271 |
Shock diffraction phenomena and their measurementQuinn, Mark Kenneth January 2013 (has links)
The motion of shock waves is important in many fields of engineering and increasingly so with medical applications and applications to inertial confinement fusion technologies. The flow structures that moving shock waves create when they encounter a change in area is complex and can be difficult to understand. Previousresearchers have carried out experimental studies and many numerical studies looking at this problem in more detail. There has been a discrepancy between numerical and experimental work which had remained unanswered. One of the aims of this project is to try and resolve the discrepancy between numerical and experimental work and try to investigate what experimental techniques are suitable for work of this type and the exact way in which they should be applied. Most previous work has focused on sharp changes in geometry which induce immediate flow separation. In this project rounded corners will also be investigated and the complex flow features will be analyzed.Two geometries, namely a sharp 172 degree knife-edge and a 2.8 mm radius rounded corner will be investigated at three experimental pressure ratios of 4, 8 and 12 using air as the driver gas. This yields experimental shock Mach numbers of 1.28, 1.46 and 1.55. High-speed schlieren and shadowgraph photography with varying levels of sensitivity were used to qualitatively investigate the wave structures. Particle image velocimetry (PIV), pressure-sensitive paint (PSP) and traditional pressure transducers were used to quantify the flow field. Numerical simulations were performed using the commercial package Fluent to investigate the effect of numerical schemes on the flow field produced and for comparison with the experimental results. The sharp geometry was simulated successfully using an inviscid simulation while the rounded geometry required the addition of laminar viscosity. Reynolds number effects will be only sparsely referred to in this project as the flows under investigation show largely inviscid characteristics. As the flow is developing in time rather than in space, quotation of a distance-based Reynolds number is not entirely appropriate; however, Reynolds number based on the same spatial location but varying in time will be mentioned. The density-based diagnostics in this project were designed to have a depth of field appropriate to the test under consideration. This approach has been used relatively few times despite its easy setup and significant impact on the results. This project contains the first quantative use of PIV and PSP to shock wave diffraction. Previous studies have almost exclusively used density-based diagnostics which, although give the best impression of the flow field, do not allow for complete analysis and explanation of all of the flow features present. PIV measurements showed a maximum uncertainty of 5% while the PSP measurements showed an uncertainty of approximately 10%.The shock wave diffraction process, vortex formation, shear layer structure, secondary and even tertiary expansions and the shock vortex interaction were investigate. The experimental results have shown that using one experimental technique in isolation can give misleading results. Only by using a combination of experimental techniques can we achieve a complete understanding of the flow field and draw conclusions on the validity of the numerical results. Expanding the range of the experimental techniques currently in use is vital for experimental aerodynamic testing to remain relevant in an industry increasingly dominated by numerical research. To this end, significant research work has been carried out on extending the range of the PSP technique to allow for the capture of shock wave diffraction, one of the fastest transient fluid processes, and for applications to low-speed flow (< 20 ms−1).
|
272 |
Refractive devices for acoustical and flexural wavesClimente Alarcón, Alfonso 31 March 2015 (has links)
The aim of this work has been the design and demonstration of refractive
devices, not only for acoustic waves, but also for flexural waves in thin plates.
Mathematically these problems have been treated by means of the multiple
scattering theory, because the geometries of the problems were mainly
circular and such theory is the best one in these cases. The multiple scattering
theory, previously stated, is here explained. Additionally, a multilayer
scattering theory for flexural waves is here introduced and successfully used
to numerically simulate their behavior. Therefore, this PhD thesis is divided
in two parts.
The first part is devoted to describe two acoustic refractive devices: a
gradient index lens and an omnidirectional broadband acoustic absorber, or
“acoustic black hole”. Both are based on sonic crystals consisting of of rigid
cylinders immersed in a fluid background. As the homogenization method
states, the desired refractive index can be obtained by tailoring the radii
of the cylinders. Thereafter, numerical simulations and measurements were
conducted to test the behavior of each device. For this purpose, two specific
measuring systems were developed: the two-dimensional chamber and the
impedance chamber. Both are here explained in detail.
