• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 7
  • Tagged with
  • 31
  • 31
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Una revisión de la historia del descubrimiento de las geometrías no euclidianas

Rodríguez Buitrago, Carlos J. 15 February 2013 (has links)
El geómetra griego Euclides empieza sus Elementos con una lista de 23 definiciones, 5 reglas lógicas, and 5 postulados. El postulado 5 se refiere a las rectas paralelas aquellas “líneas rectas que están en el mismo plano y al prolongarse indefinidamente en ambas direcciones, no se cortan”. El quinto postulado establece que: “Si una recta corta a otras dos y forma con ellas de un mismo de sus lados dos ángulos internos que suman menos dos restos, entonces las dos rectas si se prolongan indefinidamente se corta del lado en el que los ángulos dieron menos de dos rectos”. El “problema del quinto postulado” consiste en demostrar que este postulado es una consecuencia de los otros cuatro postulados de los Elementos. Como este postulado es equivalente “a la existencia y unicidad de una recta paralela a una recta dada por un punto exterior a ella”, también se lo conoce como el “problema de la teoría de las paralelas”. Desde Euclides, muchos matemáticos han tratado de probar el quinto postulado. Posidonio intento resolver el problema en la primera centuria del siglo I d.C., cuando el confundió líneas equidistantes con líneas paralelas. El problema del quinto postulado fue resuelto negativamente al final del siglo XIX. La pruebe definitiva es atribuida Beltrami en su trabajo Saggio di interpretazione della geometria non-euclidea [1868]. En este trabajo, Beltrami estudia una “superficie” dada por un disco de radio 1 dotado de un elemento de longitud de arco con curvatura constante negativa. De esta manera obtiene una geometría que satisface los postulados de Euclides excepto el quinto. Esta geometría es llamada no-euclidiana. En este trabajo revisamos la historia de este descubrimiento atribuido a Gauss, Bolyai y Lobatchevski. En clara analogía con la geometría esférica, Lambert en su Theorie der Parallellinien [1786] dice que en una “esfera imaginaria” la suma de los ángulos de un triángulo debería ser menor que π. Analizamos el papel jugado por esta esfera imaginaria en el desarrollo de la geometría no-euclidiana, y como sirvió a Gauss de guía. Más precisamente, analizamos un momento crucial en la historia del descubrimiento de la geometría no-euclidiana: la lectura que Gauss hizo del Apéndice de Bolyai en 1832, cinco años después de la publicación de Disquisitiones generales circa superficies curvas, bajo la suposición de que este trabajo esta investigación en los fundamentos de la geometría fue motivado por la búsqueda, entre las superficies del espacio, de la hipotética esfera imaginaria de Lambert. Desde este punto de vista, hemos podido responder algunas preguntas naturales a cerca de la historia de la geometría no-euclidiana; por ejemplo: 1. ¿Qué enfoque siguió Bolyai en el Apéndice? 2. ¿Por qué Gauss después de leer el Apéndice decidió no escribir nada sobre su descubrimiento de la geometría no-euclidiana? 3. ¿Qué relación existe entre las cantidades imaginarias y el problema de la teoría de las paralelas? / The Greek geometer Euclid began his Elements1 with a list of 23 definitions, 5 logical rules, and 5 postulates. The fifth postulate refers to parallel lines, which are defined as those “straight lines which, being in the same plane and being produced indefinitely in both directions, do not meet one another in either direction.” The fifth postulate states that: “If a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the angles are less than two right angles.” The ‘problem of the fifth postulate’ consists of demonstrating that this postulate is a consequence of the other four postulates of the Elements. Since this postulate is equivalent to the existence and uniqueness of a straight line parallel to a given straight line through a given point, research in this direction is called ‘theory of parallels.’ Since Euclid, many mathematicians have tried to prove the fifth postulate. Posidonius attempted to solve the problem in the first century B.C., when he confused parallel straight lines with equidistant straight lines. The problem of the fifth postulate was resolved in the negative at the end of the 19th century. The definitive proof is attributed to Beltrami in his work Saggio di interpretazione della geometria non-euclidea [1868]. In this work he studies a “surface” given by the unit disc endowed with a length element, which he gives explicitly, with respect to which the curvature is constant and negative. In this way one obtains a geometry satisfying all of Euclid’s postulates except the fifth. This geometry is the so-called non-Euclidean geometry. In this work we review the history of this discovery. In a clear analogy with spherical geometry, Lambert states that in an “imaginary sphere” the sum of the angles of a triangle would be less than p. We analyze the role played by this imaginary sphere in the development of non-Euclidean geometry, and how it served Gauss as a guide. More precisely, we analyze a crucial moment in the history of the discovery of non-Euclidean geometry: Gauss’s reading of Bolyai’s Appendix in 1832, five years after the publication of Disquisitiones generales circa superficies curvas, on the assumption that his investigations into the foundations of geometry were aimed at finding, among the surfaces in space, Lambert’s hypothetical imaginary sphere. From this point of view, one is able to answer certain natural questions about the history of non-Euclidean geometry; for instance, answer some natural questions: 1. What approach was adopted by Gauss in his meditations? Was it the same as that adopted by Bolyai? 2. Why did Gauss feel that there was no longer any need to write anything more about it? 3. What is the relation between imaginary quantities and the problem of the theory of parallels?
12

