Spelling suggestions: "subject:"3d printed""
41 |
Construction of Control system for syringe dispenser based on Printrbot 3D printerAn, Qi January 2020 (has links)
3D printers require a reliable and robust control system to provide the proper quality for printed parts. Dispenser 3D printers are widely used in various fields of scientific research. The goal of this project is to build a disperser 3D printer based on Printrbot 3D printer, design and implement the control system and software. This system was able to control the dispenser, performed the correct operation according to the instructions. The operating system was built by LabVIEW for file reading and printer control.
|
42 |
3D-skrivare inom bilindustrin : Additiv tillverkning gentemot traditionell tillverkningHajzeri, Tesi January 2018 (has links)
3D-teknologin uppmärksammas alltmer inom bilindustrin. Additiv tillverkning har redanimplementerats i stor utsträckning på exempelvis prototypframtagning. Det krävs dock drastiskteknologisk förändring för att möta de krav som ställs från konsumenter och samhället.Syftet med arbetet är att undersöka och uppmärksamma 3D-skrivarens roll inom bilindustrin.Studien fokuserar på resurseffektiv produktion med hjälp av 3D-skrivare. Målet är att utvärderavad införandet av 3D-skrivare innebär för denna industri och samhället. Vidare analyseras fördelaroch nackdelar med hjälp av litteraturstudier och intervjuer. Dessutom utreds det vilken inverkan3D-skrivare kan ha på marknadsstrukturer samt på företagens externa och interna dynamik.Sammanfattningsvis undersöks den additiva tillverkningens potential och utmaningar inombilindustrin.Det finns inga stora mängder forskning inom området eftersom 3D-skrivare inom bilproduktionhar införts ganska nyligen och implementeringen fortfarande befinner sig på forsknings- ochprototypframtagningsnivå. I detta arbete strävas det efter att ge en omfattande bild av 3Dskrivarimplementeringpå alla processer inom produktionssektorn.En slutsats från studien är att tekniken medför ett paradigmskifte för bilbranschen. Det konstaterasdock av resultatet att 3D-skrivateknologin behöver utvecklas och förbättras för att den skaanvändas i större utsträckning. Därtill krävs det mer forskning inom ämnet och en satsning påinförandet av kurser och laborationer inom additiv tillverkning i universitet, som ett nödvändigtsteg mot att främja 3D-teknologins frammarsch inom produktion. / 3D technology gets increasing attention in the automotive industry. Additive manufacturing hasalready been implemented to a significant extent, for example on prototype production. On theother hand, a drastic technological change is needed for the automotive industry to handle thedemands of consumers and society.In this research, the 3D printer's role in the automotive industry is highlighted and investigated. Inthe study, the focus is on resource-efficient manufacturing using 3D printers. The goal is toexamine what the introduction of 3D printers means for this industry and the society. Furthermore,pros and cons are analysed and obtained with the help of literature studies and interviews. Inaddition, the impact of 3D printers on market structures and on the company's external and internaldynamics is investigated. In summary, the potential and the challenges of additive manufacturingin the automotive industry are examined.There is not a substantial amount of research in the field since 3D printers have been introducedquite recently to the car manufacturing and implementation is still at research and prototypeproduction level. Therefore, the aim with this work is to provide a comprehensive image of 3Dprinter implementation on all processes in the production sector.One conclusion from the study is that this technology can lead to a paradigm shift for theautomotive industry. However, 3D printing technology needs to be developed and improved tobecome more widely used. More research on the subject is needed and an effort to introducecourses and laboratory work in additive manufacturing at universities is necessary to promote 3Dtechnology's advancement in production.
|
43 |
Nobjects: Eine SerieKaufer, Raoul 17 November 2023 (has links)
Die hier gezeigte Skulptur als Minimodel aus dem 3D-Drucker (aus Polyamid, im Maßstab 1 : 20) ist eine freie Fantasie innerhalb einer Werkserie über mögliche Objekte, die ich NOBJECTS nenne. Diese wechseln zwischen geo-, bio- und technomorpher Gestaltung. In diesem konkreten Beispiel habe ich unter Nutzung der 3D-Gestaltungssoftware “Zbrush“ das skulpturale Objekt aus einem schlichten Quadrat abgeleitet, aus dem ein Obelisk als tragende Säule hervorwächst, die in die vier Himmelrichtungen weist.