The second part describes the design of refractive devices for flexural
waves. Instead of using “platonic crystals”, we made use of the peculiar dispersion
relationship of flexural waves. As the equation states, the wave speed
is modified not only by the elastic properties of the plate, but also from its
thickness. Using the latest approach a set of numerical simulations of known
circularly symmetrical gradient index lenses have been performed. Additionally, an omnidirectional broadband insulating device for flexural waves has
been designed. It consist of a well-like thickness profile in an annular region
of the plate, that mimics the combination of an attractive and repulsive potentials.
The waves are focused at its bottom and dissipated by means of
an absorptive layer placed on top. Numerical simulations are here presented
and discussed.
Finally, we present an in-plane flexural resonator, consisting of a hole in
a thin plate traversed by a beam. Here, a closed form of the transfer matrix
is obtained by coupling the Kirchhoff-Love and the Euler-Bernoulli motion
equations. Numerical simulations, tested against a commercial finite element
simulator, prove its efficiency / Climente Alarcón, A. (2015). Refractive devices for acoustical and flexural waves [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48536
|
273 |
Englischsprachige Literatur im World Wide Web / English and American Literature on the World Wide WebSchröder, Angela Ella 02 July 2004 (has links)
No description available.
|
274 |
Nanomembrane-based hybrid semiconductor-superconductor heterostructuresThurmer, Dominic J. 20 July 2011 (has links)
The combination of modern self-assembly techniques with well-established top-down processing methods pioneered in the electronics industry is paving the way for increasingly sophisticated devices in the future[1]. Nanomembranes, made from a variety of materials, can provide the necessary framework for a diverse range of device structures incorporating wrinkling, buckling, folding, and rolling of thin films[2, 3]. Over the past decade, an elegant symbiosis of bottom-up and top-down methods has been developed, allowing the fabrica- tion of hybrid layer systems via the controlled release and rearrangement of inherently strained layers [4]. Self-assembled rolled-up structures[4, 5] have become increasingly at- tractive in a number of fields including micro/nano uidics[6], optics[7](including metama- terial optical fibers[8]), Lab on a Chip applications[9], and micro- and nanoelectronics[10]. The use of such structures for microelectronic applications has been driven by the versatility in contacting geometries and the abundance of material combinations that these devices offer. By allowing devices to expand in the third dimension, certain obstacles that inhibit 2D structuring can be overcome in elegant ways. Similarly, recent progress in nanostructured superconducting electronic structures has been receiving increased attention[11]. The advancement of such devices has been mo- tivated by their use in quantum computation[12], high sensitivity radiation sensors[13], precision voltage standards[14] and superconducting spintronics[15] to name a few. Combining semiconductor with superconductor materials to create new hybrid geometries is advantageous because it adds the functionalities of the semiconductor, including high charge carrier mobilities, gating possibilities, and refined processing technologies.
The main focus of the work presented in this thesis is the development of new methods for controlling strain behavior and its applications toward novel semiconduc- tor/superconductor heterostructures based on nanomembranes. More specifically, the goal is to integrate inherently strained semiconductor layer structures with superconducting materials to create innovative electronic devices by the controlled releasing and rearrangement of thin films. By rolling up pre-patterned semiconductor/superconductor layers, device geometries have been realized that are not feasible using any other technique. In this way, superconducting hybrid junctions, or Josephson junctions, have been created and their basic properties investigated.
The Josephson effect, and junctions displaying this quantum coherent behavior, have found many essential uses in diverse areas of science and technology. Many research groups around the world are involved in finding new materials and fabrication methods to tune the properties and structure of such Josephson devices further[11]. The inclusion of semi- conductors, for example, allows for a greater control of the charge carrier density within the junction area, thus allowing for "transistor-like" behavior in these superconducting devices.
By rolling up the superconductor contacts using a strained semiconductor as scaffolding, the fabrication of hybrid nano-junctions is simplified drastically, removing the need for complicated processing steps such as electron-beam or nano-imprint lithography. Furthermore, the technique allows many nanometer-sized devices to be created in parallel on a single chip which has the advantage that it can be scaled up to full-wafer processing.