Análisis fractal de las catedrales góticas

Samper Sosa, Albert 14 February 2014 (has links)
En las construcciones góticas la Geometría Euclídea, y en especial los ratios pi y número de oro, fue usada para dotarles de estructura, proporción y belleza; sin embargo, además de los elementos euclídeos existen otros conceptos complejos en las construcciones de las catedrales góticas: efectividad de ocupar espacio, rugosidad y escabrosidad de los detalles que constituyen sus estructuras. La mejor herramienta para describir estos conceptos la ofrece la Geometría Fractal a través del ratio llamado “dimensión fractal”. Se trata de un parámetro geométrico, que da una medida de esos conceptos; y que no es atribuible únicamente a elementos euclídeos, sino que además viene generado por el resultado arquitectónico final de estas construcciones. Con el presente estudio mostramos que las Catedrales Góticas no sólo se rigen por los patrones geométricos euclídeos, sino que además poseen otro patrón característico, que viene determinado por su dimensión fractal. / Euclidean geometry, and especially “pi” and “golden number” ratios, were used in Gothic buildings to give them structure, proportion and beauty. Moreover the euclidean elements there are complexes structures in Spanish Gothic Cathedrals: effectiveness to occupy space, roughness and amount of details that constitute its structures. The best tool to describe these ideas is available in Fractal geometry through the use of the so-called “fractal dimension” ratio. This is a geometric parameter, which provides a measure of these concepts. The ratio is not exclusively related with the euclidean elements, but instead it is also brought about by the final construction project of these cathedrals. In the present study we prove that the Gothic Cathedrals do not only follow euclidean geometric patterns, but they also show another specific pattern dictated by their fractal dimension.
13

Geometria analítica a Batxillerat: un enfocament didàctic contextualitzat i amb eines TIC

