• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 43
  • 7
  • 3
  • Tagged with
  • 156
  • 76
  • 58
  • 24
  • 19
  • 19
  • 18
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Evaluating the Greenhouse Gas Mitigation Potential and Cost-competitiveness of Forest Bioenergy Systems in Ontario

Ralevic, Peter 09 August 2013 (has links)
Recent literature has recommended that life cycle assessments (LCA) of forest bioenergy supply chains consider the impact of biomass harvest on ecosystem carbon stocks as well as the net emissions arising from combustion of various forms of biofuels compared with reference fossil fuel systems. The present study evaluated the magnitude and temporal variation of ecosystem C stock changes resulting from harvest of roadside residues and unutilized whole trees for bioenergy. The Carbon Budget Model (CBM-CFS3) was applied to the Gordon Cosens Forest, in northeastern Ontario, along with the Biomass Opportunity Supply Model (BiOS-Map), for cost analysis of different types of biomass comminution. Natural gas (NG) steam and electricity, grid electricity, and coal electricity reference systems were analyzed for a pulp and paper mill. The findings showed that the forested landscape becomes a net sink for carbon following the 20th year of roadside residue harvest, compared to whole-tree harvest, where the forested landscape remained a net source of carbon over the entire 100 year rotation. The cumulative ecosystem carbon loss from whole-tree harvest was 11 times greater compared to roadside residue harvest. BiOS-Map analysis suggested that due to technical and operational limits, between 55%-59% and 16%-24% of aboveground biomass was not recovered under roadside residue and whole-tree harvest respectively. The cost of delivering roadside residues was estimated at $52.32/odt–$57.45/odt, and for whole trees $92.63/odt–$97.44/odt. The Life Cycle Assessment (LCA) analysis showed break-even points of 25, 33 and 6 years for roadside residues displacing NG steam, NG electricity, and coal, respectively. No GHG reduction was achieved when forest biomass was used to displace grid electricity that is generated in Ontario. Whole-tree bioenergy resulted in no GHG reduction for NG displacement, and a break-even point of 70-86 years for coal. A net GHG reduction of 67% and 16% was realized when roadside residues and whole trees were used to displace coal, compared to 45% and 38% when roadside residues were used to displace NG steam and NG electricity, respectively. Therefore, it is recommended that bioenergy deployment strategies focus on the utilization of roadside residues, if the main goal is GHG mitigation.
152

As We Move Ahead Together: Foregrounding Reconciliating and Renewed First Nation/ Non-Aboriginal Relations in Environmental Management and Research

Dalton, Zoe 15 February 2011 (has links)
The research project upon which this dissertation is based focused on enhancing understandings of the nature of current First Nations/non-Aboriginal relations in environmental management. The project was undertaken as a collaborative initiative by the author, a non-Aboriginal doctoral researcher, in partnership with Walpole Island First Nation. The research served as an opportunity for co-producing knowledge on this subject across cultures and worldviews, and as an effort to build towards our shared aspiration of learning how distinct, yet inextricably linked, First Nations/non-Aboriginal understandings, approaches and worldviews can come together within a context of mutual respect and mutual benefit. The purpose of the research was to investigate the existence and types of issues leading to First Nations/non-Aboriginal tensions in environmental management, to analyze and unpack underlying causes of challenges identified via the research, and to construct avenues for relationship improvement. The research project was grounded in a specific investigation into relations in species at risk conservation and recovery in southern Ontario, Canada. The resulting dissertation is structured around three primary focal areas: 1) investigating and exposing colonial influences at play in Canada’s Species at Risk Act, and offering a new model for co-governance in this arena and beyond; 2) investigating relations surrounding efforts towards traditional ecological knowledge (TEK) transfer in species at risk work, with a focus on exploring issues identified in relation to intellectual imperialism; and 3) introducing and characterizing an original, reconceptualized approach to First Nations/non-Aboriginal relationships in academic research; this approach focused on ways in which investigatory practice can become a means of working towards broader reconciliation goals. Research findings from this dissertation indicate that colonial factors, often unevenly visible to actors involved in environmental management and research, continue to strongly affect the potential for positive, productive First Nations/non-Aboriginal relations in these spheres - including within the species at risk conservation and recovery arena examined here. Project results provide insight into the nature of the factors influencing relationships, as well as potential avenues for addressing the vitality of colonialism in contemporary relations and overcoming the influences on First Nations and on First Nations/non-Aboriginal relationships.
153

Evaluating the Greenhouse Gas Mitigation Potential and Cost-competitiveness of Forest Bioenergy Systems in Ontario

