• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 9
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 12
  • 11
  • 10
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Self-organization of axial polarity, inside-out layer pattern and species-specific progenitor dynamics in human ES cell-derived neocortex / 自己組織化によって構築されたヒトES細胞由来大脳皮質組織における軸極性の獲得、インサイド-アウトの層形成、および種特異的な神経幹細胞の再現

Kadoshima, Taisuke 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18183号 / 医博第3903号 / 新制||医||1004(附属図書館) / 31041 / 京都大学大学院医学研究科医学専攻 / (主査)教授 渡邉 大, 教授 髙橋 良輔, 教授 髙橋 淳, 教授 江藤 浩之 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
22

Hybrid Suspension Tissue Engineering of a 3D Alveolar Model for Lung and Vascular Disease Modeling

Valdoz, Jonard Corpuz 04 April 2022 (has links)
Tissue engineering is a dichotomy of scaffold-based and scaffold-free cultures. Scaffold-based cultures form highly organotypic structures but with low uniformity and throughput. Conversely, scaffold-free cultures create consistently sized and shaped cell aggregates with limited spheroid-like structure and function, thus restricting their use for accurate disease modeling. We hypothesized that combining aspects of each culturing format, we would produce highly organotypic structures of consistent size and shape for use in pulmonary modeling. First, to improve on culture consistency and output, we created a novel easily scalable, minimalistic design for a micropatterned hydrogel dish that increases reliability and efficiency in 3D cell culture. This dish design features three times more efficient media change relative to commercially available plates. Moreover, we discovered that formation of consistently sized and shaped cell aggregates depended on hydrogel stiffness. Second, we developed a biocompatible 3D printing resin using poly(ethylene glycol) diacrylate (PEGDA) monomer with avobenzone as the UV absorber instead of 2-nitrophenyl phenyl sulfide (NPS). The polymerized resin could be surface activated to promote cell adhesion. This resin could be used in high-resolution printing of miniature devices for microfluidic and nanofluidic cell culture and cell assays. Third, we show a unique improvement on current methods to produce organotypic aggregates via suspension culture. By using soluble non-gelling concentration of basement membrane (BM), we created an organotypic lung model from three stable cells representing epithelial, vascular, and fibroblast cell populations within 14 days of culture. We observed that soluble BM promotes emergence of lumina comparable to mammalian lung airspaces. Using hypoxia induction techniques, we provide evidence for formation of branching, perfusable vasculature in pulmonary aggregates supplemented with soluble BM. Aside from these structural traits, we observed increased proliferation, survival, and 3D growth of aggregates. These results were supported by proteomic studies. As proof of concept, we applied this method in modeling of lung fibrosis using bleomycin induction followed by testing one investigational antifibrotic drug. Our results demonstrate a novel 3D culture method that creates organotypic models from stable cell lines. We anticipate this technology to pioneer creation of novel suspension-based organoids fostering consistent, expedited 3D culture. In summary, these three technologies highlighted in this dissertation improved on the 3D culture status quo. We view these technologies to have the potential to expedite creation of patient-derived organoids for personalized drug screening using lung-on-a-chip assays.
23

3D Scaffolds from Self Assembling Ultrashort Peptide for Tissue Engineering and Disease Modeling