|
44 |
Hacking and Evaluating the Cybersecurity of an Internet Connected 3D PrinterBacklund, Linus, Ridderström, Linnéa January 2021 (has links)
Over the last few years, internet-connectivity hascome to be an expected feature of professional 3D printers.Connectivity does however come at a cost concerning the securityof the device. This project aimed to evaluate the cybersecurityof the Ultimaker S5 3D printer. The system was tested for themost likely and severe vulnerabilities based upon a threat modelmade on the product. The results show that the system’s localwebapplication is vulnerable to some common web-attacks thatallow the attacker to perform actions on the victims printer. / De senaste åren har internetuppkoppling blivit en självklar funktion hos professionella 3D skrivare. Upp-koppling kommer dock ofta på bekostnad av enhetens säkerhet. Detta projekt syftade till att utvärdera cybersäkerheten hos 3D skrivaren Ultimaker S5. En hotmodell gjordes och systemet penetrationstestades baserat på denna. Resultaten visar att enhetens lokala webbapplikationen är sårbar för några vanliga web-attcker som låter attackeraren exekvera oönskade funktioner på offrets skrivare. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
|
45 |
Byggnadsmodellers anpassning inför 3D-utskift & dess användning / Building model´s adjustments before 3D-printing & its useElander, Sofia, Bolmstad, Elin January 2016 (has links)
Syfte: Att utreda hur digitala 3D-modeller bör anpassas inför utskrift i en 3D-skrivare samt undersöka hur en sådan modell kan användas i byggprocessens olika skeden. Metod: En fallstudie genomförs med en befintlig digital 3D-modell som utgångspunkt där intervjuer och action research används som datainsamlingsmetoder. Empirin jämförs och analyseras med det teoretiska ramverket som tagits fram genom litteraturstudier. Resultat: En fysisk 3D-modell skulle kunna användas i flera skeden i byggprocessen, huvudsakligen i idéskedet, produktionsskedet och genomgående processen som ett kommunikationsverktyg och vid reklam/försäljning/presentation för ökad förstående. Inför utskrift bör alla byggnadsdelar vara solida, detaljer bör raderas beroende på skala och komponenter bör bestå av samma material. Konsekvenser: Då intervjuerna utförs med personer med varierande kunskap och erfarenhet är det viktigt att beakta det faktum att förslag på användningsområden eventuellt inte är genomförbara i praktiken då dessa är önskemål. Trots detta kan användning av fysiska 3D-modeller rekommenderas i flera av byggprocessens skeden för ökad förståelse och bättre kommunikation, vilket även styrks av det teoretiska ramverket. Gällande anpassningar av en digital modell krävs en digital 3D-model som utgångspunkt och viss vana av 3D-projektering. Begränsningar: Då denna studie är en fallstudie utförd på ett specifikt fall, kan kunskap och rekommendationer inte generaliseras statistiskt på andra typer av byggnader. Dock kan resultatet i denna studie implementeras på liknande projekt om små justeringar tillämpas. På grund av det faktum att studien är kvalitativ med ett begränsat antal respondenter finns möjlighet till ett annat resultat om utförandet skett med andra förutsättningar. Nyckelord: BIM-modell, fysisk byggnadsmodell, 3D-modell, 3D-skrivare, 3D- utskrift / Purpose: To investigate how digital 3D models should be adapted to enable 3D printing for use in the construction process in its various stages. Method: A case study is conducted with an existing digital 3D-model where interviews and action research is used as a data collection method. The empirical data are compared and analyzed with the theoretical framework developed through literature studies. Findings: A physical 3D model can be used at several stages in the construction process, mainly in idea development stages, the production stage and throughout the process as a communication tool and for advertising/sales/presentation for increased understanding. Prior to printing, all parts of the building should be solid, details should be erased depending on the scale used and components should consist of the same material. Implications: Based on interviews with people with varying knowledge and experience within the subject, it is important to take into consideration the fact that the proposals on the fields of use may not be enforceable in reality since they are requests. Despite this, the use of physical 3D models can be recommended in several construction phases of the process for greater understanding and better communication, which is corroborated by the theoretical framework. Adaptions of a digital model require a digital 3D model as a prerequisite and a certain experience of 3D design. Limitations: Since this study is a case study conducted in a specific case, knowledge and recommendations cannot be generalized statistically to other types of buildings. However, with small adjustments, this study can be implemented in similar projects. Due to the fact that the study is qualitative with a limited number of interviewees, there is a possibility of a different result if the execution occurred with other conditions. Keywords: BIM model, physical building model, 3D model, 3D printer, 3D printing