Costa Llobet, Joaquim 27 November 2009 (has links)
Geometria analítica a Batxillerat: un enfocament didàctic contextualitzat i amb eines TIC desenvolupa, implementa i analitza un enfocament didàctic innovador per a l'ensenyament de la geometria analítica al primer curs de Batxillerat. Els fonaments teòrics dels treball prenen com a referents els textos de diversos autors agrupats en tres blocs temàtics: contextualització, matematització i modelització (els autors de referència són principalment: Biembengut i Hein; Chamoso i Rawson; English; Filloy; Freudenthal; Niss; Niss, Lesh i Lee; Niss i Blum; Peralta; Treffers; Van den Heuvel-Panhuizen; Van Reeuwijk). El treball es posiciona en el sentit que la contextualització, la matematització i la modelització són diferents facetes d'una única realitat didàctica en la qual els alumnes realitzen activitats contextualitzades (en l'entorn del programari interactiu GeoGebra), les quals els indueixen a matematitzar i a construir models matemàtics senzills. També hi és present un complet recorregut per la història de la geometria analítica i la seva didàctica motivat per la consideració que la perspectiva històrica és imprescindible: la història de les matemàtiques, i en concret la de la geometria analítica, evidencia que els continguts i la seva presentació emergeixen a partir de les necessitats humanes en contextos concrets, i que l'estructuració formal es produeix amb posterioritat. El plantejament didàctic del treball consisteix en una seqüència que s'inicia amb activitats contextualitzades que indueixen la matematització en els alumnes, en l'entorn del programari GeoGebra, i que es completa amb una posterior formalització dels continguts. És un plantejament "de baix a dalt", ja que, a diferència de la metodologia tradicional, no comença amb la presentació formal i perfectament estructurada dels continguts per passar a continuació als exercicis d'aplicació, sinó que la formalització arriba després que la matematització induïda per les activitats contextualitzades hagi preparat el terreny per a la fixació formal dels continguts. La implementació queda completament integrada (no superposada) en el currículum i en la programació didàctica del centre educatiu de secundària on es duu a terme. Essent globalment innovador, l'estudi supera la dicotomia innovador - tradicional i la dicotomia constructivisme - empirisme perquè, encara que és innovador i potencia el procés de descobriment personal de l'alumne en una primera fase, conté també en una segona fase elements vàlids i útils de la metodologia tradicional. L'anàlisi de la matematització que realitzen els alumnes té una importància absolutament central en la investigació. L'estudi analitza amb instruments quantitatius i també qualitatius el resultats grupals i els resultats individuals dels alumnes en el procés de matematització, i realitza una classificació dels alumnes en diferents categories. També analitza les valoracions subjectives dels alumnes sobre la realització de les activitats amb GeoGebra, tant de la perspectiva grupal com des de la perspectiva individual. Aquestes anàlisis permeten constatar que, en comparació amb una metodologia tradicional, millora el rendiment en la matematització, alhora que augmenta l'autoconsciència, la motivació i la implicació dels alumnes en el procés d'aprenentatge. A partir de l'anàlisi detallat de la matematització i les valoracions subjectives de l'alumnat, el treball realitza una sèrie de consideracions de les quals emergeix una síntesi interpretativa. És la sistematització del plantejament didàctic, un cop analitzat i interpretat, sota la denominació de "plataforma de matematització". Això comporta que a partir dels resultats del treball d'implementació el plantejament esdevé també una proposta didàctica que pot ser extensible a altres unitats didàctiques i fins i tot a altres nivells educatius. / Geometria anal'tica a Batxillerat: un enfocament did ctic contextualitzat i amb eines TIC (Analytic geometry in Batxillerat: a contextualized learning approach with ICT tools) develops, implements and analyzes an innovative approach for the teaching of analytic geometry in the first year of post-compulsory education in Catalonia (Spain). The theoretical references come from texts by various authors and are grouped into three areas: contextualization, mathematization and mathematical modeling. The main authors of reference are: Biembengut and Hein; Chamoso and Rawson; English; Filloy; Freudenthal; Niss; Niss, Lesh and Lee; Niss and Blum; Peralta; Treffers; Van den Heuvel-Panhuizen; Van Reeuwijk. Under the terms of the study, contextualization, mathematization and modeling are different aspects of a unique educational reality in which students carry out contextualized activities. All this takes place in the realm of the interactive software GeoGebra. The activities induce mathematization and construction of simple mathematical models. There is also a complete journey through the history of analytic geometry and its teaching. The history of mathematics, and particularly the history of analytic geometry, shows that contents and presentations emerge from human needs in specific contexts, and that formal structures occur later. The didactic approach consists of a sequence that begins with contextualized activities that induce mathematization, and is completed with a further formalization of the contents. Unlike the traditional methodology, the sequence does not start with formal presentations and perfectly structured contents. The completion comes after the mathematization induced by contextualized activities has paved the way for the formal establishment of the contents. The implementation is fully integrated (not overlapped) in the curriculum and the educational programs for secondary education in Catalonia. As a global innovation, the study overcomes the innovative vs. traditional dichotomy and the constructivism vs. empiricism dichotomy because, although it is innovative and it encourages the discovery process to students at an early stage, in a second phase it also contains valid and helpful elements from the traditional methodology. The analysis of the mathematization made by the students has a central role in this research. The study uses quantitative and qualitative instruments to analyze group results and individual results of the students in the process of mathematization and performs a classification of students into different categories. It also examines the students' subjective assessments on the implementation of activities with GeoGebra. These analysis show that, compared to the traditional methodology, there is an improved performance in mathematization, as well as an increased self awareness, motivation and involvement of students in the learning process. From the detailed analysis of mathematization and the subjective ratings of the students, the work makes a number of considerations. An interpretive synthesis emerges, which is the systematization of the teaching approach, once analyzed and interpreted, under the name "mathematization platform". This means that through the results of the implementation the work also becomes a didactic approach that can be extended to other teaching units and even to other educational levels.
14