First, post-growth processing techniques of epitaxial layers are developed in order to extend the control of hybrid device fabrication. Here, three unique concepts for controlling the rolling behavior of strained semiconductor nanomembranes are presented. First an optical method for inhibiting the rolling of the strained layers is described. Next, a selective etching method for destroying the inherent strain within the semiconductor layer is introduced. Finally, a method by which the strain gradient across a trilayer stack is altered in situ during rolling is presented. Next, the fabrication of a hybrid nanomembrane-based superconducting device is presented. Various experimental details of the fabrication process are analyzed, and the electronic properties of the completed device are investigated. The devices created here highlight the fabrication process in which nanometer-sized structures are created using self-assembly techniques and standard microelectronics fabrication methods, presenting a new method to circumvent more complicated processing techniques.
References
[1] G. M. Whitesides and B. Grzybowski. Self-assembly at all scales. Science 295, 2418{2421 (2002).
[2] Y. G. Sun, W. M. Choi, H. Q. Jiang, Y. G. Y. Huang and J. A. Rogers. Controlled buckling of semiconductor
nanoribbons for stretchable electronics. Nature Nanotechnology 1, 201{207 (2006).
[3] O. G. Schmidt and K. Eberl. Nanotechnology - Thin solid films roll up into nanotubes. Nature 410, 168 (2001).
[4] O. G. Schmidt, C. Deneke, Y. Nakamura, R. Zapf-Gottwick, C. Mller and N. Y. Jin-Phillipp. Nanotechnology
{ Bottom-up meets top-down. Advanced Solid State Physics 42, 231 (2002).
[5] V. Ya. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato
and T. A. Gavrilova. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica
E 6, 828 (2000).
[6] D. J. Thurmer, C. Deneke, Y. F. Mei and O. G. Schmidt. Process integration of microtubes for
uidic applications.
Applied Physics Letters 89, 223507 (2006).
[7] R. Songmuang, A. Rastelli, S. Mendach and O. G. Schmidt. SiOx/Si radial superlattices and microtube optical
ring resonators. Applied Physics Letters 90, 091905 (2007).
[8] E. J. Smith, Z. W. Liu, Y. F. Mei and O. G. Schmidt. Combined surface plasmon and classical waveguiding through
metamaterial fiber design. Nano Letters 10, 1{5 (2010).
[9] G. S. Huang, Y. F. Mei, D. J. Thurmer, E. Coric and O. G. Schmidt. Rolled-up transparent microtubes as
two-dimensionally confined culture scaffolds of individual yeast cells. Lab on a Chip 9, 263{268 (2009).
[10] C. C. B. Bufon, J. D. C. Gonzalez, D. J. Thurmer, D. Grimm, M. Bauer and O. G. Schmidt. Self-assembled
ultra-compact energy storage elements based on hybrid nanomembranes. Nano Letters 10, 2506{2510 (2010).
[11] G. Katsaros, P. Spathis, M. Stoffel, F. Fournel, M. Mongillo, V. Bouchiat, F. Lefloch, A. Rastelli,
O. G. Schmidt and S. De Franceschi. Hybrid superconductor-semiconductor devices made from self-assembled
SiGe nanocrystals on silicon. Nature Nanotechnology 5, 458{464 (2010).
[12] Y. J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven and S. De Franceschi.
Tunable supercurrent through semiconductor nanowires. Science 309, 272{275 (2005).
[13] F. Giazotto, T. T. Heikkila, G. P. Pepe, P. Helisto, A. Luukanen and J. P. Pekola. Ultrasensitive proximity
Josephson sensor with kinetic inductance readout. Applied Physics Letters 92, 162507 (2008).
[14] S. P. Benz. Superconductor-normal-superconductor junctions for programmable voltage standards. Applied Physics
Letters 67, 2714{2716 (1995).
[15] Y. C. Tao and J. G. Hu. Superconducting spintronics: Spin-polarized transport in superconducting junctions with
ferromagnetic semiconducting contact. Journal of Applied Physics 107, 041101 (2010).
|
275 |
Experimentelle Charakterisierung des menschlichen Fersenfettpolsters unter alters- und geschlechtsspezifischen Aspekten: Experimentelle Charakterisierungdes menschlichen Fersenfettpolsters unter alters-und geschlechtsspezifischen AspektenLindner, Frank 11 October 2012 (has links)
Die vorliegende Arbeit beschäftigt sich mit der mechanischen Untersuchung des menschlichen Fersenfettpolsters (FP) in Abhängigkeit von Alter und Geschlecht.