|
46 |
Prototypframtagning av robotarm med sex axlar genom 3D-skrivningNorstedt, Erik, Bräne, Olof January 2019 (has links)
3D-skrivare är inte längre något som endast stora företag har råd att använda sig av, utan någonting som har tagit sig ända till konsumentmarknaden. Detta har givit både hobbyanvändare och småföretag tillgång till ett kraftfullt verktyg för iterativ design. Det görs idag även stora framsteg inom robotik som ger upphov till möjligheter för tillämpningar av både industri- och konsumentrobotar i framtiden. Komplexiteten i robotar gör 3D-skrivare till användbara verktyg när det kommer till att ta fram robotprototyper. Målet med detta projekt var därför att analysera fördelar och nackdelar med 3D-skrivning i samband med prototypframtagning av en robotarm med sex axlar som kunde utföra enkla pick-and-place-rörelser. Roboten designades i Fusion360 och skrevs ut med 3D-skrivare i PETG. En Arduino MEGA användes till att styra stegmotorer i robotens axlar och styrningen implementerade en analytisk lösning till robotens kinematisk modell. Resultatet var en fungerande prototyp som kunde programmeras till att flytta och rotera föremål. Ett antal förbättringar av prototypen går att göra, till exempel går det att öka robotens rörlighet genom att designa om delar för att tillåta att axlar rotera längre och att implementera ytterligare funktionalitet i programmet som accelerationsrampning av stegmotorer och rörelse längs förvald bana. Utifrån analys av 3D-skrivningens inverkan på projektet framgick det att 3D-skrivning verkar användbart i prototypframtagning om dess möjlighet till iterativ design är önskvärd, men att det passar ännu bättre till mindre projekt då robotens storlek hindrade möjligheten till att utnyttja iterativ design till fullo och på så sätt hindrades även effektiviteten i 3D-skrivningsprocessen.
|
47 |
Möjligheter för produktion med additiv tillverkning : - En fallstudie / OPPORTUNITIES FOR PRODUCTION WITH ADDITIVE MANUFACTURING : -A case studySarlak, Shannon January 2019 (has links)
Background: Additive manufacturing is a manufacturing process that has for the past 30 years been used substantially within the branch of industry. By adding material layer-by-layer, an object will be designed, and this method is called 3D-printing. Despite the advantage of building an object without assemblage as in traditional manufacturing, there is a lot of limitations with this additive manufacturing. Are there more opportunities than difficulties with additive manufacturing or is this manufacturing process too advanced too take over the traditional manufacturing process once and for all? Purpose: The purpose with this study is to increase understanding for promises and challenges with additive manufacturing and in which context it is adequate to use. Which elements makes it more appropriate and which are less, with additive manufacturing. Implementation: In the theoretical frame of reference, an integrative review study has been formed, by collecting and working with data from precious studies. The focus applies on the content of additive manufacturing, differences between traditional manufacturing and additive manufacturing only in theoretical frame of reference, promises and challenge with AM-processes, logistical aspects that focuses on the service elements that interact between organizations and customers but also the quality issues that concern additive manufacturing, order qualifiers and order winners that makes the establishment unique also adequacy of materials for different AM-processes. The empirics contain data and information from two concerned organizations that utilize additive manufacturing, but also how they go about to achieve competitive advantages. The analysis compiles the theoretical frame of reference that is formed by the data from previous additive manufacturing studies. Together with the empirics that has been brought by the concerned companies. Through the question formulation and a designed survey study that was given to the two companies, an information rich integrative review was embodied. Conclusion: This case study shows, as well as other studies that concern additive manufacturing, the conclusion is the same. The conclusion shows that additive manufacturing leads to elements such as cost reduction regarding manufacturing, reduced tied capital, to shorten the lead time, less haul, more