Hodge numbers of irregular varieties and fibrations

González Alonso, Víctor 08 July 2013 (has links)
In this thesis we study the geography of irregular complex projective (or compact Kähler) varieties, paying special attention to the existence of fibrations. The thesis is divided into two parts. In the first one we consider irregular varieties of arbitrary dimension, looking for bounds for the Hodge numbers in the absence of fibrations. In first place, by truncating the BGG complex of the variety (an object recently introduced by Lazarsfeld and Popa), we get lower bounds on the partial Euler characteristics. In order to improve these first results, we define the higher-rank derivative complexes (generalizing the derivative complex introduced by Green and Lazarsfeld). We study their exactness by means of the Eagon-Northcott complexes, and we obtain some inequalities between the Hodge numbers of varieties admitting some kind of subspaces of 1-forms (¿non-degenerate subspaces¿). In the case of subvarieties of Abelian varieties, the existence of non-degenerate subspaces of any dimension allows us to obtain better inequalities than in the general case. In the case of h^(2,0), a different method gives a much better result. In fact, the bound is much stronger, and the only hypothesis needed is the non-existence of higher irrational pencils (a priori, less restrictive than the existence of non-degenerate subspaces). To close, using the Grassmannian BGG complex (a generalization of the BGG complex that aggregates all the higher-rank derivative complexes) and computing the Chern classes of its last cokernel, we recover the same bound for h^(2,0) using the general results mentioned in the previous paragraph. In the second part, the scope is restricted to surfaces fibred over a curve. We look for upper bounds for the relative irregularity in terms of properties of the general fibre, in the spirit of the inequality obtained by Xiao for non-isotrivial fibrations over a rational curve. Xiao conjectured the same inequality to hold for fibrations over any base, but Pirola found a counterexample. After that, a corrected conjecture was proposed. The result obtained in this thesis is a bound depending on the genus and the Clifford index of a general fibre, which coincides with the corrected conjecture in the case of maximal Clifford index. We have used several techniques in our proof. On the one hand, the ¿adjoint images¿ play a crucial role. The adjoint images were introduced by Collino and Pirola to study infinitesimal deformations of smooth curves, and generalized later by Pirola and Zucconi to higher-dimensional varieties. In this thesis we construct the ¿global adjoint map¿, which allows to find subspaces with vanishing adjoint image assuming that the kernel of the infinitesimal deformation has dimension (at least) half the genus of the cruve. More generally, the global adjoint map can also be defined for infinitesimal deformations of irregular varieties of any dimension, and allows to find numerical conditions that guarantee the existence of subspaces with vanishing adjoint. On the other hand, we have extended to arbitrary (one-dimensional) families of curves some well-stablished concepts of infinitesimal deformations, related with the bicanonical embedding of the curve. As the global adjoint map, some of these constructions can also be extended to families of irregular varieties of arbitrary dimension. Finally, all these previous constructions lead to a structural result for fibrations supported on a relatively rigid divisor. With this result we can treat some cases of the conjecture of Xiao. The remaining cases are solved using an inequality for the rank of an infinitesimal deformation in terms of a supporting divisor (its degree and the dimension of its complete linear series). This inequality, which we reprove, is originally due to Ginensky.
15

Geometric constraint solving in a dynamic geometry framework.