Ralevic, Peter 09 August 2013 (has links)
Recent literature has recommended that life cycle assessments (LCA) of forest bioenergy supply chains consider the impact of biomass harvest on ecosystem carbon stocks as well as the net emissions arising from combustion of various forms of biofuels compared with reference fossil fuel systems. The present study evaluated the magnitude and temporal variation of ecosystem C stock changes resulting from harvest of roadside residues and unutilized whole trees for bioenergy. The Carbon Budget Model (CBM-CFS3) was applied to the Gordon Cosens Forest, in northeastern Ontario, along with the Biomass Opportunity Supply Model (BiOS-Map), for cost analysis of different types of biomass comminution. Natural gas (NG) steam and electricity, grid electricity, and coal electricity reference systems were analyzed for a pulp and paper mill. The findings showed that the forested landscape becomes a net sink for carbon following the 20th year of roadside residue harvest, compared to whole-tree harvest, where the forested landscape remained a net source of carbon over the entire 100 year rotation. The cumulative ecosystem carbon loss from whole-tree harvest was 11 times greater compared to roadside residue harvest. BiOS-Map analysis suggested that due to technical and operational limits, between 55%-59% and 16%-24% of aboveground biomass was not recovered under roadside residue and whole-tree harvest respectively. The cost of delivering roadside residues was estimated at $52.32/odt–$57.45/odt, and for whole trees $92.63/odt–$97.44/odt. The Life Cycle Assessment (LCA) analysis showed break-even points of 25, 33 and 6 years for roadside residues displacing NG steam, NG electricity, and coal, respectively. No GHG reduction was achieved when forest biomass was used to displace grid electricity that is generated in Ontario. Whole-tree bioenergy resulted in no GHG reduction for NG displacement, and a break-even point of 70-86 years for coal. A net GHG reduction of 67% and 16% was realized when roadside residues and whole trees were used to displace coal, compared to 45% and 38% when roadside residues were used to displace NG steam and NG electricity, respectively. Therefore, it is recommended that bioenergy deployment strategies focus on the utilization of roadside residues, if the main goal is GHG mitigation.
154

Thawing permafrost and land-atmosphere interactions of boreal forest-wetland landscapes in northwestern Canada