Alshehri, Salwa 06 June 2022 (has links)
Tissue engineering is a promising approach that combines the interactions of biomaterials, cells, and growth factors to stimulate tissue growth and regeneration. As such, selecting a suitable biomaterial is vital to the success of the procedure. Ideally, the material should show similarity to the extracellular matrix in the structure and relative stiffness, and biofunctionality beside others to provide a comfortable environment for the cells. Additionally, the biomaterial properties should allow for the effective diffusion of relevant growth factors and nutrients throughout the material to enable cell growth. Because peptides are composed of amino acids found naturally within the human body, they are considered non-toxic and biocompatible. Ultrashort peptides are peptides with three to seven amino acids that can be self-assembled into helical fibers forming scaffolds of supramolecular structures. These peptide hydrogels formed a highly porous network of nanofibers which can quickly solidify into nanofibrous hydrogels that resemble the extracellular matrix (ECM) and provide a 3D environment for cells with suitable mechanical properties. Furthermore, we can easily tune the stiffness of these peptide hydrogels by just increasing peptide concentration, thus providing a wide range of peptide hydrogels with different stiffness for 3D cell culture applications. Herein we describe the use of ultrashort peptide hydrogels for the maintenance and the differentiation of human mesenchymal stem cells into the osteogenic lineage. Furthermore, we develop a three dimensional (3D) biomimicry acute myeloid leukemia (AML) disease model using biomaterial from a tetramer ultrashort self-assembling peptide. In addition, we evaluate the potential application of peptide hydrogels as a hemostatic agent. The results presented in this study suggest that our biomimetic ultrashort tetrapeptide hydrogels are an excellent candidate for tissue engineering and biomedical applications.
24

Desenvolvimento de modelo de cultura celular tridimensional (3D) e de plataforma microfluídica para avaliação da viabilidade celular após terapia fotodinâmica / Development of three-dimensional (3D) cell culture model and of microfluidic platform model for assessing cellular viability after photodynamic therapy

Morais, Thayz Ferreira Lima 26 February 2018 (has links)
A Terapia Fotodinâmica (TFD) é uma modalidade de tratamento de câncer que consiste na interação de três componentes: fotossensibilizador (FS), luz para ativar o FS e o oxigênio presente nos tecidos. Os estudos da fototoxicidade e do potencial de agente terapêuticos utilizados no tratamento do câncer, dentre eles os FSs, são realizados utilizando culturas celulares bidimensionais (2D) ou modelos animais. No entanto, os modelos 2D apresentam limitações, como impossibilitar sinais tão importantes que ocorrem in vivo, dentre eles o contato célula-célula e célula-matriz. Além disso, busca-se reduzir cada vez mais o número de animais em pesquisas científicas. Diante dessas limitações, nos últimos 30 anos tem sido desenvolvidos métodos alternativos in vitro que possam mimetizar melhor as complexas estruturas e funcionalidade dos sistemas in vivo. O objetivo desse estudo foi desenvolver um modelo de cultura de células tridimensional (3D) e um modelo de plataforma de cultura microfluídica para avaliar a viabilidade de células de carcinoma humano (HEp-2) após aplicação da terapia fotodinâmica com hipericina. O modelo 3D foi produzido utilizando-se colágeno tipo I aniônico e a plataforma de cultura microfluídica foi produzida utilizando-se lâmina de plástico, que serviu como base para o adesivo biocompatível utilizado para delimitar o canal celular e o poliéster, servindo como uma espécie de tampa para os dois materiais. A caracterização do biomaterial utilizado no