Das menschliche FP stellt evolutionsgeschichtlich eine Anpassung an den aufrechten Gang dar. Durch Aufrichtung des Oberkörpers im Zweibeingang kam es zur Ganglinienverlängerung in Richtung Ferse und folglich zu einer Mehrbelastung des Rückfußes. Sie prägten die Funktion des FP, die Kräfte beim Aufsetzen der Ferse zu reduzieren.
Das FP, das ein spezielles Unterhautfettgewebe ist und sich aus straffem und lockerem Bindegewebe zusammensetzt, kann die Kräfte durch Verteilen und Absorbieren vermindern. Bekannt ist, dass sich das mechanische Verhalten der Haut zwischen Mann und Frau unterscheidet. Da das FP ein Bestandteil der Haut ist, stellt sich als ein Schwerpunkt dieser Arbeit die Frage: Unterscheidet sich das FP mechanisch zwischen Mann und Frau?
Aus naturwissenschaftlicher Sicht ist Altern ein natürlicher Mechanismus, der die Lebenskraft des Organismus durch Zellalterung und –tod reduziert. Aus evolutionärer Sicht wurde zugelassen, dass sich bestimmte Zellen bzw. Gewebe, welche hohen endogenen und exogenen Faktoren ausgesetzt sind, vollständig aber begrenzt regenerieren dürfen. Es wird als primäres Altern gekennzeichnet. Das primäre Altern kann positiv oder negativ durch äußere Einwirkungen auf den Organismus („Sekundäres Altern“) beeinflusst werden. Bindegewebe, welches hohen exogenen Faktoren ausgesetzt ist, sind insbesondere Schnittstellen zwischen „Biologischem System“ und „Umwelt“ (z.B. beim Menschen das Gewebe der Hautinnenfläche oder der Fußsohle). Es wird erwartet, dass das FP dem Alterungsprozess stark unterworfen ist, da es alltäglich mechanisch beansprucht wird. Folglich kann es zu einem mechanischen Funktionsverlust des FP kommen, das sich negativ auf die Belastbarkeit des Rückfußes auswirken kann. Die Entwicklung von altersbedingten Verschleißerkrankungen kann nicht ausgeschlossen werden. Als ein zweiter Schwerpunkt dieser Arbeit stellt sich die Frage: Unterscheidet sich das FP mechanisch zwischen Jung und Alt?
Es gibt hinsichtlich der Thematik dieser Dissertation wenige Untersuchungen. Die Autoren kommen zum Teil zu unterschiedlichen Ergebnissen und Schlussfolgerungen, dass möglicherweise auf die unterschiedlich verwendete Methodik zurückzuführen ist. Die Vor- und Nachteile der bisher durchgeführten Experimente machen es schwierig, Stellungnahme zu beziehen, welche der Tests die zuverlässigsten Ergebnisse liefern. Seit den letzten 10-15 Jahren wurde immer häufiger Ultraschall als zusätzliche Informationsquelle in mechanischen Messplätzen integriert, um innere Kenndaten zum mechanischen Verhalten des FP abzuleiten. Allerdings waren die quasi-statischen Messungen und die geringen Kontaktkräfte der limitierende Faktor um das mechanische Verhalten valide zu charakterisieren. Mit einem eigens entwickelten Messplatz sollte dieser methodische Ansatz überholt werden. Der instrumentierte Belastungsschlitten ermöglicht die Aufnahme von dynamischen Ultraschallbildsequenzen unter mindestens 10-fach höheren Kontaktkräften bei fast doppelter Fersenkontaktgeschwindigkeit gegenüber den bisher bekannten Ultraschallexperimenten in der Literatur.
