• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 1
  • 1
  • Tagged with
  • 16
  • 11
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouveaux gels organiques et carbonés dérivés de composés phénoliques naturels et synthétiques / New organic and carbon gels derived from natural and synthetic phenolic compounds

Szczurek, Andrzej 07 November 2011 (has links)
Cette thèse décrit de nouveaux gels de carbone moins onéreux, mais aux caractéristiques équivalentes, à celles de leurs traditionnels homologues dérivés de résine résorcinol - formaldéhyde (RF) et séchés par CO2 supercritique avant pyrolyse. Pour parvenir à ce but, deux voies ont été explorées simultanément : (1) la recherche de précurseurs bon marché capables de former des gels chimiques de densité et de propriétés mécaniques convenables ; (2) la recherche de modes de séchage alternatifs, tels que la lyophilisation et le séchage à l'acétone ou à l'éthanol supercritiques. Après pyrolyse, de nouveaux cryogels et aérogels de carbone, respectivement, ont été obtenus. La moitié du travail présenté ici repose sur l'utilisation de tannins (flavonoïdes) de mimosa, des molécules bon marché d'origine naturelle. On montre que l'utilisation de tannins permet d'obtenir des carbones hautement poreux aux caractéristiques texturales bien plus diversifiées et, dans un certain nombre de cas, équivalentes à celles des homologues dérivés de RF. Ces derniers ont un coût de production cinq fois plus élevé que ceux des aérogels de carbone à base de tannins rapportés ici, qui sont donc les moins chers du marché. / This thesis describes new carbon gels that are much cheaper than their traditional counterparts derived from resorcinol - formaldehyde (RF) resin dried with supercritical CO2 before pyrolysis, but presenting similar features. Such result was obtained through two parallel routes: (1) the search for cheap precursors able to form chemical gels having suitable densities and mechanical properties; (2) the search for alternative drying methods, such as freeze-drying and supercritical drying with acetone or ethanol. After pyrolysis, new carbon cryogels and aerogels, respectively, were obtained. Half of the work presented here is thus based on the use of (flavonoid) mimosa tannins, which are cheap natural molecules. We show that tannins allow the preparation of highly porous carbons presenting much more versatile textural characteristics, but in some cases similar to those of materials derived from RF. The latter have a production cost five times higher than that of the tannin-based carbon aerogels reported here, which are definitely the cheapest of the market.
2

Étude des propriétés mécaniques des aérogels de silice : modélisation en dynamique moléculaire / Molecular Dynamics simulations : study of the mechanical properties of silica aerogels