modelo 3D foi realizada pela determinação da porosidade e diâmetro dos poros por meio da Microscopia Eletrônica de Varredura (MEV) e por ensaios de citotoxicidade pelo método de difusão em ágar e pelo método do MTT (ISO 10993-5). Os ensaios de citotoxicidade comprovaram que o biomaterial utilizado é biocompatível e não causa nenhuma citotoxicidade as células. A viabilidade celular da linhagem HEp-2 foi acompanhada no modelo 2D e 3D durante 168 h (sete dias) utilizando o método do MTT e na plataforma microfluídica por 24 h através de microscopia de fluorescência com perfusão contínua de meio de cultura. Em ambos os modelos as células apresentaram-se capazes de se manter aderidas e em multiplicação. Nos ensaios fototóxicos realizados no modelo 3D por meio do método do MTT, observou-se que a viabilidade celular diminui à medida que se aumenta a concentração da hipericina, mantendo-se a dose de luz e o tempo de incubação constantes, sugerindo que as células HEp-2 em cultura 2D apresentaramse mais sensíveis à TFD do que as células em cultura 3D. Os ensaios fototóxicos na plataforma microfluídica mostraram através da análise das imagens de microscopia de fluorescência que o tipo de morte celular preponderante foi a apoptose. Portanto, os resultados apresentados sugerem que é possível a realização de estudos de terapia fotodinâmica no modelo de cultura tridimensional bem como na plataforma microfluídica de cultura de células. / Photodynamic Therapy (PDT) is a cancer treatment modality consisting of the interaction of three components: photosensitizer (PS), light to activate the PS and oxygen present in the tissues. The studies about the toxicity and potential of therapeutic agents used for cancer treatment, among them the PS, are performed using 2D cell cultures or animal models. However, the 2D models have several limitations, such as making it impossible that important signals which occur in vivo, such as cell-cell and cell-matrix contact occur. In addition, it is importatnt to reduce the number of animals in scientific research. Due of the limitations of the twodimensional cell culture models and the need to reduce the use of animals in research, in the last 30 years alternative in vitro methods have been developed which t can better mimic the complex structures and functionality of in vivo systems. Therefore, the objective of this study was to develop a three-dimensional (3D) cell culture model and a microfluidic culture platform model to evaluate the viability of human carcinoma cells (HEp-2) after photodynamic therapy with hypericin. The 3D support was produced using type I collagen and the microfluidic culture platform was produced using a plastic blade which served as the basis for the surgical adhesive, used to delimit the cell canal and the polyester, serving as a sort of cap for both materials. The characterization of the biomaterial used in the 3D model was performed by determination of the porosity and pore diameter by Scanning Electron Microscopy (SEM) and by cytotoxic assays using the agar diffusion method and the MTT method (ISO 10993-5). It was observed that the biomaterial used in the 3D model is biocompatible and does not cause any cytotoxicity to the cells. The cell viability of the HEp-2 cells was monitored in the 2D and 3D models for 168 h (seven days) using the MTT method and in the microfluidic platform for 24 h by fluorescence microscopy with continuous perfusion of culture medium. In both models the cells are able to remain adherent and in multiplication. In the phototoxic assays performed on the microfluidic platform, the analysis of fluorescence microscopy images showed that the preponderant cell death type was apoptosis. Results suggest that is possible to perform photodynamic therapy studies in the three-dimensional culture model as well as in the microfluidic cell culture platform.
25