Mögliche geschlechts- und altersspezifische Unterschiede im mechanischen Verhalten des FP sind grundlegend für die Orthopädie-Technik, die klinische Forschung und die Biogerontologie. Die Orthopädie-Technik benötigt insbesondere die Erkenntnisse zum mechanischen Verhalten der Haut an unterschiedlichen Stellen der unteren Extremität in Abhängigkeit von Alter und Geschlecht, um den Tragekomfort und die Bewegungseffizienz von Prothesen und Orthesen zu bessern. In der klinischen Forschung zeigt sich das Interesse an den altersspezifischen mechanischen Kenndaten, um im Zusammenhang zu klinischen Parametern die Entwicklung von orthopädischen Erkrankungen zu erforschen. Für die Biogerontologie wäre diese Art von Forschung relevant, um Zusammenhänge zu histologischen Parametern zu überprüfen, die direkt am Alterungsprozess des Bindegewebes beteiligt sind. Sie könnten zur Entschlüsselung des Mechanismus „Altern“ beitragen.
|
276 |
Gemischte und einfache Parameteridentifikation mittels der Finiten-Elemente-Methode an NanoindentationsmessungenLösch, Sören 19 December 2012 (has links)
Die Anwendung des Verfahrens der inversen Parameteridentifikation auf die Nanoindentation mit einer neuen Materialklasse (amorphe Legierungen) ist Hauptgegenstand der vorliegenden Arbeit. Um die Methode auf ihre Zuverlässigkeit hin zu überprüfen, werden darüber hinaus die drei Härtevergleichsplatten HV240, HV400 und HV720 sowie das oxidische Glas BK7, deren Nanoindentationsmessungen von Dipl.-Ing. André Clausner schon zu einem früheren Zeitpunkt vorgenommen wurden, zur Berechnung herangezogen. Die Auswahl der Materialien erfolgte so, dass diese einen möglichst großen Bereich von Y abdecken, von BK7 bis hin zu HV240. Damit soll gezeigt werden, dass das Verfahren der inversen Parameteridentifikation für einen großen Bereich von natürlich vorkommenden Materialien genutzt werden kann. Der Schwerpunkt liegt dabei auf der Bestimmung des Fließverhaltens, das durch die Parameter Fließgrenze1 Y und Verfestigungsexponent n erfolgt. Ziel ist es, in Zukunft auf weitere Experimente, die bisher zur Bestimmung der mechanischen Materialeigenschaften genutzt wurden und häufig zur Zerstörung der Proben führten, verzichten zu können. Für viele Gläser, z.B. BK7, sind derartige zerstörende Versuche nicht anwendbar, weil spröde Materialien splittern statt plastisch zu fließen.
Dieser Arbeit liegt die Methode der Finiten-Elemente zugrunde, um eine inverse Parameteridentifikation zu realisieren. Sie wird hier eingesetzt, weil es sich bei plastischer Verformung um einen nichtlinearen Prozess2 handelt, der analytisch nicht mehr geschlossen gelöst werden kann. Die Simulationssoftware ANSYS R und ein Optimierungsmodul (SPC-OPT) der Fakultät für Maschinenbau dienen zur Berechnung. Bei der Simulation werden dabei ein zweidimensionales Modell und ein realitätsnahes dreidimensionales Modell eingesetzt.