Hidalgo García, Marta R. 02 December 2013 (has links)
Geometric constraint solving is a central topic in many fields such as parametric solid modeling, computer-aided design or chemical molecular docking. A geometric constraint problem consists of a set geometric objects on which a set of constraints is defined. Solving the geometric constraint problem means finding a placement for the geometric elements with respect to each other such that the set of constraints holds. Clearly, the primary goal of geometric constraint solving is to define rigid shapes. However an interesting problem arises when we ask whether allowing parameter constraint values to change with time makes sense. The answer is in the positive. Assuming a continuous change in the variant parameters, the result of the geometric constraint solving with variant parameters would result in the generation of families of different shapes built on top of the same geometric elements but governed by a fixed set of constraints. Considering the problem where several parameters change simultaneously would be a great accomplishment. However the potential combinatorial complexity make us to consider problems with just one variant parameter. Elaborating on work from other authors, we develop a new algorithm based on a new tool we have called h-graphs that properly solves the geometric constraint solving problem with one variant parameter. We offer a complete proof for the soundness of the approach which was missing in the original work. Dynamic geometry is a computer-based technology developed to teach geometry at secondary school, which provides the users with tools to define geometric constructions along with interaction tools such as drag-and-drop. The goal of the system is to show in the user's screen how the geometry changes in real time as the user interacts with the system. It is argued that this kind of interaction fosters students interest in experimenting and checking their ideas. The most important drawback of dynamic geometry is that it is the user who must know how the geometric problem is actually solved. Based on the fact that current user-computer interaction technology basically allows the user to drag just one geometric element at a time, we have developed a new dynamic geometry approach based on two ideas: 1) the underlying problem is just a geometric constraint problem with one variant parameter, which can be different for each drag-and-drop operation, and, 2) the burden of solving the geometric problem is left to the geometric constraint solver. Two classic and interesting problems in many computational models are the reachability and the tracing problems. Reachability consists in deciding whether a certain state of the system can be reached from a given initial state following a set of allowed transformations. This problem is paramount in many fields such as robotics, path finding, path planing, Petri Nets, etc. When translated to dynamic geometry two specific problems arise: 1) when intersecting geometric elements were at least one of them has degree two or higher, the solution is not unique and, 2) for given values assigned to constraint parameters, it may well be the case that the geometric problem is not realizable. For example computing the intersection of two parallel lines. Within our geometric constraint-based dynamic geometry system we have developed an specific approach that solves both the reachability and the tracing problems by properly applying tools from dynamic systems theory. Finally we consider Henneberg graphs, Laman graphs and tree-decomposable graphs which are fundamental tools in geometric constraint solving and its applications. We study which relationships can be established between them and show the conditions under which Henneberg constructions preserve graph tree-decomposability. Then we develop an algorithm to automatically generate tree-decomposable Laman graphs of a given order using Henneberg construction steps.
16