Sandwich-like systems to engineer the cellular microenvironment

Ballester Beltrán, José 20 March 2015 (has links)
Abstract While most of the in vitro cultures are carried out on bi-dimensional (2D) substrates, most of the in vivo extracellular matrices are threedimensional (3D). Consequently cells behave differently on 2D substrates as a way to self-adaptation to a non-physiological environment. This fact has encouraged the development of more relevant culture conditions seeking to provide more representative models for biomedicine (e.g. cancer, drug discovery and tissue engineering) and further insights into any dimension-dependent biological mechanism. Different 3D culture systems have been established though their variability and complexity hinder their standardisation in common cell culture procedures. So, this thesis deals with the dimensionality issue in cell/material interactions and introduces sandwich-like microenvironments as a versatile tool to study cell behaviour. Cells cultured within this system use both dorsal and ventral receptors to adhere and spread, undergoing important changes with respect to the 2D cultures and approaching to 3D conditions. Stimulation of dorsal receptors has been previously addressed by overlaying a protein gel on cells already attached on a 2D surface. Here we propose a sandwich-like system that consists of two 2D surfaces so that wider spectra of conditions can be investigated by changing the nature of the substrate (material, topography…) and the protein coatings of both ventral and dorsal sides. Since sandwich culture provides an altered cellular adhesion compared to the traditional 2D substrates by the excitation of the dorsal receptors, changes in the intracellular signalling are expected, which might alter important processes such as proliferation, morphology, migration and differentiation. Hence this thesis evaluates the effect of different sandwich culture parameters in cell behaviour. First, cell fate upon adhesion was evaluated in terms of morphology, proliferation and adhesion. Different conditions were studied such as materials with different properties or protein coatings (dorsal and ventral substrates), as well as the effect of sandwiching cells just after seeding or after been allowed to adhere to the ventral substrate. Interesting results were obtained such as the relationship between the ability of cells to reorganise the ECM with cell morphology, proliferation and adhesion, similarly as observed in 3D hydrogels (degradable vs nondegradable systems). Then, cell migration within sandwich culture was studied by live imaging of a wound healing assay. Results revealed the key effect of both ventral and dorsal substrates in determining the migration rate as well as the migration mode used by cells. Moreover cells within the sandwich culture migrating in the wound healing assay adopted an elongated cell morphology that resembled cells migrating in other 3D systems. Beyond differences in cell morphology and migration, dorsal stimulation promoted cell remodelling of the extra-cellular matrix (ECM) over simple ventral receptor activation in traditional 2D cultures. Finally the effect of sandwich culture on cell differentiation was evaluated. First we showed an increase in C2C12 myogenic differentiation when cultured within the sandwich system. This enhancement was shown to be dorsal stimulation dependent and related to an alteration of the signalling pathway and the growth factor release. To determine if sandwich culture leads only to myogenic differentiation or whether it allows differentiation to other lineages, 4 different human mesenchymal stem cells (hMSCs) lines were cultured under the same conditions. Results showed the same sandwich environment triggered different cell differentiation. This points out the importance of the microenvironment cell niche in vivo, which highly influence cell fate, and thus the need of mimicking it properly in vitro. Overall, sandwich-like microenvironments switch cell behaviour towards 3D-like patterns, demonstrating the importance of this versatile, simple and robust approach to mimic cell microenvironments in vivo. / Ballester Beltrán, J. (2014). Sandwich-like systems to engineer the cellular microenvironment [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48166 / TESIS
26

Multiscale cytometry of 3D cell cultures in microfluidic hydrogel arrays / Cytometrie multi-échelle de cultures cellulaires 3D dans des tableaux de billes de gel microfluidiques

Tomasi, Raphaël 16 December 2016 (has links)
Les conditions du corps humain ne sont pas reproduites fidèlement par la culture cellulaire traditionnelle en 2D. Dans cette thèse, des cultures cellulaires 3D sont réalisées dans une plateforme microfluidique hautement intégrée. Des cellules mammifères adhérentes sont encapsulées dans des gouttes immobilisées dans un tableau de pièges capillaires à haute densité. Dans chaque goutte, les cellules se réorganisent pour former un unique microtissu 3D et fonctionnel appelé sphéroïde. L'utilisation d'un hydrogel permet d'alonger le temps de culture et de perfuser le tableau avec des solutions aqueuses, par exemple pour de l'immuno-cyto-chimie. Un unique sphéroïde, viable, peut aussi être extrait de cette puce microfluidique. Des données quantitatives sont extraites à haut débit au niveau de la population, du sphéroïde (dizaines de miliers de sphéroïdes) et au niveau cellulaire emph{in situ} (centaines de miliers de cellules) grâce à de l'imagerie de fluorescence et au dévelopement d'un code d'analyse d'image. Une première preuve de concept a été obtenue en démontrant la viabilité, la prolifération et la fonctionalité de sphéroïdes d'hépatocytes et en les corrélant à des paramètres morphologiques. Ensuite, des aggrégats de cellules souches mésenchymales ont été produits et les hétérogénéités spatiales dans l'expression de protéines impliquées dans leurs propriétés thérapeutiques ont été étudiées. Enfin, cette technologie a été encore dévelopée pour permettre d'appliquer des conditions biochimiques différentes dans chaque goutte. La production et la culture de sphéroïdes dans cette plateforme microfluidique peut mener à des dévelopements importants dans beaucoup de domaines tels que l'analyse de la toxicité des médicaments, le criblage de médicaments à haut débit, le traitement personnalisé du cancer, l'ingénierie tissulaire ou la modélisation de maladies. / Conventional 2D cell culture fails to reproduce emph{in vivo} conditions. In this PhD thesis, 3D cell culture is implemented into a highly integrated microfluidic platform. Adherent mammalian cells are encapsulated in droplets immobilized on a high density array of capillary traps called anchors. In each droplet, the cells reorganize into a single functional 3D microtissue called spheroid. The use of an hydrogel allows to extend the culturing time in microdroplets and to perfuse the array with aqueous solutions, for instance for immuno-cyto-chemistry. A single and viable spheroid can also be selectively retrieved from the microfluidic chip. High throughput and quantitative data is extracted at the population, spheroid (tens of thousands of spheroids) and cellular level emph{in situ} (hundreds of thousands of cells) thanks to fluorescent imaging and a custom image analysis software. As a first proof of concept, the viability, proliferation and functionality of hp sh s were demonstrated and correlated with morphological parameters. Drug toxicity experiments were also performed on this liver model. Then, human mesenchymal stem cell aggregates were produced and the spatial heterogeneities of the expression of proteins involved in their therapeutic properties were investigated. Finally, this technology was further developed to enable applying different biochemical conditions in each droplet. The production and culture of spheroids in this microfluidic platform could lead to major advances in many fields such as drug toxicity, high throughput drug screening, personalized cancer treatment, tissue engineering or disease modeling.
27