Gonçalves, William 22 November 2016 (has links)
Les aérogels de silice se classent parmi les matériaux dits superisolants grâce à leurs propriétés thermiques exceptionnelles. Leur très faible conductivité thermique (< 15 mW.m-1.K-1) représente un pouvoir d’isolation convoité par de nombreux secteurs d’activité comme l’isolation thermique du bâtiment, l’aérospatial, le transport, l’emballage, etc.Ces matériaux amorphes nanostructurés atteignent des taux de porosité supérieurs à 90% et sont architecturés sur plusieurs ordres de grandeur. Leur structure se compose d’un réseau poreux tridimensionnel de silice à l’échelle nanométrique. Celui-ci forme un agrégat de plusieurs centaines de nanomètres qui est lui-même la brique élémentaire d’un second réseau poreux à l’échelle mésoscopique. L'architecture 3D nanométrique imbriquée pores / particules, dont la taille est proche du libre parcours moyen des phonons, est à l’origine des propriétés thermiques exceptionnelles des aérogels de silice, cependant, elle est aussi la source de leurs faibles propriétés mécaniques.Cette thèse se focalise sur l’étude à l’échelle nanométrique du comportement mécanique des aérogels de silice par dynamique moléculaire. La première partie porte sur le potentiel interatomique utilisé comme paramètre d’entrée des simulations et plus particulièrement sur sa capacité à reproduire les surfaces de silice amorphe. Ce potentiel, développé pour modéliser les propriétés structurales et énergétiques de la silice amorphe dense, démontre une bonne transférabilité quant aux propriétés de surface. Il permet de simuler avec fiabilité des matériaux de grandes surfaces spécifiques avec des temps de calcul acceptables. La seconde partie s'intéresse successivement à la génération de la nanostructure des aérogels, à la caractérisation des textures formées et à l'étude du comportement mécanique. Les résultats montrent l’influence de la vitesse de déformation et des effets de taille sur l’étude du comportement mécanique en traction et en compression. Les propriétés élastiques sont correctement caractérisées et les mécanismes de déformation identifiés. Enfin des agrégats sphériques de l’ordre de la centaine de nanomètres sont générés afin d’étudier leur comportement mécanique sous compression. Les lois de comportement de ces agrégats, comparables en taille à ceux observés expérimentalement, pourront ensuite servir de paramètres d’entrée et nourrir les simulations aux échelles supérieures / Thanks to their exceptional thermal properties, silica aerogels are considered as superinsulating materials. Their very weak thermal conductivity (< 15 mW.m-1.K-1) stands for an important insulating power which has many industrial applications such as building insulation, aerospacial, transport, packaging, etc.Those amorphous architectured materials can reach more than 90% of porosity and present a porous architecture at different length scales. Their structure is composed by a three dimensional porous and tortuous network at nanometric scale. This network forms an aggregate of a hundred nanometers length which is also the particle of a second porous network at mesoscopic scale. The 3D nanometric architecture of pores / particles, is at the origin of the exceptional thermal properties but is also responsible of the weak mechanical properties.This thesis focuses on the study at nanoscale of the mechanical behavior of silica aerogels using Molecular Dynamics simulations. The first part of the thesis concerns the interatomic potential used as parameter of the simulations and his capacity of reproducing amorphous silica surface properties. This potential has been developped for dense amorphous silica. It also shows a good transferability to model amorphous silica surface properties. It can be used to simulate large volumes of high specific area materials with optimized computational time. The purpose of the second part of this thesis is to generate the porous nanostructure of silica aerogels, to characterize its structure and to study its mechanical properties. The results show the influences of the strain rate and of the simulation box size on the mechanical behavior during tensile and compression tests. Elastic properties are correctly computed and the deformation mechanisms are identified. Finally, hundred nanometers aggregates are generated and their behavior under compression is studied. The behavior laws of these aggregates, comparable in length with the experimental ones, provide precious information for a multiscale model
3

Synthèse et caractérisation d’aérogels composites à base de polysaccharides et de silice pour la superisolation thermique. / Synthesis and characterization of polysaccharide-silica composite aerogels for thermal superinsulation.

Demilecamps, Arnaud 07 July 2015 (has links)
L'amélioration des propriétés des matériaux pour l'isolation thermique est un défi clé pour la réduction de la consommation énergétique et de l'émission de gaz à effets de serre. Cette thèse a pour objectif l'élaboration de matériaux composites nanostructurés, combinant les bonnes propriétés mécaniques des bio-aérogels avec les excellentes propriétés d'isolation thermique des aérogels de silice. Deux polysaccharides ont été étudiés comme source de bio-aérogels : la cellulose et la pectine. Deux stratégies pour l'élaboration des composites ont été considérées : un procédé « one-pot »; et l'imprégnation d'une matrice polysaccharide poreuse. Les aérogels composites ont été obtenus par séchage au CO2 supercritique. Alors que la méthode « one-pot » génère des particules de silice micrométriques au sein d'un réseau poreux, le procédé d'imprégnation a permis d'obtenir un réseau nanostructuré interpénétré. La surface spécifique atteint 700-800 cm².g-1, les propriétés mécaniques sont améliorées par rapport aux aérogels de silice et la conductivité thermique est réduite comparée à l'Aerocellulose pure. Utiliser une cellulose hydrophobisée chimiquement, la tritylcellulose, comme matrice d'imprégnation, a permis d'obtenir des composites hydrophobes ayant un angle de contact avec l'eau de 133° et des conductivités thermiques de 0.021-0.022 W.m-1.K-1. Les aérogels à base de pectine réticulée et leurs composites avec la silice présentent des densités extrêmement basses (0.05 g.cm3) et des conductivités thermiques de 0.013-0.022 W.m-1.K-1. / Improving the thermal insulation of materials is a key challenge to lower global energy consumption and greenhouse effect gas emissions in the coming decades. This thesis focuses on the preparation and characterization of nanostructured composite materials combining the good mechanical properties of bio-aerogels with the excellent thermal insulation properties of silica aerogels. Two polysaccharides were used to make bio-aerogels: cellulose and pectin. Two strategies aiming to elaborate composite materials were investigated: “one-pot” process and impregnation of a porous “wet” polysaccharide matrix by polyethoxydisiloxane. Drying with supercritical CO2 yields the composite aerogels. While the one-pot method gave micron-sized silica particles embedded in a porous cellulose network, impregnation process allowed obtaining a nanostructured interpenetrated network of cellulose and silica. The specific surface area was 700-800 cm².g-1, the mechanical properties improved as compared to neat silica aerogels and thermal conductivity lower than that of cellulose aerogels. Using a chemically hydrophobized cellulose, tritylcellulose, as the impregnation matrix, hydrophobic composites were obtained showing a contact angle with water of 133° and thermal conductivities of 0.021 W.m-1.K-1. Aerogels from cross-linked pectin and their composites with silica show extremely low densities (around 0.05 g/cm3 for the neat pectin aerogels) and thermal conductivities in the 0.013-0.022 W.m-1.K-1 range.
4