Helbig, Manuel 03 1900 (has links)
Les forêts boréales stockent de grandes quantités de carbone organique et jouent un rôle important dans le climat planètaire. Le climat est étroitement associé à la surface terrestre à travers les flux de gaz à effet de serre, d’énergie et de vapeur d’eau. Dans la zone de pergélisol sporadique nord-américaine, l’affaissement du sol attribuable au dégel provoque l’expansion de milieux humides sans pergélisol remplaçant des forêts avec pergélisol. Cependant, l’étendue spatiale de ces changements et leurs conséquences sur le climat sont inconnues. Dans cette étude, j’analyse les flux turbulents d’un paysage comprenant des forêts boréales et des milieux humides dans la partie sud de la Taïga des plaines, T.N.-O., Canada. J’associe ces flux avec la modélisation d’empreintes de flux, des données satellite, des données paléoécologiques, et des projections climatiques afin de caractériser l’impact des changements de la couverture terrestre sur les interactions entre la terre et l’atmosphère. Dans la Taïga des plaines, la perte de forêt boréale attribuable au dégel est d’une importance égale à celle due aux feux de forêt. La perte de forêt modifie les flux turbulents d’énergie à travers des changements dans les propriétés aérodynamiques et écophysiologiques de la surface terrestre. L’accroissement de l’albédo cause de petites réductions dans la somme des flux turbulents de chaleur sensible (H) et de chaleur latente (LE)). La diminution de la rugosité et l’augmentation de l’humidité de la surface augmentent toutefois LE tout en réduisant H, ce qui mènerait à une baisse des températures estivales et à une augmentation de l’humidité de l’air, d’après des simulations réalisées à l’aide d’un modèle de la couche limite planétaire. Contrairement à l’effet biophysique de refroidissement du climat régional dû à la perte de couvert forestier, l’expansion des milieux humides et l’augmentation des émissions de méthane (CH4) provoque un réchauffement du climat. L’expansion des milieux humides dans la partie sud de la Taïga des plaines entraîne une augmentation des émissions de 0.034 g CH4 m-2 a-1. Les taux d’absorption de CO2 caractéristiques de ces paysages sont trop faibles pour neutraliser le réchauffement du climat dû aux émissions de CH4 d’ici la fin du 21ème siècle. Tout en dégelant rapidement, ces paysages boréaux restent des puits de CO2, absorbant 74 g CO2 m-2 a-1. L’expansion des milieux humides n’affecte pas les émissions nettes de CO2, les changements de la productivité primaire brute (PPB) et de la respiration de l’écosystème (RE) étant d’une magnitude similaire. Les répercussions négligeables sur les flux nets de CO2 sont largement compensées par les répercussions climatiques directes d’un réchauffement de la température de l’air. Un scénario de réchauffement élevé mène à un accroissement de RE dépassant significativement l’accroissement de PPB. Dans la Taïga des plaines, le dégel du pergélisol a donc des répercussions climatiques qui s’opposent aux plans biophysiques et biogéochimiques. Dans un climat plus chaud, le dégel modifie la façon dont les paysages interagissent avec le climat, ce qui souligne la nécessité d’intégrer les changements dans la couverture terrestre attribuable au dégel dans les modèles du système Terre. / Boreal forests store large amounts of organic carbon and are an important component of the regional and global climate systems. Climate and land surface are closely coupled through the land-atmosphere exchange of greenhouse gases, such as CO2 and CH4, and of energy and water vapor. In lowlands of the North American sporadic permafrost region, thaw-induced surface subsidence leads to expansion of permafrost-free wetlands at the expense of boreal forests underlain by permafrost. However, the spatial extent of these land cover changes and their implications for land-atmosphere interactions are unknown. In this study, I analyze eddy covariance flux measurements from an organic-rich boreal forest-wetland landscape in the southern Taiga Plains, NT, Canada. I combine these measurements with flux footprint modeling, satellite remote sensing data, paleoecological records, and downscaled climate projections to characterize how thaw-induced land cover change affects land-atmosphere interactions and climate. In the Taiga Plains ecozone, thaw-induced boreal forest loss currently transforms the composition and structure of the boreal zone in North America and is of equal importance for tree cover dynamics as wildfire disturbance. Forest loss modifies landatmosphere energy fluxes through changes in aerodynamic and ecophysiological land surface properties. On the one hand, increasing albedo decreases total turbulent energy fluxes (i.e., sensible (H) and latent heat (LE) flux), and on the other hand decreasing surface roughness and increasing wetness enhances LE at the expense of H. The resulting maximum summer air temperatures and humidity would be substantially colder (1-2 C) and wetter (2 mmol mol-1) in a hypothetical permafrost-free wetland landscape, as indicated by planetary boundary layer model simulations. In contrast to the regional biophysical climate cooling impact of thaw-induced land cover change, wetland expansion and related increases in landscape CH4 emissions induce a net global biogeochemical climate warming impact. At the current rate of wetland expansion in the southern Taiga Plains of 0.26 % yr-1, landscape CH4 emissions increase by 0.034 g CH4 m-2 yr-1. Typical rates of long-term net CO2 uptake in these landscapes are too small to neutralize the associated climate warming effect until the end of the 21st century. The rapidly thawing boreal forest-wetland landscape still acts as a net CO2 sink taking up 74 g CO2 m-2 yr-1. Wetland expansion does not affect landscape-level net CO2 uptake as changes in gross primary productivity (GPP) and ecosystem respiration (ER) are of similar magnitude. The negligible thaw-induced effects on net CO2 fluxes are contrasted by larger direct climate change impacts of warming air temperatures and reduced incoming shortwave radiation. For a high warming scenario (RCP8.5), increases in modeled ER outpace the increasing GPP significantly. For a moderate warming scenario (RCP4.5), ER and GPP increase are of similar magnitude. Thaw-induced land cover change in the Taiga Plains causes thus biophysical and biogeochemical climate impacts of opposite sign and at contrasting scales of impacts (regional vs. global). In an increasingly warmer climate, thawing permafrost alters how boreal landscapes interact with climate highlighting the need to incorporate thaw-induced land cover changes into global Earth system models.
155

A Radio Frequency Quadrupole Instrument for use with Accelerator Mass Spectrometry: Application to Low Kinetic Energy Reactive Isobar Suppression and Gas–phase Anion Reaction Studies