Development and Functional Characterization of Fetal Lung Organoids

Laube, Mandy, Pietsch, Soeren, Pannicke, Thomas, Thome, Ulrich H., Fabian, Claire 24 March 2023 (has links)
Preterminfants frequently suffer frompulmonary complications due to a physiological and structural lung immaturity resulting in significant morbidity and mortality. Novel in vitro and in vivo models are required to study the underlying mechanisms of late lung maturation and to facilitate the development of new therapeutic strategies. Organoids recapitulate essential aspects of structural organization and possibly organ function, and can be used to model developmental and disease processes. We aimed at generating fetal lung organoids (LOs) and to functionally characterize this in vitro model in comparison to primary lung epithelial cells and lung explants ex vivo. LOs were generated with alveolar and endothelial cells from fetal rat lung tissue, using a Matrigel-gradient and air-liquid-interface culture conditions. Immunocytochemical analysis showed that the LOs consisted of polarized epithelial cell adhesion molecule (EpCAM)-positive cells with the apical membrane compartment facing the organoid lumen. Expression of the alveolar type 2 cell marker, RT2-70, and the Club cell marker, CC-10, were observed. Na+ transporter and surfactant protein mRNA expression were detected in the LOs. First time patch clamp analyses demonstrated the presence of several ion channels with specific electrophysiological properties, comparable to vital lung slices. Furthermore, the responsiveness of LOs to glucocorticoids was demonstrated. Finally, maturation of LOs induced by mesenchymal stem cells confirmed the convenience of the model to test and establish novel therapeutic strategies. The results showed that fetal LOs replicate key biological lung functions essential for lung maturation and therefore constitute a suitable in vitro model system to study lung development and related diseases.
28

Etudes pharmacologiques d'un modèle cellulaire 2D/3D dans le cancer hépato-pancréatique / Pharmacological studies of a 2D / 3D cellular model in hepato-pancreatic cancer