Aérogels à base de cellulose : propriétés et production sous forme de billes / Cellulose based aerogels : properties and shaping as beads

Druel, Lucile 10 May 2019 (has links)
Les aérogels sont des matériaux ultra-poreux et nanostructurés aux possibilités d’applications variées. Une nouvelle génération d’aérogels à base de polysaccharides est aujourd’hui en plein essor : les bio-aérogels. Ils sont particulièrement prometteurs pour leur respect de l'environnement et leur biocompatibilité. De nos jours, la production de bio-aérogels sous forme de monolithes est maîtrisée. Pour optimiser leur procédé de fabrication et pour répondre à des besoins spécifiques d'applications (pharmaceutiques, alimentaire, absorption ou adsorption, etc), les aérogels doivent avoir la forme de particules. Ce travail était focalisé sur la préparation et caractérisation de billes d’aérogels à base de cellulose et a été réalisé dans le cadre du projet Européen « Nanohybrids ». Deux objectifs principaux ont été atteints. Le premier était la préparation et la compréhension des propriétés de nouveaux matériaux, tout en diminuant leurs coûts de production. Deux types de matériaux poreux ont été produits et étudiés : • Des xérogels à base de cellulose (en évitant le séchage sous CO2 supercritique), avec des propriétés comparables à celles de leurs homologues aérogels (densité autour de 0,12 g cm-3 et surface spécifique jusqu'à 300 m² g-1). • Des aérogels à base de pâte à papier. L'influence de chaque composant de la pâte (cellulose, hémicellulose, lignine) et de leur teneur sur la structure et les propriétés des aérogels a été évaluée. Le deuxième objectif était le développement de méthodes de mise en forme d'aérogels de cellulose sous forme de billes de différentes tailles. Deux techniques ont été appliquées avec succès : • Le "JetCutting" : des billes d’aérogels à base de cellulose et de pâte à papier, de taille variant de centaines de micromètres à quelques millimètres, dissout dans deux types solvants (NaOH-eau et liquides ioniques) ont été obtenus. • L'émulsification : des particules d’aérogels de cellulose d’une dizaine de micromètres ont été préparé par le développement d'une nouvelle méthode d'émulsification-coagulation. / Aerogels are ultra-porous and nanostructured materials with a wide range of applications. Bio-aerogels is a new generation of polysaccharide-based aerogels. These fast developing materials are particularly promising for their environmental friendliness and biocompatibility. Nowadays, the production of bio-aerogels in the form of monoliths is mastered. To optimize their manufacturing process and to meet specific application needs (pharmaceutical, food, absorption or adsorption, etc.), aerogels must be in the form of particles. This work focused on the preparation and characterization of cellulose aerogel beads and was conducted in the framework of the European project "Nanohybrids". Two main objectives were achieved. The first was the preparation and understanding of the properties of new materials while reducing their production costs. Two types of porous materials were produced and studied: • Cellulose-based xerogels (obviating drying under supercritical CO2), with properties comparable to those of their aerogel counterparts (density around 0.12 g cm-3 and specific surface area up to 300 m² g-1). • Pulp-based aerogels. The influence of each pulp component (cellulose, hemicellulose, lignin) and their content on the structure and properties of aerogels was assessed. The second objective was the development of methods for shaping cellulose aerogels into beads of different sizes. Two techniques were successfully applied: • JetCutting: aerogel beads based on cellulose and pulps, varying in size from hundreds of micrometres to a few millimetres, dissolved in two types of solvents (NaOH-water and ionic liquids) were obtained. • Emulsification: cellulose aerogel particles of about few tens of micrometres were prepared by the development of a new method of emulsification-coagulation.
5

