51 |
Dynamische Lastbalancierung und Modellkopplung zur hochskalierbaren Simulation von WolkenprozessenLieber, Matthias 26 September 2012 (has links) (PDF)
Die komplexen Interaktionen von Aerosolen, Wolken und Niederschlag werden in aktuellen Vorhersagemodellen nur ungenügend dargestellt. Simulationen mit spektraler Beschreibung von Wolkenprozessen können zu verbesserten Vorhersagen beitragen, sind jedoch weitaus rechenintensiver. Die Beschleunigung dieser Simulationen erfordert eine hochparallele Ausführung. In dieser Arbeit wird ein Konzept zur Kopplung spektraler Wolkenmikrophysikmodelle mit atmosphärischen Modellen entwickelt, das eine effiziente Nutzung der heute verfügbaren Parallelität der Größenordnung von 100.000 Prozessorkernen ermöglicht. Aufgrund des stark variierenden Rechenaufwands ist dafür eine hochskalierbare dynamische Lastbalancierung des Wolkenmikrophysikmodells unumgänglich. Dies wird durch ein hierarchisches Partitionierungsverfahren erreicht, das auf raumfüllenden Kurven basiert. Darüber hinaus wird eine hochskalierbare Verknüpfung von dynamischer Lastbalancierung und Modellkopplung durch ein effizientes Verfahren für die regelmäßige Bestimmung der Überschneidungen zwischen unterschiedlichen Partitionierungen ermöglicht. Durch die effiziente Nutzung von Hochleistungsrechnern ermöglichen die Ergebnisse der Arbeit die Anwendung spektraler Wolkenmikrophysikmodelle zur Simulation realistischer Szenarien auf hochaufgelösten Gittern. / Current forecast models insufficiently represent the complex interactions of aerosols, clouds and precipitation. Simulations with spectral description of cloud processes allow more detailed forecasts. However, they are much more computationally expensive. Reducing the runtime of such simulations requires a highly parallel execution. This thesis presents a concept for coupling spectral cloud microphysics models with atmospheric models that allows for efficient utilization of today\'s available parallelism in the order of 100.000 processor cores. Due to the strong workload variations, highly scalable dynamic load balancing of the cloud microphysics model is essential in order to reach this goal. This is achieved through a hierarchical partitioning method based on space-filling curves. Furthermore, a highly scalable connection of dynamic load balancing and model coupling is facilitated by an efficient method to regularly determine the intersections between different partitionings. The results of this thesis enable the application of spectral cloud microphysics models for the simulation of realistic scenarios with high resolution grids by efficient use of high performance computers.
|
52 |
Estimation par méthodes inverses des profils d’émission des machines à bois électroportatives / Emission profiles characterization by inverse method for hand-held wood working machinesChata, Florent 27 November 2015 (has links)
Cette thèse est dédiée à l'estimation de l'intensité d'une source de polluant de type particulaire par inversion de signaux de concentration mesurés avec un nombre fini de capteurs placés loin de la source. Cette méthode d'estimation inclut deux étapes distinctes. La première étape consiste à déterminer les paramètres du modèle d'inversion en utilisant une source d'aérosol connue et les mesures de concentration en particules correspondantes. Dans une seconde étape, une source d'aérosol inconnue est reconstruite à partir de l'inversion du modèle et des mesures de la concentration. Ce manuscrit traite dans un premier temps du cas stationnaire. L'approche théorique exposée permet de proposer un placement optimal des capteurs en plus de la méthode d'estimation de la source. Dans un second temps, on considère le cas où la source inconnue d'aérosol est instationnaire. La méthode d'estimation repose sur une approche convolutive du système, en introduisant la notion d'impédance source/capteur. Après une présentation de la technique d'inversion propre à la méthode d'estimation, elle est appliquée expérimentalement au cas des machines à bois éléctroportatives, dans le but de les discriminer en fonction de leur caractère émissif / This thesis is dedicated to the determination of unknown aerosol sources emission profiles from aerosol concentration measurements in the far-field. This procedure includes two distinct steps. The first step consists in determining the model linking the aerosol source and the concentration measurements using a known source of aerosols and the corresponding dust measurements. In a second step, the unknown source of aerosols is reconstructed by inverting the model for the measured aerosol concentrations. This manuscript deals in a first time with the stationary case. The exposed theoretical approach allows to suggest an optimal sensors placement in addition to the source estimation method. In a second time, we consider the case where the unknown aerosol source is unsteady. The estimation method is then based on a convolutive system approach, introducing the concept of source/sensor impedance. After a presentation of the numerical inversion technique, the method is applied experimentally to the real case of hand-held wood working machines so as to classify the machines with respect to their emission rate
|
53 |
Extending the Functionality of Score-P through Plugins: Interfaces and Use CasesSchöne, Robert, Tschüter, Ronny, Ilsche, Thomas, Schuchart, Joseph, Hackenberg, Daniel, Nagel, Wolfgang E. 18 October 2017 (has links) (PDF)
Performance measurement and runtime tuning tools are both vital in the HPC software ecosystem and use similar techniques: the analyzed application is interrupted at specific events and information on the current system state is gathered to be either recorded or used for tuning. One of the established performance measurement tools is Score-P. It supports numerous HPC platforms and parallel programming paradigms. To extend Score-P with support for different back-ends, create a common framework for measurement and tuning of HPC applications, and to enable the re-use of common software components such as implemented instrumentation techniques, this paper makes the following contributions: (I) We describe the Score-P metric plugin interface, which enables programmers to augment the event stream with metric data from supplementary data sources that are otherwise not accessible for Score-P. (II) We introduce the flexible Score-P substrate plugin interface that can be used for custom processing of the event stream according to the specific requirements of either measurement, analysis, or runtime tuning tasks. (III) We provide examples for both interfaces that extend Score-P’s functionality for monitoring and tuning purposes.
|
Page generated in 0.0205 seconds