Hassan, Sarah 05 July 2018 (has links)
Les cancers du foie et du pancréas sont classés parmi les cancers les plus fréquents et agressifs à travers le monde et présentent une résistance à la chimiothérapie. L'efficacité des médicaments anticancéreux est affectée par les activités des enzymes métaboliques, transporteurs membranaires et par l’environnement tumoral. Le but de notre thèse est 1) de développer un modèle cellulaire hépatique et caractériser les mécanismes sous-jacents de la modulation de l’expression et de la fonctionnalité des transporteurs membranaires et des enzymes clés qui régissent le métabolisme des médicaments et 2) d’évaluer in vitro, dans différents modèles cellulaires (hépatique et pancréatique) en 2D et 3D, l’effet apoptotique de médicaments anticancéreux associés à des polyphénols en vue d’optimiser leur activité. Dans une première partie, nous avons mis en place une nouvelle lignée cellulaire hépatique humaine dérivée des HepG2, stable, exprimant suffisamment et significativement les enzymes CYP450 et les transporteurs hépatiques (MRP2, MDR1 et OATP1B1). Ce modèle pourrait être un outil de choix pour des études précliniques de métabolisme et de prédiction d’hépatotoxicité. Dans une deuxième partie, nous avons pu voir que les cellules pancréatiques et hépatiques dans un environnement 3D sont plus prédictives d’une tumeur in vivo et peuvent être un modèle de choix pour des études pharmacologiques de criblage de nouveaux médicaments anticancéreux ou des stratégies de combinaisons de molécules (avec des PP). Ainsi, nous avons montré que la quercétine, dans les cellules 3D, était capable d’augmenter l’activité de la gemcitabine et de la doxorubicine, en augmentant le taux des cellules mortes jusqu’à 60 %, par modulation des protéines MDR1 et par diminution significative du facteur HIF-1 alpha dans les cellules cancéreuses. En conclusion, les polyphénols peuvent être des molécules d’intérêt en combinaison avec des médicaments anticancéreux pour diminuer la résistance à ces traitements et servir d’outil pharmacologique pour mieux comprendre les mécanismes de résistance des cellules tumorales. / Liver and pancreatic cancers are among the most common and aggressive cancers worldwide that are resistant to chemotherapy. The efficacy of anticancer drugs is affected by the activities of metabolic enzymes, transporters and the tumor environment. The aim of my thesis was based on to main objectives: 1) developement of a hepatic cellular model and characterize the underlying mechanisms of modulation of the expression and functionality of transporters and key enzymes involved in the regulation of drug metabolism 2) study the effect of new strategies in vitro by combining anti-cancer drugs with polyphenols in these processes in order to optimize their activities on different cellular models (hepatic and pancreatic) in 2D and 3D cultures. Our results showed that we have developed a new human hepatic cell line derived from HepG2 cells. The novel cell line is a good in vitro model with a capacity of predicting hepatotoxicity of novel drugs with significant differences for chromosomes 5, 17 and 20 and high expression level of CYP450 and transporters (MRP2, MDR1 and OATP1B1). Secondly, our results indicate that the combination of anticancer drugs and polyphenols increased the rate of apoptosis in cancer cells by up regulation of the expression levels of cleaved caspase-3 and the regulator of apoptosis p53. Moreover, our results demonstrated that polyphenols inhibit the efflux activity of MDR1. In addition, our results indicate that the combination of anti-cancer drugs and quercetin down regulated the expression of HIF-1α and increased the expression levels of the cleaved caspase-3 and p53 on human pancreatic and liver cell line cultured in 3D culture. In conclusion, polyphenols may be promising agents for novel combination therapy since they potentialize the cytotoxic activity of anticancer drugs to eradicate cancer and therefore the cellular resistance.
29

Adhesion and modulation of mouse embryonic stem cells hepatocyte progeny on mouse placental extracellular matrix / Adesão e modulação da progênie hepatocitária de células-tronco embrionárias de camundongos sobre a matriz extracelular placentária de camundongos