Transferts conductifs dans des aérogels de silice, du milieu nanoporeux autosimilaire aux empilements granulaires

Spagnol, Sandra 15 November 2007 (has links) (PDF)
Les aérogels de silice sont des matériaux nanoporeux ayant des propriétés physiques remarquables. Leur performance thermique pourrait intéresser le domaine de la superisolation des bâtiments. Une étude approfondie des transferts conductifs dans ces milieux a été menée numériquement et expérimentalement.<br /><br />Sous forme monolithique, les aérogels de silice sont des matériaux autosimilaires constitués d'air piégé dans des nanopores et qui présentent une grande tortuosité du squelette solide. La modélisation des transferts conductifs à partir de l'équation de diffusion thermique en deux dimensions a été réalisée sur des géométries originales et représentatives de la structure interne. Plusieurs types de géométries ont été testés. Celles qui donnent le meilleur compromis sont des pavages périodiques dont l'élément générateur est un flocon de Von Koch, fractale déterministe.<br /><br />A partir des résultats obtenus sous forme monolithique à l'échelle du pore, les transferts conductifs d'empilements granulaires réguliers ont été étudiés à l'échelle macroscopique et en deux dimensions. L'approche originale vient de la prise en compte de la résistance de contact entre les grains dans le modèle numérique. Une analyse paramétrique est alors proposée en utilisant la méthode des plans d'expériences.<br /><br />Afin de confronter les résultats des modélisations numériques pour les matériaux sous forme monolithique et granulaire, un dispositif expérimental du film chaud, mince et gardé a été mis en place. Il permet de caractériser la conductivité thermique et d'analyser son comportement en fonction de la pression de l'air dans les pores et de la force exercée sur l'échantillon.
6

Transitions de Phase de l'Hélium dans les aérogels de silice

GABAY, Claude 14 June 2001 (has links) (PDF)
Ce travail expérimental est une contribution à l'étude de deux phénomènes critiques de l'hélium dans les aérogels de silice. Dans le but de détecter d'éventuels changements de classe d'universalité du point critique liquide-gaz pour l'hélium adsorbé dans les aérgels, nous avons développé un capteur de densité original constitué d'un pendule simple dont la masse est celle de l'aérogel et de l'hélium qu'il contient. Ce dispositif a été validé en étudiant, pour sept échantillons différents, l'apparition de la superfluidité de l'hélium. Des résultats connus ont été ainsi reproduits, et nous apportons des informations complémentaires sur le lien entre la dimension fractale des aérogels et l'exposant critique $\zeta$ de la densité superfluide. Ce pendule a ensuite permis l'étude de la condensation de l'hélium dans les aérogels, à proximité du point critique liquide-gaz. Nos résultats sont largement contradictoires avec ceux reportés dans la littérature sur ce même système : D'après nos mesures, à la pression de saturation de l'hélium libre, le remplissage en liquide est incomplet. Aucune transition bien définie du premier ordre ne semble présente à des pressions inférieures à la pression de condensation de l'hélium libre. Il existe cependant une région ou la densité de l'hélium varie très rapidement avec la pression. Ces résultats ressemblent en partie à ceux obtenus dans des matériaux poreux plus traditionnels que les aérogels, où ils sont interprètés en terme de condensation capillaire. Enfin, des constantes de temps extrêmement grandes sont observées dans la région de condensation capillaire. Ce type de ralentissement est attendu théoriquement, et il serait dû ici au mouvement d'une interface (2D) dans un milieu désordonné.
7