Ricci flow on cone surfaces and a three-dimensional expanding soliton

Ramos Guallar, Daniel 28 January 2014 (has links)
El principal objectiu d'aquesta tesi és l'estudi de l'evolució mitjançant el flux de Ricci de superfícies amb singularitats de tipus cònic. Un segon objectiu, sorgit de les tècniques que utilitzem, és l'estudi de famílies de solitons del flux de Ricci en dimensió 2 i 3. El flux de Ricci és una equació d'evolució per a varietats Riemannianes, introduïda per R. Hamilton el 1982. És des dels avenços assolits per G. Perelman amb aquesta tècnica el 2002 quan el flux de Ricci s'ha establert com a una disciplina pròpia, aixecant un gran interès per la comunitat. Aquesta tesi conté quatre resultats originals. El primer resultat és una classificació exhaustiva dels solitons en superfícies llises i còniques. Amb aquesta classificació completem els precedents trobats per Hamilton, Chow i Wu entre d'altres, i obtenim descripcions explícites de tots els solitons en dimensió 2. El segon resultat és una Geometrització de les superfícies còniques mitjançant el flux de Ricci. Aquest resultat, que utilitza el primer resultat ja esmentat, estén la teoria de Hamilton al cas singular. Aquest és el resultat més extens, per al qual fem servir i desenvolupem tècniques tant d'anàlisi i EDPs com de geometria de comparació . El tercer resultat és l'existència d'un flux de Ricci que elimina les singularitats còniques . Això exposa clarament la no unicitat de solucions al flux, en analogia als fluxos de Ricci amb cusps de P. Topping . El quart resultat és la construcció d'un nou solitó gradient expansiu en dimensió 3. De la mateixa manera que amb els solitons cònics, donem una construcció explícita utilitzant tècniques de retrats de fase. Demostrem també que és l'únic solitó amb la seva topologia i la seva cota inferior de la curvatura, i que és un cas crític entre tots els solitons expansius en dimensió 3 amb curvatura acotada inferiorment. A més, mostrem que l'evolució de la seva curvatura escalar no és monòtona. / El principal objetivo de esta tesis es el estudio de la evolución mediante el flujo de Ricci de superficies con singularidades de tipo cónico. Un segundo objetivo, surgido de las técnicas que utilizamos, es el estudio de familias de solitones del flujo de Ricci en dimensión 2 y 3. El flujo de Ricci es una ecuación de evolución para variedades Riemannianas, introducida por R. Hamilton en 1982. Es desde los logros alcanzados por G. Perelman con esta técnica en 2002 cuando el flujo de Ricci se ha establecido en una disciplina propia, despertando un gran interés en la comunidad. Esta tesis contiene cuatro resultados originales. El primer resultado es una clasificación exhaustiva de los solitones en superficies lisas y cónicas. Con esta clasificación completamos los precedentes hallados por Hamilton, Chow y Wu entre otros, y obtenemos descripciones explícitas de todos los solitones en dimensión 2. El segundo resultado es una Geometrización de las superficies cónicas mediante el flujo de Ricci. Este resultado, que utiliza el primer resultado ya mencionado, extiende la teoría de Hamilton al caso singular. Este es el resultado más extenso, para el que usamos y desarrollamos técnicas tanto de análisis y EDPs como de geometría de comparación. El tercer resultado es la existencia de un flujo de Ricci que elimina las singularidades cónicas. Esto expone claramente la no unicidad de soluciones al flujo, en analogía a los flujos de Ricci con cúspides de P. Topping. El cuarto resultado es la construcción de un nuevo solitón gradiente expansivo en dimensión 3. Del mismo modo que con los solitones cónicos, damos una construcción explícita utilizando técnicas de retratos de fase. Demostramos también que es el único solitón con su topología y su cota inferior de la curvatura, y que es un caso crítico entre todos los solitones expansivos en dimensión 3 con curvatura acotada inferiormente. Además, mostramos que la evolución de su curvatura escalar no es monótona. / The main objective of this thesis is the study of the evolution under the Ricci flow of surfaces with singularities of cone type. A second objective, emerged from the techniques we use, is the study of families of Ricci flow solitons in dimension 2 and 3. The Ricci flow is an evolution equation for Riemannian manifolds, introduced by R. Hamilton in 1982. It is from the achievements made by G. Perelman with this technique in 2002 when the Ricci flow has been established in a discipline itself, generating a great interest in the community. This thesis contains four original results. First result is a complete classification of solitons in smooth and cone surfaces. This cllassification completes the preceding results found by Hamilton, Chow and Wu and others, and we obtain explicit descriptions of all solitons in dimension 2. Second result is a Geometrization of cone surfaces by Ricci flow. This result, which uses the aforementioned first result, extends the theory of Hamilton to the singular case. This is the most comprehensive result in the thesis, for which we use and develop analysis and PDE techniques, as well as comparison geometry techniques. Third result is the existence of a Ricci flow that removes cone singularities. This clearly exposes the non-uniqueness of solutions to the flow , in analogy to the Ricci flow with cusps of P. Topping. The fourth result is the construction of a new expanding gradient Ricci soliton in dimension 3. Just as we do with solitons on cone surfaces, we give an explicit construction using techniques of phase portraits. We also prove that this is the only soliton with its topology and its lower bound of the curvature, and besides this is a critical case amongst all expanding solitons in dimension 3 with curvature bounded below. Furthermore, we show that the evolution of its scalar curvature is not monotone.
17