Romagnolli, Patricia 26 February 2018 (has links)
Researches from different fields around the world are searching for both new sources of biomaterials and potential hepatocytes in order to supply drug tests, cell therapies, and cell transplantation as alternative therapeutic support to liver diseases and injuries. Placenta may be eligible as a new model in tissue engineering due to its rich extracellular matrix (ECM) and availability after birth. Placental scaffolds were produced by decellularization with 0.01, 0.1 and 1% SDS, and 1% Triton X-100 which were valued by means of structure and composition. Afterwards, placental scaffolds were co-cultured with mouse embryonic fibroblasts in a tridimensional (3D) rotating system. Placental scaffolds presented a well-preserved acellular ECM containing 9.42 ± 5.2 ng dsDNA per mg of ECM. Weak collagen I of the natives clearly appears in decellularized ECM while the collagen III, once well observed in native placenta, it was absent on scaffolds. This interesting observation may have been due to the solubilization SDS-induced of the collagen III fibrils during decellularization. Fibronectin was well-observed in placental scaffolds whereas laminin and collagen IV were strongly stained. Recellularized with fibroblasts by a 3D culture system, placental scaffolds showed potential for repopulation, with cells adhered throughout its acellular ECM. Placental scaffolds were then newly recellularized, aiming now for differentiation of mouse embryonic stem cells into hepatic cells. In a protocol of 23 days, it was simulated major events of liver embryonic development by adding growth factors. As result, a high index of cells adhered, proliferated and migrated throughout outer and inner scaffolds ECM surface. Absence of Oct4 and Nanog showed that Activin A and Wnt3a (d0-6) induced primitive endoderm fate, and negative label for Foxa2 and Sox17 representing BMP4 and FGF2 (d6-10) differentiation-induced generating definitive endoderm cells. Also, FGF1, FGF4 and FG8b (d10-14) induced hepatoblast phenotype cells, that were observed positive for AFP and CK7 markers. Finally, HGF and FS-288 (d14-23) induced to hepatocyte-like cells, positive for CK18 and Alb markers. The hepatocyte-like cells functional aspects were observed by glycogen storage. Though a heterogeneous cell hepatic lineage was confirmed, mouse placental scaffolds shown a useful model to support recellularization with simultaneous differentiation into hepatic fate simulating phases of embryonic development. / Pesquisas de diferentes campos ao redor do Mundo estão em busca de novas fontes tanto de biomateriais, quanto de potenciais hepatócitos, a fim de suprir testes de drogas, terapias celulares e transplante de células, como suporte terapêutico alternativo para doenças e lesões hepáticas. Placentas podem ser elegíveis como um novo modelo em Engenharia Tecidual em decorrência de sua rica matriz extracelular (ECM), e disponibilidade após o nascimento. Os scaffolds placentários foram produzidos por decelularização com SDS 0,01, 0,1 e 1% e Triton X-100 1%, os quais foram avaliados por meio da estrutura e composição. Posteriormente, os scaffolds placentários foram co-cultivados com fibroblastos embrionários de camundongos em um sistema rotativo tridimensional (3D). Os scaffolds placentários apresentaram uma MEC acelular bem conservada, contendo 9,42 ± 5,2 ng/dsDNA/mg/MEC. O fraco colágeno I nos nativos aparece claramente na MEC descelularizada, enquanto o colágeno III bem visível na placenta nativa estava ausente nos scaffolds. Esta observação interessante pode decorrido da solubilização das fibrilas de colágeno III, induzida pelo SDS durante a decelularização. A fibronectina foi bem observada nos scaffolds placentários, enquanto a laminina e o colágeno IV estiveram fortemente marcados. Recelularizados com fibroblastos por um sistema de cultura 3D, os scaffolds placentários mostraram potencial para repovoamento, com células aderidas ao longo de sua MEC acelular. Os scaffolds placentários foram então novamente recelularizados, visando agora a diferenciação de células tronco-embrionárias de camundongos em células hepáticas. Em um protocolo de 23 dias, foram simulados os grandes eventos do desenvolvimento embrionário do fígado, pela adição de fatores de crescimento. Como resultado, um alto índice de células aderiu, proliferou e migrou através das superfícies externa e interna dos scaffolds. A ausência de Oct4 e Nanog demostraram que o Activin A e o Wnt3a (d0-6) induziram o destino endoderma primitivo, e a marcação negativa para Foxa2 e Sox17 representaram a geração de células endodermais definitivas pela diferenciação induzida por BMP4 e FGF2 (d6-10). Ainda, FGF1, FGF4 e FG8b (d10-14) induziram células do fenótipo hepatoblasto, que foram observadas positivas para os marcadores AFP e CK7. Finalmente, HGF e FS-288 (d14-23) induziram as células hepatocyte-like, positivas para os marcadores CK18 e Alb. The hepatocyte-like cells functional aspects were observed by glycogen storage. Though a heterogeneous cell hepatic lineage was confirmed, mouse placental scaffolds shown a useful model to support recellularization with simultaneous differentiation into hepatic fate simulating phases of embryonic development. Os aspectos funcionais das células hepatocyte-like foi observada pelo armazenamento de glicogênio. Embora uma linhagem hepática formada por células heterogêneas tenha sido confirmada, os scaffolds placentários de camundongos se mostraram um modelo útil para sustentar a recelularização com simultânea diferenciação em destino hepático, simulando fases do desenvolvimento embrionário.
30