environmentally friendly and to make complex geometric objects that are hard to design through traditional manufacturing. There are differences between the companies chosen AM-processes, because each AM-process uses different material. Material offering is more considerable to Company A that uses plastics than to Rise Swecast AB that uses powder within metal production. Adequacy for additive manufacturing applies more to build geometric complex objects, manufacturing of lower production volumes. It applies less to larger production volumes, limit of material supplies of different AM-processes and also for building larger objects. There are also quality issues that concern the printout, thus there is no feedback equipment, but this controls after each printout to avoid variations between printouts and between AM-processes. Additive manufacturing will take more place in the industry branch, in the future, and eventually replace processes within the traditional production. There are great opportunities for additive manufacturing that will lead to profitability for companies and customers through decentralization, meaning that organizations do not need to invest in a whole factory. / Bakgrund: Additiv tillverkning är en tillverkningsprocess som har på de senare åren börjat användas avsevärt det senaste 30 åren, inom industribranschen. Genom att addera material lager-för-lager bildas ett objekt och denna metod kallas för 3D-printing. Trots fördelen med att kunna tillverka ett objekt komplett utan att behöva montera ihop delar som i traditionell tillverkning, finns det många begränsningar med additiv tillverkning. Finns det fler möjligheter än svårigheter med additiv tillverkning eller är tillverkningsprocessen för avancerat för att ta över den traditionella tillverkningsprocessen helt? Syfte: Rapportens syfte är att öka förståelsen för möjligheter och svårigheter med additiva tillverkningsprocesser samt i vilken kontext det är lämpligt att använda. Vilka faktorer gör det mer eller mindre lämpligt med additiv tillverkning. Genomförande: I studiens teoretiska referensram har en fallstudie utförts genom att samla in och bearbeta data från tidigare studier. Här utformas studiens teori med fokus på innebörden av additiv tillverkning, jämförelse mellan traditionell tillverkning samt additiv tillverkning enbart i TR, möjligheter och svårigheter med tillverkningsprocessen, logistiska aspekter som fokuserar på den leveransserviceelement som samspelas mellan företag och kunder samt att detta inkluderar kvalité problem som uppstår med AM, orderkvalificerare och ordervinnare som gör företagen unika samt lämplighet av material för olika additiva tillverkningsprocesser. I empirin hittas data och information från två berörda företag som använder sig av additiv tillverkning inom produktionsområden och hur de går tillväga för att uppnå konkurrensfördelar. I analysen sammanställs den teoretiska referensram som utformats med hjälp av data från tidigare studier om additiv tillverkning, tillsammans med empirin som tagits fram med hjälp av dessa två berörda företag. Genom ett frågeställningsformulär och en utformad enkätstudie som gavs till respektive företag, kunde en informationsrik litteraturstudie utföras. Slutsats: Denna fallstudie visar likaså majoriteten av tidigare studier som berör additiv tillverkning, samma slutsats. Slutsatsen visar att additiv tillverkning leder till faktorer såsom kostnadsreducering gällande produktion, minskad bundet kapital, förkortade ledtider, färre transportsträckor, mer miljövänligt, skapa komplexa geometrier som är svårt att skapa på traditionellt vis. Det finns även skillnader mellan företagens valda AM-processer då företagen använder sig av olika tillverkningsprocesser och olika 3D-printer samt material. Materialutbudet är större hos Företag A som använder sig av plaster än hos Rise Swecast AB som använder sig av kvartssand vilket används inom metalltillverkning. Lämpligheten för additiv tillverkning passar mer vid uppbyggnad av komplexa geometrier, tillverkning av låga produktionsvolymer. Men lämpar sig mindre vid stora produktionsvolymer, begränsning vid materialval av olika AM-processer samt vid tillverkning av stora objekt. Det fanns även kvalitetsproblem gällande utskrifter då det inte finns några återkopplingsverktyg, men detta kontrolleras vid varje utskrift för att undvika variationer mellan utskrifter och processer. Additiv tillverkning kommer i framtiden att ta alltmer plats inom industribranschen och kommer även eventuellt att ersätta andra processer inom den traditionella tillverkningen just för att den bidrar med både med lönsamhet för företag samt kunder genom decentralisering, det vill säga att man inte behöver vara långt ifrån kunden samtidigt som man inte behöver investera i en hel fabrik.