|
277 |
Modellierung eines gekoppelten mechanisch-hydrodynamischen Systems zur aktiven StrömungsbeeinflussungHuber, Max 24 October 2016 (has links)
Die vorliegende Arbeit beschäftigt sich mit der analytischen Modellierung und Optimierung synthetischer Jet-Aktuatoren, welche zur aktiven Strömungsbeeinflussung genutzt werden können. Ein in der Literatur bekanntes eindimensionales Modell wird ausführlich hergeleitet und an gemessene Geschwindigkeitsspektren verschiedener Jet-Aktuatoren angepasst. Der Einfluss jedes Modellparameters wird separat untersucht. Außerdem wird ein empirischer Zusammenhang zwischen Membranresonanzfrequenz und Luftkammervolumen angegeben, mit dessen Hilfe synthetische Jet-Aktuatoren mit größtmöglichen Strömungsgeschwindigkeiten durch die Düse konstruiert werden können.:Abkürzungsverzeichnis
Symbolverzeichnis
1 Einleitung
2 Physikalische Grundlagen
2.1 Aufbau und Funktionsweise der betrachteten synthetischen Jet-Aktuatoren
2.2 Grundlagen aus der Mechanik
2.3 Grundlagen aus der Hydrodynamik
2.4 Analytisches Modell für synthetische Jet-Aktuatoren
3 Numerische Grundlagen
3.1 Zur Lösung von Differentialgleichungssystemen
3.2 Grundlagen der Optimierung
4 Beschreibung von Messdaten mit Hilfe des Modells
4.1 Reproduktion der Ergebnisse der Veröffentlichungen von Sharma
4.2 Anpassung des Modells an Messdaten weiterer Aktuatoren
5 Parametervariation und Optimierung
5.1 Separate Variation jedes Parameters
5.2 Brute-force-Optimierung von Luftkammervolumen und Membranresonanzfrequenz
6 Zusammenfassung und Ausblick
Anhang
Abbildungsverzeichnis
Tabellenverzeichnis
Literaturverzeichnis
Danksagung
Selbstständigkeitserklärung
|
278 |
Naturanaloge Optimierungsverfahren zur Auslegung von FaserverbundstrukturenUlke-Winter, Lars 14 February 2017 (has links)
Die vollständige Ausnutzung des Leichtbaupotentials bei der Dimensionierung von mehrschichtigen endlosfaserverstärkten Strukturbauteilen erfordert die Bereitstellung von geeigneten Optimierungswerkzeugen, da bei der Auslegung eine große Anzahl von Entwurfsvariablen zu berücksichtigen sind. In dieser Arbeit werden Optimierungsalgorithmen und -strategien zur Lösung wissenschaftlicher Fragestellungen für industrielle Anwendungen bei der Konstruktion von entsprechenden Faserkunststoffverbunden entwickelt und bewertet. Um das breite Anwendungsspektrum aufzuzeigen, werden drei unterschiedliche repräsentative Problemstellungen bearbeitet. Dabei wird für Mehrschichtverbunde die Festigkeitsoptimierung hinsichtlich eines bruchtypbezogenen Versagenskriteriums vorgenommen, ein Dämpfungsmodell zur Materialcharakterisierung entworfen sowie eine bivalente Optimierungsstrategie zur Auslegung von gewickelten Hochdruckbehältern erstellt. Die Grundlage der entwickelten Methoden bilden dabei jeweils stochastische naturanaloge Optimierungsheuristiken, da die betrachteten Aufgabenstellungen nicht konvex sind und derartige Verfahren flexibel eingesetzt werden können. / The full utilization of the light weight potential in the dimensioning of multilayer fiber reinforced composites requires suitable optimization tools, since a large number of design variables has to be taken into account. In this work, optimization algorithms and strategies for the solution of scientific questions for industrial applications are developed and evaluated in the design of corresponding fiber-plastic composites. In order to show the wide range of applications, three different representative topics have been chosen. It will carry out a strength optimization for multilayer composites with regard to a type-related failure criterion, devolop a damping model for material characterization and established a bivalent optimization strategy for the design of wound high-pressure vessels. The developed methods are based on stochastic natural-analog optimization heuristics, since the considered tasks are not convex and such methods can be used in a very flexible manner.
|
279 |
Untersuchung von Oxidationsprozessen an Siliziumnanodrähten mittels MolekulardynamikHeinze, Georg 24 July 2017 (has links)
Siliziumnanodrähte (SiNWs) bieten eine aussichtsreiche Grundlage zur Entwicklung neuartiger nanoelektronischer Bauelemente, wie Feldeffekttransistoren oder Sensoren. Dabei ist insbesondere die Oxidation der Drähte interessant, weil diese weitreichenden Einfluss auf die elektronischen Eigenschaften der Bauelemente hat, die aus den SiNWs gefertigt werden. Die Größe der untersuchten Strukturen erfordert eine atomistische Analyse des Oxidationsprozesses.