Thermal convection in rotating spherical shells

Garcia Gonzalez, Ferran 01 December 2012 (has links)
Tesi per compendi de publicacions / The study of thermal convection in rotating spherical geometry is fundamental to explain many geophysical and astrophysical phenomena such as the generation of the magnetic fields, or the differential rotation observed in the atmospheres of the major planets. The difficulties associated with the experimental studies enhance the importance of the three-dimensional numerical simulations, such as those presented in this dissertation. In order to obtain the evolution equations, the Boussinesq approximation is applied to the mass, momentum and energy conservation equations, which are rewritten in terms of toroidal and poloidal potentials. Together with the temperature field, they are expanded in spherical harmonics over the sphere, and in the radial direction a collocation method is used. Semi- implicit schemes, based in backward differentiation formulae (IMEX-BDF), implemented with order and time step control (VSVO), are used for time integration. Applying non-slip boundary conditions with internal heating and very low Prandtl numbers (ratio between the thermal diffusive and the viscous time scales), one of the first exhaustive analysis of the linear stability of the conductive state has been performed. In addition, the existence of preferred polar antisymmetric modes at the onset of convection for high rotation rates has been described. A study of the efficiency of different high order time integration schemes, either with fixed time-step or VSVO, has been carried out. In our own time evolution codes we apply the IMEX-BDF formulae with an explicit treatment of the nonlinear terms of the equations. The use of 'matrix-free' methods allows the implicit treatment of the Coriolis term, and makes the implementation of a step and order control easier. The results show that the use of high order methods, especially those with time-step and order control, increase the efficiency of the time integration, and allows to obtain more accurate solutions. Finally, at low Prandtl number, and with non-slip boundary conditions, the nonlinear dynamics is deeply explored by means of temporal evolutions. The type of solutions is described, and the nonlinear mean flow properties are studied. Using parameters as close as possible to those of the Earth's outer core, the numerical simulations are compared with laboratory experiments and realistic measurements. / L'estudi de la convecció tèrmica en geometria esfèrica en rotació es fonamental per explicar molts fenòmens geofísics i astrofísics, com la generació de camps magnètics, o la rotació diferencial observada en l'atmosfera dels planetes majors. Les dificultats associades amb els estudis experimentals afavoreixen que les simulacions numèriques tridimensionals, com les que es presenten en aquesta memòria, siguin una eina molt important en aquest camp. Per a l'obtenció de les equacions d'evolució, s'aplica l'aproximació de Boussinesq a les equacions de conservació de la massa, la quantitat de moviment i l'energia, i es reescriuen en funció dels potencials toroidal i poloidal. Els potencials i la temperatura es desenvolupen, sobre l'esfera, en harmònics esfèrics i en la variable radial s'usa col·locació. Per a la integració es fan servir esquemes semi-implícits, que en el nostre cas, estan basats en les fórmules de diferenciació regressiva (IMEX-BDF), que s'han implementat amb control d'ordre i pas (VSVO). En primer lloc, sota condicions de contorn d'adherència, calentament intern i nombre de Prandtl (quocient entre les escales de temps de difusió tèrmica i viscosa) molt baix s'ha realizat un dels primers anàlisis exhaustius de l'estabilitat lineal de l'estat conductiu, gràcies a la millora dels mètodes numèrics emprats. Així mateix, s'ha descrit per primera vegada l'existència de modes polars antisimètrics a l'inici de la convecció amb rotacions elevades. En segon lloc s'ha realizat un estudi de l'eficiència de diferents integradors temporals d'ordre alt, amb pas fix o VSVO. En els nostres propis codis temporals apliquem les fórmules IMEX-BDF amb un tractament explícit dels termes no lineals de les equacions. L'ús de mètodes 'matrix-free' fa rentable el tractament implícit del terme de Coriolis i facilita la implementació d'un control d'ordre i pas temporal adequat. Els resultats mostren que amb ordre elevat, amb o sense control de pas i ordre, s'incrementa l'eficiència de la integració i s'obtenen solucions més acurades. Finalment, amb nombre de Prandtl baix i condicions de contorn d'adherència, s'explora exhaustivament la dinàmica no lineal mitjançant evolucions temporals, tot descrivint el tipus de solucions. També s'estudien les propietats mitjanes de fluxos no lineals. Utilizant paràmetres el més similars possible als del nucli extern de la Terra es comparen els resultats de les simulacions numèriques amb experiments de laboratori i amb medicions de situacions reals.
18

Adams Representability in Triangulated Categories

Raventós Morera, Oriol 18 March 2011 (has links)
This thesis contains new results about the representability of cohomological functors defined on a subcategory of compact objects (with respect to a fixed cardinal) of a well generated triangulated category. Classical theorems of Adams for the stable homotopy category and Neeman for compactly generated triangulated categories are extended to the first uncountable cardinal. The case of derived categories of rings and the stable motivic category are studied in detail. These results contribute to answering negatively a question raised by Rosický of whether all cohomological functors defined on a subcategory of compact objects with respect to a large enough cardinal are representable. Some of the findings in this thesis are based on new results about abelian categories, the most relevant being a generalization of the Auslander Lemma for non Grothendieck categories. / TESI "Representabilitat d'Adams en categories triangulades"TEXT:En aquesta tesi s'obtenen resultats nous sobre la representabilitat de functors cohomològics definits en subcategories d'objectes compactes (respecte a un cardinal fixat) d'una categoria triangulada ben generada. S'estenen al primer cardinal no numerable teoremes antics d'Adams per a la categoria d'homotopia estable i de Neeman per a categories compactament generades. S'estudien en detall els casos de la categoria derivada d'un anell i la categoria motívica estable. Aquests resultats contribueixen a respondre negativament una pregunta de Rosický sobre si tots els functors cohomològics definits en una subcategoria d'objectes compactes respecte a un cardinal suficientment gran són representables. Alguns dels avenços d'aquesta tesi es basen en nous resultats sobre categories abelianes, el més rellevant dels quals és una generalització del lema d'Auslander per a categories que no són de Grothendieck.
19

