• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 4
  • Tagged with
  • 35
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Παρατήρηση και σταθεροποίηση αμετάβλητων συστημάτων επί ομάδων Lie

Αποστόλου, Νικόλαος 06 October 2009 (has links)
- / -
22

Πλήρωση ως προς συνθήκες ακριβείας

Ματζάρης, Απόστολος 24 September 2010 (has links)
- / -
23

Les C *-algèbres des groupes de Lie nilpotents de dimension [inférieure ou égale à] 6 / The C*-algebras of nilpotent Lie groups of 6 less or equal to dimension

Regeiba, Hedi 17 April 2014 (has links)
Les C*-algèbres peuvent être décrites comme algèbres de champs d’opérateurs définis sur leurs spectres. Nous introduisons la famille des C*-algèbres aux limites duales à contrôle normique (LDCN) et nous montrons que les C*-algèbres des groupes de Lie nilpotents de dimension inférieure ou égale à 6 appartiennent à cette classe / Motivated by the description of the C*-algebras of less or equal 6 to dimensional nilpotent Lie groups as algebras of operator fields defined over their spectra, we introduce the family of C*-algebras with norm controlled dual limits and we show by explicit computations that the C*-algebras of every of less or equal 6 to dimensional nilpotent Lie groups belong to this class
24

Εισαγωγή στην θεωρία των συμμετρικών χώρων

Στουφής, Διονύσιος 27 June 2012 (has links)
Η θεωρία των συμμετρικών χώρων αποτελεί μια σπουδαία κλάση των ομογενών χώρων, με εφαρμογές σε πολλούς κλάδους των μαθηματικών όπως στην αλγεβρική και την διαφορική γεωμετρία. Σε αυτήν την εργασία θα δώσουμμε τον ορισμό των συμμετρικών χώρων, τα βασικά τους χαρακτηριστικά και την ταξινόμησή τους. Θα περιγράψουμε τους χώρους αυτούς κυρίως αλγεβρικά, οπότε δεν θεωρείται απαραίτητο από τον αναγνώστη να γνωρίζει εκτενώς την θεωρία της διαφορικής γεωμετρίας για να κατανοήσει πλήρως την εργασία. / The theory of symmetric spaces is an important class of homogeneous spaces, with applications in many branches of mathematics such as algebraic and differential geometry. In this work we will define the symmetric spaces, their key features and sort them. We will describe these spaces mainly algebraic, so it is not considered necessary by the reader to know in detail the theory of differential geometry to understand the work.
25

Μια εισαγωγή στη νηματοποίηση του Hopf

Μπάρτζος, Ευάγγελος 11 October 2013 (has links)
Στη διπλωματική αυτή εργασία μελετάται η πιο απλή περίπτωση από τις νηματοποιήσεις του Hopf και παράλληλα η γεωμετρική δομή της τρισδιάστατης σφαίρας. Για το σκοπό αυτό εισάγονται οι έννοιες των κβατερνίων και βασικά στοιχεία από τη θεωρία πολλαπλοτήτων. / An introduction of the simplest Hopf fibration and an elementary study of the 3-sphere are the basic aims of this graduation thesis. Besides, quaternions and elements of manifold theory are widely used.
26

Algebraic modules for finite groups

Craven, David Andrew January 2007 (has links)
The main focus of this thesis is algebraic modules---modules that satisfy a polynomial equation with integer co-efficients in the Green ring---in various finite groups, as well as their general theory. In particular, we ask the question `when are all the simple modules for a finite group G algebraic?' We call this the (p-)SMA property. The first chapter introduces the topic and deals with preliminary results, together with the trivial first results. The second chapter provides the general theory of algebraic modules, with particular attention to the relationship between algebraic modules and the composition factors of a group, and between algebraic modules and the Heller operator and Auslander--Reiten quiver. The third chapter concerns itself with indecomposable modules for dihedral and elementary abelian groups. The study of such groups is both interesting in its own right, and can be applied to studying simple modules for simple groups, such as the sporadic groups in the final chapter. The fourth chapter analyzes the groups PSL(2,q); here we determine, in characteristic 2, which simple modules for PSL(2,q) are algebraic, for any odd q. The fifth chapter generalizes this analysis to many groups of Lie type, although most results here are in defining characteristic only. Notable exceptions include the small Ree groups, which have the 2-SMA property for all q. The sixth and final chapter focuses on the sporadic groups: for most groups we provide results on some simple modules, and some of the groups are completely analyzed in all characteristics. This is normally carried out by restricting to the Sylow p-subgroup. This thesis develops the current state of knowledge concerning algebraic modules for finite groups, and particularly for which simple groups, and for which primes, all simple modules are algebraic.
27

Paires admissibles d'une algèbre de Lie simple complexe et W-algèbres finies / Admissible pairs of a complex simple Lie algebra and finite W-algebras