Eliades, John Alexander 21 August 2012 (has links)
A radio frequency (rf) quadrupole instrument, currently known as an Isobar Separator for Anions (ISA), has been integrated into an Accelerator Mass Spectrometry (AMS) system to facilitate anion–gas reactions before the tandem accelerator. An AMS Cs+ sputter source provided > 15 keV ions that were decelerated in the prototype ISA to < 20 eV for reaction in a single collision cell and re-accelerated for AMS analysis. Reaction based isobar suppression capabilities were assessed for smaller AMS systems and a new technique for gas–phase reaction studies was developed. Isobar suppression of 36S– and 12C3– for 36Cl analysis, and YF3– and ZrF3– for 90Sr analysis were studied in NO2 with deceleration to < 12 eV. Observed attenuation cross sections, σ [x 10^–15 cm^2], were σ(S– + NO2) = 6.6, σ(C3– + NO2) = 4.2, σ(YF3– + NO2) = 7.6, σ(ZrF3– + NO2) = 19. With 8 mTorr NO2, relative attenuations of S–/Cl– ~ 10^–6, C3–/Cl– ~ 10^–7, YF3–/SrF3– ~ 5 x 10^–5 and ZrF3–/SrF3– ~ 4 x 10^–6 were observed with Cl– ~ 30% and SrF3– > 90% transmission. Current isobar attenuation limits with < 1.75 MV accelerator terminal voltage and ppm impurity levels were calculated to be 36S–/Cl– ~ 4 x 10^–16, 12C3–/Cl– ~ 1.2 x 10^–16, 90YF3–/SrF3– ~ 10^–15 and 90ZrF3–/SrF3– ~ 10^–16. Using 1.75 MV, four 36Cl reference standards in the range 4 x 10^–13 < 36Cl/Cl < 4 x 10^–11 were analyzed with 8 mTorr NO2. The measured 36Cl/Cl ratios plotted very well against the accepted values. A sample impurity content S/Cl < 6 x 10^–5 was measured and a background level of 36S–/Cl < 9 x 10^–15 was determined. Useful currents of a wide variety of anions are produced in AMS sputter sources and molecules can be identified relatively unambiguously by stripping fragments from tandem accelerators. Reactions involving YF3–, ZrF3–, S– and SO– + NO2 in the ISA analyzed by AMS are described, and some interesting reactants are identified.
156

A Radio Frequency Quadrupole Instrument for use with Accelerator Mass Spectrometry: Application to Low Kinetic Energy Reactive Isobar Suppression and Gas–phase Anion Reaction Studies

Eliades, John Alexander 21 August 2012 (has links)
A radio frequency (rf) quadrupole instrument, currently known as an Isobar Separator for Anions (ISA), has been integrated into an Accelerator Mass Spectrometry (AMS) system to facilitate anion–gas reactions before the tandem accelerator. An AMS Cs+ sputter source provided > 15 keV ions that were decelerated in the prototype ISA to < 20 eV for reaction in a single collision cell and re-accelerated for AMS analysis. Reaction based isobar suppression capabilities were assessed for smaller AMS systems and a new technique for gas–phase reaction studies was developed. Isobar suppression of 36S– and 12C3– for 36Cl analysis, and YF3– and ZrF3– for 90Sr analysis were studied in NO2 with deceleration to < 12 eV. Observed attenuation cross sections, σ [x 10^–15 cm^2], were σ(S– + NO2) = 6.6, σ(C3– + NO2) = 4.2, σ(YF3– + NO2) = 7.6, σ(ZrF3– + NO2) = 19. With 8 mTorr NO2, relative attenuations of S–/Cl– ~ 10^–6, C3–/Cl– ~ 10^–7, YF3–/SrF3– ~ 5 x 10^–5 and ZrF3–/SrF3– ~ 4 x 10^–6 were observed with Cl– ~ 30% and SrF3– > 90% transmission. Current isobar attenuation limits with < 1.75 MV accelerator terminal voltage and ppm impurity levels were calculated to be 36S–/Cl– ~ 4 x 10^–16, 12C3–/Cl– ~ 1.2 x 10^–16, 90YF3–/SrF3– ~ 10^–15 and 90ZrF3–/SrF3– ~ 10^–16. Using 1.75 MV, four 36Cl reference standards in the range 4 x 10^–13 < 36Cl/Cl < 4 x 10^–11 were analyzed with 8 mTorr NO2. The measured 36Cl/Cl ratios plotted very well against the accepted values. A sample impurity content S/Cl < 6 x 10^–5 was measured and a background level of 36S–/Cl < 9 x 10^–15 was determined. Useful currents of a wide variety of anions are produced in AMS sputter sources and molecules can be identified relatively unambiguously by stripping fragments from tandem accelerators. Reactions involving YF3–, ZrF3–, S– and SO– + NO2 in the ISA analyzed by AMS are described, and some interesting reactants are identified.

Page generated in 0.0206 seconds