Geometría global de superficies espaciales en espacios producto lorentzianos

Albujer Brotons, Alma Luisa 19 November 2008 (has links)
A lo largo de esta tesis estudiamos la geometría global de las superficies espaciales, y maximales en particular, en espacios producto lorentzianos. En primer lugar generalizamos el teorema de Calabi-Bernstein al caso de superficies maximales en un producto lorentziano. También estudiamos algunos problemas locales, que a posteriori tendrán importantes repercusiones globales. Los producto lorentzianos forman parte de la familia de los espacios de Robertson-Walker generalizados, al igual que los espacios tipo steady state. Las superficies equivalentes a las superficies maximales en un espacio tipo steady state son las superficies espaciales con H=1. En este contexto damos un resultado de unicidad para superficies espaciales completas con curvatura media constante acotadas del infinito en un espacio tipo steady state. Por último consideramos superficies espaciales con curvatura de Gauss constante en espacios producto, tanto lorentzianos como riemannianos. En este caso obtenemos algunos resultados de tipo Calabi-Bernstein cuando M es la esfera S2. / Along this PhD thesis we study the global geometry of spacelike surfaces, and in particular maximal surfaces, in Lorentzian product spaces. Firstly, we generalize the Calabi-Bernstien theorem when considering maximal surfaces in a Lorentzian product. We also study some local problems, which a posteriori will have important global consequences. The Lorentzian products are part of the family of the generalized Robertson-Walker spaces. Also the steady state type spaces form a subfamily of such spaces. The equivalent surfaces to the maximal ones in a steady state type space are the spacelike surfaces with H=1. In this context, we give a uniqueness result for complete spacelike surfaces with constant mean curvature bounded from the infinity of a steady state type space. Finally, we consider spacelike surfaces with constant Gaussian curvature in Riemannian and Lorentzian product spaces. In this case, we obtain some Calabi-Bernstein type results when M is the sphere S2
20

Aplicaciones del Principio del Máximo Generalizado de Omori-Yau al Estudio de la Geometría Global de Hipersuperficies en Espacios de Curvatura Constante

García Martínez, Sandra Carolina 27 September 2012 (has links)
El objetivo principal de este trabajo es presentar la evolución del principio del máximo y algunas aplicaciones de él a problemas geométricos. En este sentido, estudiamos el comportamiento de la curvatura escalar S de hipersuperficies de curvatura media constante inmersas en espacios forma, bajo hipótesis de no-compacidad como: la completitud y la completitud estocástica, obteniendo una estimación óptima para el ínfimo de S. Además, estudiamos estas hipersuperficies con las condiciones de dos curvaturas principales y que verifiquen el principio del máximo de Omori-Yau, derivando una estimación óptima para el supremo de S. Por último, damos un principio débil del máximo del operador diferencial L, introducido por Cheng y Yau [19] para el estudio de hipersuperficies completas de curvatura escalar constante, y presentamos una aplicación donde se estima el ínfimo de la curvatura media de estas hipersuperficies. Los resultados de este trabajo están recogidos en los artículos [5], [6] y [7]. / The goal of this work is to show the evolution of the maximum principle and several applications of this to geometric problems. In this sense, we study the behavior of the scalar curvature S of hypersurfaces immersed with constant mean curvature into a Riemannian space form, under non-compactness’s hypotheses as: the completeness and the stochastic completeness, obtaining a sharp estimate for the infimum of S. Moreover, we study these hypersurfaces with the conditions of two principal curvatures and satisfying the Omori-Yau maximum principle, deriving a sharp estimate for the supremum of S. Finally, we establish a weak maximum principle of differential operator L, introduced by Cheng and Yau [19] for study of complete hypersurfaces with constant scalar curvature , and give an application where we estimate the infimum of the mean curvature of these hypersurfaces . The results of this work are collected in the papers [5], [6] and [7].

Page generated in 0.0592 seconds