• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of DNA Base Excision Repair in MTH1 Depleted T-cell Acute Lymphoblastic Leukemia cells

Mavajian, Zahra January 2018 (has links)
Genomic alterations may initiate cancer development as the consequence of endogenous or exogenous DNA damaging factors. Defects in DNA repair mechanisms may also facilitate cancer progression as well as accumulation of mutations which favor cancer cell survival. However, DNA repair pathways in cancer cells can be considered as their Achilles heel which are possible targets in order to compromise their survival. For instance, it has been demonstrated recently that inhibition of a protein called MTH1 via RNA interference (RNAi) or chemical inhibitors can stop tumor growth and triggers cell death by increasing the load of oxidative DNA damage. MTH1 is a hydrolase which converts 8-oxo-dGTP into 8-oxo-dGMP in order to prevent incorporation of oxidatively damaged nucleotides into DNA. In addition, DNA glycosylases which recognize and remove mismatched or damaged nucleotide pairs in DNA can also participate in repair of 8-oxo-dG, such as MUTYH repairing A:8-oxo-dG pair. The goal of the current study was to investigate the importance of MUTYH activity upon MTH1 depletion. The current study tried to answer whether simultaneous knock-down of MTH1 and MUTYH sensitizes cancer cells to oxidative stress and increases cell death. Both enzymes were simultaneously depleted in T cell acute lymphoblastic leukemia cells using RNAi. Then, we analyzed the efficiency of gene and protein knock-down by quantitative real-time-PCR and western blotting, respectively. Induction of cell death was also assessed by flow cytometric analysis of cell cycle. Afterwards, the effect of the treatments on DNA repair pathways was studied by analysis of gene expression of several DNA glycosylases and DNA polymerases using qRT-PCR. The results showed that concurrent depletion of both enzymes led to synergistic induction of cell death. Down-regulation of NEIL1 DNA glycosylase as well as POLQ and POLH DNA polymerases mRNAs adapted their DNA repair pathways to cope with induced damages under these conditions. Finally, the results of this study suggest that dual suppression of MTH1 and MUTYH may provide a new approach to reduce survival of T cell ALL.
12

Étude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase

Le Bihan, Yann-Vaï 11 May 2009 (has links) (PDF)
Les oxydations sur les bases nucléiques constituent l'une des sources principale d'apparition de lésions sur l'ADN, qui peuvent être mutagènes ou létales pour les cellules en l'absence de réparation de l'ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du système de réparation de l'ADN par excision de base (BER), initie la réparation d'un large panel de lésions de ce type via ses activités ADN glycosylase (excision de la base oxydée) et AP lyase (clivage du site abasique par β,δ-élimination). Nous avons réalisé des études fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de préciser la spécificité de substrat et le mécanisme catalytique de Fpg. Ainsi, nous avons pu mettre en évidence des déterminants structuraux permettant à cette enzyme d'accommoder des lésions de tailles très différentes dans son site actif, en l'occurrence des résidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substitués ou non en N7 par des adduits encombrants. D'autre part, nous avons caractérisé structuralement et fonctionnellement la reconnaissance et l'excision par Fpg d'une lésion pyrimidique, la 5-hydroxy-5-méthyle-hydantoïne (Hyd). Ainsi, nous avons montré que cette lésion appariée à une cytosine était un bon substrat pour l'enzyme, et nous avons précisé structuralement le mode de reconnaissance de l'Hyd par Fpg. D'autre part, nous avons mis en évidence un comportement inattendu de l'enzyme sur ce substrat. En l'occurrence, nous avons montré biochimiquement et structuralement qu'un pontage covalent se formait en quantités non négligeables entre Fpg et l'Hyd dans des conditions physiologiques. Mots clés : Réparation de l'ADN; Réparation par excision de base; Formamidopyrimidine-ADN glycosylase; 2,6- diamino-4-hydroxy-5-formamidopyrimidine; 7,8-dihydro-8-oxo-guanine; 5-hydroxy-5-méthyle-hydantoïne.
13

Etude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase

Le Bihan, Yann-VaÏ 11 May 2009 (has links) (PDF)
Les oxydations sur les bases nucléiques constituent l'une des sources principale d'apparition de lésions sur l'ADN, qui peuvent être mutagènes ou létales pour les cellules en l'absence de réparation de l'ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du système de réparation de l'ADN par excision de base (BER), initie la réparation d'un large panel de lésions de ce type via ses activités ADN glycosylase (excision de la base oxydée) et AP lyase (clivage du site abasique par ß,d-élimination). Nous avons réalisé des études fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de préciser la spécificité de substrat et le mécanisme catalytique de Fpg. Ainsi, nous avons pu mettre en évidence des déterminants structuraux permettant à cette enzyme d'accommoder des lésions de tailles très différentes dans son site actif, en l'occurrence des résidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substitués ou non en N7 par des adduits encombrants. D'autre part, nous avons caractérisé structuralement et fonctionnellement la reconnaissance et l'excision par Fpg d'une lésion pyrimidique, la 5-hydroxy-5-méthyle-hydantoïne (Hyd). Ainsi, nous avons montré que cette lésion appariée à une cytosine était un bon substrat pour l'enzyme, et nous avons précisé structuralement le mode de reconnaissance de l'Hyd par Fpg. D'autre part, nous avons mis en évidence un comportement inattendu de l'enzyme sur ce substrat. En l'occurrence, nous avons montré biochimiquement et structuralement qu'un pontage covalent se formait en quantités non négligeables entre Fpg et l'Hyd dans des conditions physiologiques.
14