Aérogels à base de cellulose et de pectine : Vers leur nano-structuration

Rudaz, Cyrielle 06 December 2013 (has links) (PDF)
Le but de ce travail de thèse est de développer des aérogels biosourcés, mécaniquement résistants et thermiquement très isolants (voire super-isolants). Les aérogels à base de cellulose, souvent appelés " aérocelluloses ", sont connus pour être très poreux et extrêmement légers. Ils présentent en revanche une grande dispersion de tailles de pores, donnant de propriétés thermiques relativement modestes. Nous avons étudié plusieurs approches pour améliorer la morphologie des aérocelluloses: la modification du solvant, la réticulation chimique de la cellulose et la formation d'hybrides avec d'autres polymères. La réticulation de la cellulose a réellement permis d'affiner la structure poreuse de l'aérocellulose vers une nano-structuration ce qui a amélioré la conductivité thermique, s'approchant du domaine de la super-isolation (0.026 W.m-1.K-1). Un autre polysaccharide, la pectine, a été utilisé pour préparer un aérogel également poreux et très léger, " l'aéropectine ". L'aéropectine et l'aérocellulose présentent de fortes similitudes dans leur morphologie. Cependant, l'aéropectine possède de meilleures propriétés thermiques, super-isolantes (0.020 W.m-1.K-1), grâce à la nano-structuration du réseau poreux. Ces aérogels sont 100% biosourcés avec un faible impact environnemental, et sont très prometteurs non seulement pour l'isolation thermique mais également pour de nombreuses autres applications, telle que la libération contrôlée de médicaments ou la catalyse. La formation d'aérogel de silice à l'intérieur de la structure poreuse d'aéropectine a augmenté la surface spécifique jusqu'à 700 m2/g et a permis de diminuer la conductivité thermique (0.017 W.m-1.K-1).
8

Elaboration d'aérogels d'hydroxydes doubles lamellaires et de bionanocomposites à base d'alginate

Touati, Souad 14 November 2013 (has links) (PDF)
Cette thèse présente un travail sur l'obtention d'aérogels d'HDL par séchage en conditions CO2 supercritique et l'élaboration de nouveaux bionanocomposites formés par la coprécipitation d'hydroxydes doubles lamellaire (HDL) dans l'espace confiné des billes d'alginate. Grâce à la combinaison d'une synthèse par coprécipitation Flash et d'un séchage en conditions supercritiques au CO2, des aérogels d'HDL possédant des surfaces spécifiques élevées sont élaborés. Parallèlement, l'alginate est utilisé comme une matrice de confinement pour la précipitation inorganique d'HDL. D'une part, les billes d'alginate sont synthétisées par complexation des ions Ca2+ et la coprécipitation des phases HDL s'effectue en réalisant des imprégnations successives de réactifs. D'autre part, des billes d'alginate sont formées directement en présence des cations divalents (Mg2+, Ni2++, Co2+, ...) et des cations des métaux trivalents (Al3+), précurseurs des composés inorganiques. La coprécipitation des HDL se produit dans ce cas lors d'une étape d'imprégnation dans une solution d'hydroxyde de sodium. Tous les composés HDL, aérogels ou encore bionanocomposites sont caractérisés en détail par DRX, spectroscopie IR, MEB/MET, adsorption/désorption d'azote et ATG/DTG, pour obtenir un meilleur aperçu de la structure des particules, de leur taille et de leur morphologie. Des études menées sur l'adsorption de la trypsine pour les aérogels ou encore sur les performances d'électrodes modifiées HDL-alginate ont permis de montrer qu'il était possible d'améliorer les performances des HDL en augmenter leur porosité et en élaborant des bionanocomposites.
9