Rôles des EMT "master-gènes" pendant la progression carcinomateuse mammaire / Roles of EMT transcription factors in controlling cell clonal dynamics and invasiveness during emergence of tumor resistance in breast cancer subtypes

Lakis, Emile 30 November 2017 (has links)
Ce projet explore les mécanismes de la morphogenèse des glandes mammaires, comme modèle de progression du carcinome du sein. La morphogenèse de la glande mammaire résulte de la coordination de réponses cellulaires distinctes (prolifération, différenciation, motilité, invasivité, apoptose) régulées par de nombreuses voies, y compris Wnt, EGF, FGF, Notch, SHH, Myc et l'activation hormonale. Nous estimons qu'il est essentiel d'analyser individuellement l'impact de ces voies dans la modulation de la prolifération, de la différenciation, de la motilité, de l'invasivité, de l'apoptose, de la cohésion intercellulaire et de la polarité dans les cellules impliquées dans une migration morphogénétique cohérente.Nous avons développé des modèles en 3D améliorés pour analyser l'impact d'EMT-TF dans un environnement 3D. Notre système permet de surveiller simultanément les voies mentionnées au niveau cellulaire pendant trois semaines, une période ajustée pour tester les médicaments de chimiothérapie. Notre premier modèle décrit l'émergence primaire des cellules envahissantes de carcinome mammaire de l'épithélium mammaire. Les cellules sont traitées avec des médicaments définis ou seront transfectées avec diverses constructions (en cours de validation) améliorant ou réprimant des voies spécifiques telles que Slug, en plus des constructions permettant de suivre l'évolution des structures cellulaires par marquage GFP en vidéomicroscopie. / This project explores the mechanisms of mammary gland morphogenesis, as a model for breast carcinoma progression. Mammary gland morphogenesis results from the coordination of distinct cell responses (proliferation, differentiation, motility, invasiveness, apoptosis) integrated by numerous pathways, including Wnt, EGF, FGF, Notch, SHH, Myc and hormonal activation. For the purpose of this study, we feel it is critical to analyze individually the impact of theses pathways in modulating proliferation, differentiation, motility, invasiveness, apoptosis, intercellular cohesion, and polarity in cells involved in a coherent morphogenetic migration.We have designed improved 3D models to analyze the impact of EMT-TF in a 3D environment. Our system allows monitoring simultaneously the mentioned pathways at a cellular level for three weeks, a period adjusted to test chemotherapy drugs.Our first model describes the primary emergence of invading breast carcinoma cells from mammary epithelium. Cells are treated with defined drugs or will be transfected with various constructs (under validation) enhancing or repressing specific pathways such as Slug, in addition to constructs allowing the monitoring of cell structures by GFP labeling for video microscopy..

Page generated in 0.0365 seconds