Altered DNA Repair, Antioxidant and Cellular Proliferation Status as Determinants of Susceptibility to Methylmercury Toxicity in Vitro

Ondovcik, Stephanie Lee 20 June 2014 (has links)
Methylmercury (MeHg) is a pervasive environmental contaminant with potent neurotoxic, teratogenic and likely carcinogenic activity, for which the underlying molecular mechanisms remain largely unclear. Base excision repair (BER) is important in mitigating the pathogenic effects of oxidative stress, which has also been implicated in the mechanism of MeHg toxicity, however the importance of BER in MeHg toxicity is currently unknown. Accordingly, we addressed this question using: (1) spontaneously- and Simian virus 40 (SV40) large T antigen-immortalized oxoguanine glycosylase 1-null (Ogg1-/-) murine embryonic fibroblasts (MEFs); and, (2) human Ogg1 (hOgg1)- or formamidopyrimidine glycosylase (Fpg)-expressing human embryonic kidney (HEK) cells; reciprocal in vitro cellular models with deficient and enhanced ability to repair oxidatively damaged DNA respectively. When spontaneously-immortalized wild-type and Ogg1-/- MEFs were exposed to environmentally relevant, low micromolar concentrations of MeHg, both underwent cell cycle arrest but Ogg1-/- cells exhibited a greater sensitivity to MeHg than wild-type controls with reduced clonogenic survival and increased apoptosis, DNA damage and DNA damage response activation. Antioxidative catalase alleviated the MeHg-initiated DNA damage in both wild-type and Ogg1-/- cells, but failed to block MeHg-mediated apoptosis at micromolar concentrations. As in spontaneously immortalized MEFs, MeHg induced cell cycle arrest in SV40 large T antigen-immortalized MEFs, with increased sensitivity to MeHg persisting in the Ogg1-/- MEFs. Importantly, cells seeded at a higher density exhibited compromised proliferation, which protected against MeHg-mediated cell cycle arrest and DNA damage. In the reciprocal model of enhanced DNA repair, hOgg1- and Fpg-expressing cells appeared paradoxically more sensitive than wild-type controls to acute MeHg exposure for all cellular and biochemical parameters, potentially due to the accumulation of toxic intermediary abasic sites. Accordingly, our results provide the first evidence that Ogg1 status represents a critical determinant of risk for MeHg toxicity independent of cellular immortalization method, with variations in cellular proliferation and interindividual variability in antioxidative and DNA repair capacities constituting important determinants of risk for environmentally-initiated oxidatively damaged DNA and its pathological consequences.
15

Altered DNA Repair, Antioxidant and Cellular Proliferation Status as Determinants of Susceptibility to Methylmercury Toxicity in Vitro

Ondovcik, Stephanie Lee 20 June 2014 (has links)
Methylmercury (MeHg) is a pervasive environmental contaminant with potent neurotoxic, teratogenic and likely carcinogenic activity, for which the underlying molecular mechanisms remain largely unclear. Base excision repair (BER) is important in mitigating the pathogenic effects of oxidative stress, which has also been implicated in the mechanism of MeHg toxicity, however the importance of BER in MeHg toxicity is currently unknown. Accordingly, we addressed this question using: (1) spontaneously- and Simian virus 40 (SV40) large T antigen-immortalized oxoguanine glycosylase 1-null (Ogg1-/-) murine embryonic fibroblasts (MEFs); and, (2) human Ogg1 (hOgg1)- or formamidopyrimidine glycosylase (Fpg)-expressing human embryonic kidney (HEK) cells; reciprocal in vitro cellular models with deficient and enhanced ability to repair oxidatively damaged DNA respectively. When spontaneously-immortalized wild-type and Ogg1-/- MEFs were exposed to environmentally relevant, low micromolar concentrations of MeHg, both underwent cell cycle arrest but Ogg1-/- cells exhibited a greater sensitivity to MeHg than wild-type controls with reduced clonogenic survival and increased apoptosis, DNA damage and DNA damage response activation. Antioxidative catalase alleviated the MeHg-initiated DNA damage in both wild-type and Ogg1-/- cells, but failed to block MeHg-mediated apoptosis at micromolar concentrations. As in spontaneously immortalized MEFs, MeHg induced cell cycle arrest in SV40 large T antigen-immortalized MEFs, with increased sensitivity to MeHg persisting in the Ogg1-/- MEFs. Importantly, cells seeded at a higher density exhibited compromised proliferation, which protected against MeHg-mediated cell cycle arrest and DNA damage. In the reciprocal model of enhanced DNA repair, hOgg1- and Fpg-expressing cells appeared paradoxically more sensitive than wild-type controls to acute MeHg exposure for all cellular and biochemical parameters, potentially due to the accumulation of toxic intermediary abasic sites. Accordingly, our results provide the first evidence that Ogg1 status represents a critical determinant of risk for MeHg toxicity independent of cellular immortalization method, with variations in cellular proliferation and interindividual variability in antioxidative and DNA repair capacities constituting important determinants of risk for environmentally-initiated oxidatively damaged DNA and its pathological consequences.
16