|
48 |
Construction of Robot for Visual Demonstration at Conferences and FairsHaraldsson, Jonathan, Nordin, Julia January 2018 (has links)
A demonstration robot for conferences and fairs has been built from scratch. The demonstration robot is meant to create lasting impressions at the company booth at conferences or fairs. Thus, the robot needs traits that attract people to the booth and makes sure they remember that company. In this project, traits such as being able to move, do facial expressions and play audio have been developed. The robot has also been designed to draw as much attention as possible to the booth. This was achieved by building a robot that consists of a rolling sphere with a head that always remains on top. All movements are carried out from inside the sphere by four different motors. One motor moves the robot back and forth, two motors spin a flywheel to turn the robot and the last motor rotates the head. These motors are mounted at different places on an internal structure. The internal structure is connected to the sphere at two points, one on each side of the robot. At the top of the internal structure, magnets are placed. Thus, it can attach the head at the outside of the sphere by mounting magnets in the head. All movements of the robots are controlled by a hand controller, which has been made in this project. The head has a built-in display simulating two eyes. The display is driven by a Raspberry Pi. An internal speaker is built-in inside the head, connected to the Raspberry Pi. Each simulated eye consists of 64 squares that can be programmed to be in different colours, thus making it possible to express a wide range of facial expressions.Two PCBs were designed and manufactured to control the robot. One was placed inside the robot, and the other inside the hand controller. The PCBs can communicate over Bluetooth, which makes it possible to control the robot from the outside.All parts of the robot have been designed in a CAD program and subsequently 3D printed. 3D design in CAD was learned from a novice level, since there was no previous knowledge of this in the project group.In addition, a registration form has been developed that allows visitors to register at the booth. Making it easier for the company to connect with visitors after the conference or fair. The registration form is connected with the Raspberry Pi in the head of the robot via Wi-Fi. Thus, when new registrations occur, the robot can print the names of them while audio is played.
|
49 |
Utredning om konstruktion och beräkning för additiv tillverkning - MarkforgedBäckman, Tobias January 2018 (has links)
The following thesis work was performed by Tobias Bäckman between 2018-01-15 – 2018-06-01 on behalf of Deva Mecaneyes. Deva Mecaneyes had identified a need and a possible application area for additive manufacturing based on the Markforged Mark Two 3D-printer which they had purchased. However, many question marks remained regarding how the materials from the printer would behave. How to design against this manufacturing method and which applications that could be beneficial for the company. At the start of the project it was identified that Deva Mecaneyes main limitations for not implementing 3D-manufacturing more extensive in their product development process was partly the lack of experience of additive manufacturing methods but mainly due to the lack of reliable material data for the printed parts. Based on this, three research questions were formulated. These research questions discuss how to replace traditional manufacturing methods, which material relationships are possible to identify, and which factors should be considered when designing against additive manufacturing. The bulk of the work thus consisted of producing material data for materials that are compatible with Markforged mark Two. This was done based on ASTM standards that treat tensile tests, bending tests and fatigue tests. Two already existing products from Deva Mecaneyes in the field of lifting gear for manufacturing industries were selected with the purpose to redesign these products to be manufactured with the Mark Two 3D-printer instead. In this way, an alternative way for these applications could be showed by replacing the traditional manufacturing methods with additive manufacturing methods. The reconstructed lifting gear was also manufactured to be verified against the produced