Sadaka, Guilnard 06 December 2013 (has links)
Soient g une algèbre de Lie simple complexe et e un élément nilpotent de g. Nous nous intéressons dans ce mémoire à la question (soulevée par Premet) d'isomorphisme entre les W-algèbres finies construites à partir de certaines sous-algèbres nilpotentes de g dites e-admissibles. Nous introduisons les notions de paire et graduation e-admissibles. Nous montrons ensuite que la W-algèbre associée à une paire e-admissible possède des propriétés similaires à celle introduite par Gan et Ginzburg. De plus, nous définissons une relation d'équivalence sur l'ensemble des paires admissibles. Nous montrons alors que si deux paires sont équivalentes, alors les W-algèbres associées sont isomorphes. Nous introduisons enfin les notions de graduation et paire admissibles b-maximales et nous montrons que les paires admissibles b-maximales sont équivalentes entre elles. Comme conséquence de ce résultat, nous retrouvons un résultat de Brundan et Goodwin sur les bonnes graduations. Dans une dernière partie, nous considérons des cas particuliers pour lesquels nous pouvons apporter une réponse complète à la question d'isomorphisme. / Let g be a complex simple Lie algebra and e a nilpotent element of g. We are interested to answer the isomorphism question (raised by Premet) between the finite W-algebras constructed from some nilpotent subalgebras of g called e-admissible. We introduce the concept of e-admissible pair and e-admissible grading. We show then that the W-algebra associated to an e-admissible pair admits similar properties to that introduced by Gan and Ginzburg. Moreover, we define an equivalence relation on the set of admissible pairs and we show that if two admissible pairs are equivalent, it follows that the associated W-algebras are isomorphic. We introduce later the concepts of b-maximal admissible pair and b-maximal admissible grading and show that b-maximal admissible pairs are equivalent. As a consequence to this result, we recover a result of Brundan and Goodwin on the good gradings. In a final part, we consider some particular cases where we may find a complete answer to the isomorphism question.
28

Représentations l-modulaires des groupes p-adiques : décomposition en blocs de la catégorie des représentations lisses de GL(m,D), groupe métaplectique et représentation de Weil / l-modular representations of p-adic groups : block decomposition of the category of smooth representations of GL(m;D), metaplectic group and Weil representation

Chinello, Gianmarco 07 September 2015 (has links)
Cette thèse traite deux problèmes concernant la théorie des représentations `-modulairesd’un groupe p-adique. Soit F un corps local non archimédien de caractéristique résiduelle pdifférente de `. Dans la première partie, on étudie la décomposition en blocs de la catégoriedes représentations lisses `-modulaires de GL(n; F) et de ses formes intérieures. On veutramener la description d’un bloc de niveau positif à celle d’un bloc de niveau 0 (d’un autregroupe du même type) en cherchant des équivalences de catégories. En utilisant la théoriedes types de Bushnell-Kutzko dans le cas modulaire et un théorème de la théorie descatégories, on se ramene à trouver un isomorphisme entre deux algèbres d’entrelacement.La preuve de l’existence d’un tel isomorphisme n’est pas complète car elle repose sur uneconjecture qu’on énonce et qui est prouvée pour plusieurs cas. Dans une deuxième partieon généralise la construction du groupe métaplectique et de la représentation de Weil dansle cas des représentations sur un anneau intègre. On construit une extension centrale dugroupe symplectique sur F par le groupe multiplicatif d’un anneau intègre et on prouvequ’il satisfait les mêmes propriétés que dans le cas des représentations complexes. / This thesis focuses on two problems on `-modular representation theory of p-adic groups.Let F be a non-archimedean local field of residue characteristic p different from `. In thefirst part, we study block decomposition of the category of smooth modular representationsof GL(n; F) and its inner forms.We want to reduce the description of a positive-levelblock to the description of a 0-level block (of a similar group) seeking equivalences of categories.Using the type theory of Bushnell-Kutzko in the modular case and a theorem ofcategory theory, we reduce the problem to find an isomorphism between two intertwiningalgebras. The proof of the existence of such an isomorphism is not complete because itrelies on a conjecture that we state and we prove for several cases. In the second part wegeneralize the construction of metaplectic group and Weil representation in the case ofrepresentations over un integral domain. We define a central extension of the symplecticgroup over F by the multiplicative group of an integral domain. We prove that it satisfiesthe same properties as in the complex case.
29

Geometric Steiner minimal trees

De Wet, Pieter Oloff 31 January 2008 (has links)
In 1992 Du and Hwang published a paper confirming the correctness of a well known 1968 conjecture of Gilbert and Pollak suggesting that the Euclidean Steiner ratio for the plane is 2/3. The original objective of this thesis was to adapt the technique used in this proof to obtain results for other Minkowski spaces. In an attempt to create a rigorous and complete version of the proof, some known results were given new proofs (results for hexagonal trees and for the rectilinear Steiner ratio) and some new results were obtained (on approximation of Steiner ratios and on transforming Steiner trees). The most surprising result, however, was the discovery of a fundamental gap in the proof of Du and Hwang. We give counter examples demonstrating that a statement made about inner spanning trees, which plays an important role in the proof, is not correct. There seems to be no simple way out of this dilemma, and whether the Gilbert-Pollak conjecture is true or not for any number of points seems once again to be an open question. Finally we consider the question of whether Du and Hwang's strategy can be used for cases where the number of points is restricted. After introducing some extra lemmas, we are able to show that the Gilbert-Pollak conjecture is true for 7 or fewer points. This is an improvement on the 1991 proof for 6 points of Rubinstein and Thomas. / Mathematical Sciences / Ph. D. (Mathematics)
30

Compactness in categories and its application in different categories

Thulapersad, Sarah 12 1900 (has links)
In the paper [HSS] Herrlich, Salicrup and Strecker were able to show that Kuratowski / Mrowka's Theorem concerning compactness for topological spaces could be applied to a wider setting. In this dissertation, which is based on the paper [F subscript 1], we interpret Kuratowski / Mrowka's result in the category R-Mod. Chapter One deals mainly with the preliminary definitions and results and we also show that there is a 1-1 correspondence between torsion theories and standard factorisation systems. In Chapter Two we, obtain for every torsion theory T, a theory of T-compactness which is an extension of the definition of compactness found in [HSS]. We then obtain a characterisation of T-compactness under certain conditions on the ring R and torsion theory T. In Chapter Three we examine the class of T-compact R-modules more closely when the ring R is T-hereditary and T-noetherian. We also obtain further characterisation of T-compactness under these additional conditions. In Chapter Four we show that many topological results have analogues in R-Mod. / Mathematical Sciences / M. Sc. (Mathematics)

Page generated in 0.0141 seconds