Urinary Analysis of 8-Oxoguanine, 8-Oxoguanosine, Fapy-Guanine and 8-Oxo-2′-Deoxyguanosine by High-Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometry as a Measure of Oxidative Stress

Malayappan, Bhaskar, Garrett, Timothy J., Segal, Mark, Leeuwenburgh, Christiaan 05 October 2007 (has links)
A sensitive and specific assay aimed at measuring the oxidized nucleic acids, 8-oxoguanine (8-oxoGua), fapy-guanine (Fapy-Gua), 8-oxoguanosine (8-oxoGuo), 8-oxo-2′-deoxyguanosine (8-oxodG) has been developed by coupling reversed phase liquid chromatography (HPLC) with electrospray tandem mass spectrometry detection (MS/MS) and isotope dilution. The HPLC-MS/MS approach with multiple reaction monitoring (MRM) allowed for the sensitive determination of 8-oxoGua, Fapy-Gua, 8-oxoGuo, and 8-oxodG in human urine samples. There is no sample preparation needed except for the addition of buffer and 13C- and 15N-labeled internal standards to the urine prior to sample injection into the HPLC-MS/MS system. This method was tested in urine samples from non-smokers, smokers, non-smokers with chronic kidney disease (CKD) and smokers with CKD, to assess the level of oxidative damage to nucleic acids. Markers of both RNA and DNA damage were significantly increased in the smokers with and without CKD compared to their respective control subjects. These findings suggest that a highly specific and sensitive analytical method such as isotope dilution HPLC-MS/MS may represent a valuable tool for the measurement of oxidative stress in human subjects.
17

A Multi-Disciplinary Investigation of Essential DNA Replication Proteins

Gadkari, Varun V. 03 August 2017 (has links)
No description available.
18

Estudio comparativo de aceite de oliva y maíz sobre el metabolismo oxidativo de rata

Drehmer Rieger, Eraci 02 March 2009 (has links)
El objetivo de la presente tesis doctoral ha sido estudiar comparativamente los efectos de dietas liquidas control, de composición definida, conteniendo aceite de oliva o, de maíz como fuente lipídica, respectivamente de ácidos grasos monoinsaturados y poliinsaturados, sobre el metabolismo oxidativo de ratas. La presencia de dobles enlaces en la molécula de un ácido graso constituyen puntos vulnerables a las reacciones de oxidación generando los peróxidos lipídicos, compuestos potencialmente tóxicos que pueden producir graves daños celulares (alteración de la permeabilidad celular, alteración de las prostaglandinas, etc.). Frente a este daño oxidativo, los organismos aeróbicos cuentan con mecanismos de defensa intracelulares, sistemas antioxidantes tanto enzimáticos como no enzimáticos. Entre los antioxidantes destaca el alfa-tocoferol como antioxidante lipofílico mayoritario. En nuestro estudio también hemos considerado las posibles interacciones de los productos de la peroxidación lipídica con el DNA en hígado de ratas, a través de la inducción de la 8-oxo-2' deoxiguanosina, un marcador del daño oxidativo del DNA. Se observó que la actividad de las enzimas antioxidantes superoxido dismutasa (SOD), catalasa (CAT), glutatión peroxidasa (GPX), aumentaban en el hígado y en la grasa blanca de las ratas control alimentadas con aceite de oliva al comparar con los grupos control maíz. Sin embargo, en la grasa parda y en las células sanguíneas las actividades enzimáticas presentaban una tendencia a disminuir en los grupos control alimentados con aceite de oliva. Cuando se estudiaron los niveles del glutatión reducido (GSH) se observó que, tanto en el hígado como en las células sanguíneas de las ratas control alimentadas con aceite de maíz, los niveles de este tripéptido se habían reducido. Sin embargo, en los hepatocitos de las mismas ratas estos niveles habían aumentado. Esto pone de manifiesto el efecto protector de la vitamina E como antioxidante. Se obse / Drehmer Rieger, E. (2007). Estudio comparativo de aceite de oliva y maíz sobre el metabolismo oxidativo de rata [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4181

Page generated in 0.0347 seconds