and chemical processes that occur at organic coated aqueous surfaces are often different than those at pure air—water interfaces. Three studies were performed investigating the transport of species across air—aqueous interfaces with organic coatings in an effort to gain further insight into these processes. Gas and solution phase absorption spectroscopy were used to study the effect of octanol coatings on the formation of molecular iodine (I2) by the heterogeneous ozonation of iodide and its partitioning between phases. Compared to uncoated solutions, the presence of octanol monolayers had a minor effect on the total amount of I2 produced, however, it did significantly enhance the gas to solution partitioning of I2. Incoherent broadband cavity-enhanced absorption spectroscopy (IBBC-EAS) was used to measure the gas-phase nitrogen dioxide (NO2) evolved via photolysis of aqueous nitrate solutions either uncoated or containing octanol, octanoic acid and stearic acid monolayers. Both octanol and stearic acid reduced the rate of gaseous NO2 evolution, and octanol also decreased the steady-state amount of gaseous NO2. Alternatively, octanoic acid enhanced the rate of gaseous NO2 evolution. Finally, the loss of aqueous carbon dioxide (CO2) from aqueous solutions saturated with CO2 was measured using a CO2 electrode in the absence and presence of stearic acid monolayers and octanol coatings, and a greenhouse gas analyzer was used to measure the evolution of gaseous CO2 from solutios with octanol monolayers. Enhanced losses of aqueous and evolved gaseous CO2 were observed with organic coated solutions compared to those uncoated. The results of these studies suggest that organic coatings influence the transport of I2, NO2 and CO2 via one, or a combination of: barrier effects, surface tension effects, chemistry effects and aqueous – surface – gas partitioning effects. These results, particularly the enhanced partitioning of these species to octanol coated aqueous surfaces, have important implications for species transport at air—aqueous interfaces, and may provide useful insight for future studies and parameters for atmospheric models of these species.
140

Effects of Aqueous Organic Coatings on the Interfacial Transport of Atmospheric Species

Reeser, Dorea Irma 14 January 2014 (has links)
Species must interact with air—aqueous interfaces in order to transport between either phase, however organic coated water surfaces are ubiquitous in the environment, and the physical and chemical processes that occur at organic coated aqueous surfaces are often different than those at pure air—water interfaces. Three studies were performed investigating the transport of species across air—aqueous interfaces with organic coatings in an effort to gain further insight into these processes. Gas and solution phase absorption spectroscopy were used to study the effect of octanol coatings on the formation of molecular iodine (I2) by the heterogeneous ozonation of iodide and its partitioning between phases. Compared to uncoated solutions, the presence of octanol monolayers had a minor effect on the total amount of I2 produced, however, it did significantly enhance the gas to solution partitioning of I2. Incoherent broadband cavity-enhanced absorption spectroscopy (IBBC-EAS) was used to measure the gas-phase nitrogen dioxide (NO2) evolved via photolysis of aqueous nitrate solutions either uncoated or containing octanol, octanoic acid and stearic acid monolayers. Both octanol and stearic acid reduced the rate of gaseous NO2 evolution, and octanol also decreased the steady-state amount of gaseous NO2. Alternatively, octanoic acid enhanced the rate of gaseous NO2 evolution. Finally, the loss of aqueous carbon dioxide (CO2) from aqueous solutions saturated with CO2 was measured using a CO2 electrode in the absence and presence of stearic acid monolayers and octanol coatings, and a greenhouse gas analyzer was used to measure the evolution of gaseous CO2 from solutios with octanol monolayers. Enhanced losses of aqueous and evolved gaseous CO2 were observed with organic coated solutions compared to those uncoated. The results of these studies suggest that organic coatings influence the transport of I2, NO2 and CO2 via one, or a combination of: barrier effects, surface tension effects, chemistry effects and aqueous – surface – gas partitioning effects. These results, particularly the enhanced partitioning of these species to octanol coated aqueous surfaces, have important implications for species transport at air—aqueous interfaces, and may provide useful insight for future studies and parameters for atmospheric models of these species.

Page generated in 0.0242 seconds