material data but also to demonstrate improvement or deterioration against the existing lifting gear. The measurable goals for the project were to prove cost and time reduction by at least 50% by replacing the traditional manufacturing methods with additive manufacturing methods while maintaining the same reliability. The result demonstrated two redesigned lifting gears with many improvement areas. A great result that stood out was a cost reduction of approximately 80% and 90% respectively. Several material relationships have been identified during the work and new experiences regarding printed details have arisen. The author believes that the work, with addition to the accomplished goals, has laid a good ground to begin to understand the materials more and more and thus a good beginning to obtaining a reability from 3D-printed details. Which is a decisive factor to begin replacing the traditional manufacturing methods. / Följande examensarbete är utfört av Tobias Bäckman mellan 2018-01-15 – 2018-06-01 på uppdrag av företaget Deva Mecaneyes. Deva Mecaneyes hade identifierat ett behov och ett möjligt användningsområde för additiv tillverkning baserat på en 3D-skrivare av modellen Markforged mark Two som de köpt in. Dock kvarstod det många frågetecken hur materialen i de utskrivna detaljerna beter sig, hur man skall konstruera mot denna tillverkningsmetod samt vilka tillämpningsområden som skulle kunna vara fördelaktiga. Vid uppstart av projektet identifierades de största begränsningarna till varför Deva Mecaneys inte implementerar 3D- utskrifter mer omfattande i deras konstruktionsarbete som delvis den bristande erfarenheten av additiva tillverkningsmetoder, men främst på grund av avsaknaden av trovärdig materialdata och beräkningsunderlag att tillämpa för fysiska 3D-utskrivna detaljer. Utifrån detta formulerades tre stycken forskningsfrågor. Dessa forskningsfrågor behandlar hur man skulle kunna ersätta traditionella tillverkningsmetoder, vilka materialsamband som är möjliga att identifiera samt vilka faktorer som bör tas hänsyn till vid konstruktion mot additiva tillverkningsmetoder.Huvuddelen av arbetet har därmed bestått av att producera materialdata för materialen som är kompatibla med Markforged Mark Two. Detta har skett baserat på ASTM-standarder som behandlar dragprover, böjprover och utmattningsprover.Två befintliga produkter från Deva Mecaneyes inom området lyftredskap valdes sedan ut för att omdesignas mot additiva tillverkningsmetoder. På så vis redovisas en alternativ väg att gå genom att ersätta de traditionella tillverkningsmetoderna med additiva tillverkningsmetoder. De omkonstruerade lyftredskapen tillverkades även för att dels verifieras mot den framtagna materialdatan men även för att redogöra förbättring alternativt försämring mot de befintliga lyftredskapen.De mätbara målen för arbetet var att kunna påvisa kostnads och tidsreducering med 50% genom att byta ut de traditionella tillverkningsmetoderna mot additiva tillverkningsmetoder. Resultatet påvisade två omkonstruerade lyftredskap med många förbättringsområden. Där framförallt en kostnadsreducering på cirka 80% respektive 90% identifierades.Under arbetets gång har ett antal materialsamband kunnat identifieras och nya erfarenheter angående utskrivna detaljer från Markforged Mark Two har uppstått. Författaren anser att arbetet, utöver de uppfyllda målen, har lagt en god grund till att börja förstå materialen mer och mer och därmed en god början till att börja erhålla en tillförlitlighet hos 3D-utskrivna detaljer som är en avgörande faktor till att börja ersätta vissa av de traditionella tillverkningsmetoderna.
|
50 |
Vliv teploty vzduchu na FDM 3D tisk / Effect of air temperature on FDM 3D printingHrdlička, Martin January 2017 (has links)
The thesis deals with 3D printing by the FDM and ambient temperature on print quality. The thesis describes the principle of printing by the FDM method and the occurrence of errors caused by the influence of ambient temperature. The aim of the thesis is to design a heated chamber for RepRap Prusa i3 printer, its construction and subsequent testing of ambient temperature influence on print quality. To test the occurrence of the described errors, specific tests and materials are selected in the work. The result of this work is the recommended ambient temperature in the heated chamber for improved FDM printing.
|
Page generated in 0.0749 seconds