In der vorliegenden Arbeit wird der bisher wenig verstandene Beginn der Oxidation dünner Drähte molekulardynamisch simuliert, wobei als Potential ein reaktives Kraftfeld dient. Dabei wird sich intensiv mit dem Transfer elektrischer Ladungen zwischen Atomen unterschiedlicher Elektronegativitäten während der Simulationen auseinandergesetzt. Desweiteren werden Strukturen, die während der Oxidation von SiNWs der Orientierungen <100> und <110> bei Temperaturen von 300 K und 1200 K entstehen, untersucht. Ein Fokuspunkt dieser Untersuchungen ist die Analyse der Anzahl am Draht adsorbierter Sauerstoffatome während der frühen Oxidationsphase.
Darüber hinaus wird die Dichte der entstehenden Strukturen beleuchtet. Dies geschieht mit einer hohen radialen Auflösung und erstmalig während der gesamten Simulation. Hierbei zeigt sich, dass während des Übergangs von kristallinem Silizium zu amorphem Siliziumdioxid zwischen den Siliziumatomen Sauerstoff eingelagert wird, die Kristallstruktur des Siliziums sich zunächst jedoch noch nicht auflöst. Dadurch entsteht ein charakteristisches Muster hoher und niedriger Dichten, das von der ursprünglichen Kristallstruktur des SiNW abhängt.:Abbildungsverzeichnis
Abkürzungsverzeichnis
Symbolverzeichnis
1 Einleitung
2 Einführung zu Siliziumnanodrähten
2.1 Kristallstuktur von Silizium
2.2 Ideale Siliziumnanodrähte
2.3 Herstellung von Siliziumnanodrähten
3 Grundlagen der Molekulardynamik
3.1 Newtonsche Axiome
3.2 Einige grundlegende Begriffe der statistischen Physik
3.3 Molekulardynamik
3.4 Reaktives Kraftfeld
3.5 Methoden zur Beschreibung des Ladungstransfers
3.6 Thermostat und Barostat
3.7 Large-scale Atomic/Molecular Massively Parallel Simulator
4 Entwicklung des Modellsystems
4.1 Ausgangsstruktur
4.2 Vorrelaxation
4.3 Ablauf der Oxidation
4.4 Verwendeter ReaxFF-Parametersatz
4.5 Optimierung der Zeitschrittweite
4.5.1 Modellsystem, Relaxation und Oxidation
4.5.2 Festlegung der Zeitschrittweite
4.6 Optimierung der Systemlänge
4.6.1 Modellsystem, Relaxation und Oxidation
4.6.2 Festlegung der Systemlänge
4.7 Einfluss des globalen, instantanen Ladungstransfers auf die Simulation
4.7.1 Festlegung des Einsetzabstands
4.7.2 Vergleich mit Daten von Khalilov et al.
5 Variation von System- und Einsetztemperatur sowie Drahtorientierung
5.1 Variation von System- und Einsetztemperatur
5.1.1 Untersuchung des Oxidationsgrads
5.1.2 Untersuchung von Dichten und Grenzflächenpositionen
5.2 Variation der Drahtorientierung
5.2.1 Untersuchung des Oxidationsgrads
5.2.2 Untersuchung von Dichten und Grenzflächenpositionen
6 Zusammenfassung und Ausblick
6.1 Zusammenfassung
6.2 Ausblick
Literaturverzeichnis
|
280 |
A framework for efficient hierarchic plate and shell elementsWeise, Michael January 2017 (has links)
The Mindlin-Reissner plate model is widely used for the elastic deformation simulation of moderately thick plates. Shear locking occurs in the case of thin plates, which means slow convergence with respect to the mesh size. The Kirchhoff plate model does not show locking effects, but is valid only for thin plates. One would like to have a method suitable for both thick and thin plates.
Several approaches are known to deal with the shear locking in the Mindlin-Reissner plate model. In addition to the well-known MITC elements and other approaches based on a mixed formulation, hierarchical methods have been developed in the recent years. These are based on the Kirchhoff model and add terms to account for shear deformations.
We present some of these methods and develop a new hierarchic plate formulation. This new model can be discretised by a combination of C0 and C1 finite elements. Numerical tests show that the new formulation is locking-free and numerically efficient. We also give an extension of the model to a hierarchical Naghdi shell based on a Koiter shell formulation with unknowns in Cartesian coordinates.:1 Introduction
2 Plate theory
3 Shell theory
4 Conclusion
|
Page generated in 0.0293 seconds