Colloidal Synthesis and Controlled 2D/3D Assemblies of Oxide Nanoparticles / Synthèse colloïdale et assemblages 2D/3D contrôlés de nanoparticules d'oxydes

Odziomek, Mateusz Janusz 15 December 2017 (has links)
La nanotechnologie est devenue un domaine clé de la technologie du XXIe siècle. L’important développement des approches pour la synthèse des nanoparticules (NPs) avec une composition, une taille et une forme désirées rend compte du potentiel de leur utilisation comme « blocs de construction » pour des structures de plus grande échelle. Cela permet d’envisager à la fois la fabrication de matériaux fonctionnels et de dispositifs directement à partir de colloïdes par approche ascendante et la conception de matériaux sur plusieurs échelles de grandeur. Le procédé utilise l'assemblage ou l'auto-assemblage de NPs et conduit à des matériaux avec des architectures différentes notamment 1D (bâtonnets), 2D (films) ou 3D (super-réseaux ou gels). Cependant, la plupart des assemblages 3D sont limités à l'échelle micrométrique et sont difficiles à contrôler. Pratiquement, la seule voie permettant la préparation de structures 3D macroscopiques à partir de NPs est la gélification et la préparation d'aérogels. Une voie alternative consiste à disperser les NPs dans une matrice, conduisant ainsi à un matériau composite massif, avec des NPs non agrégées distribuées de manière homogène.Le présent travail est consacré au développement de matériaux à partir de NPs d'oxydes métalliques (principalement Y3Al5O12: Ce et Li4Ti5O12) de différentes dimensions et pour diverses applications. La première partie de ce travail décrit la synthèse de NPs de YAG: Ce et de LTO par approche glycothermale. Dans le cas du YAG: Ce, les conditions de réaction ont été ajustées de façon appropriée pour obtenir des nanocristaux (NCs) non agrégés de quelques nanomètres. Des solutions colloïdales de différentes concentrations contenant de tels NCs ont été utilisées, pour la fabrication par la technique de « spin-coating », de films minces avec une épaisseur contrôlable. A l’inverse, la synthèse de LTO conduit à des NPs agrégées dans une structure hiérarchique très bénéfique pour les batteries au lithium. La grande surface spécifique et la porosité du matériau obtenu assurent en effet un échange efficace des ions lithium entre l'électrolyte et le matériau d'anode.Par ailleurs, les NCs de YAG: Ce ont été utilisés pour la préparation de matériaux monolithiques de grande taille avec une porosité et une transparence élevées. Pour cela, la solution colloïdale de NCs a été gélifiée par le changement brusque de la constante diélectrique du solvant de dispersion des NCs. Les gels ainsi obtenus ont été par la suite séchés de manière supercritique, donnant ainsi des aérogels à base de NPs de YAG:Ce, avec une porosité et une transparence élevées. La même approche s'est avérée appropriée pour d'autres systèmes à base de NPs de GdF3 ou de mélanges de NPS de YAG: Ce et de GdF3.Alternativement, les NPs de YAG: Ce ont été incorporées dans des aérogels de silice formant ainsi des aérogels macroscopiques robustes et hautement transparents présentant les propriétés des NPs incorporées. Ces aérogels composites ont été utilisés en tant que nouveaux types de capteurs pour les rayonnements ionisants de basse énergie dans les liquides ou les gaz. Leur porosité élevée permet un contact optimal entre l'émetteur radioactif et le scintillateur assurant ainsi une bonne récupération de l'énergie radioactive. / Nanotechnology has become a key domain of technology in XXI century. The great development of the synthetic approaches toward nanoparticles (NPs) with desired composition, size and shape expose the potential of their use as building blocks for larger scale structures. It allows fabrication of functional materials and devices directly from colloids by bottom-up approach, thus involving possibility of material design over several length scales. The process is referred to NPs assembly or self-assembly and leads to materials with varying architectures as for instance 1D (rods), 2D (films) or 3D (superlattices or gels). However most of 3D assemblies are limited to the micrometric scale and are difficult to control. Practically the only route allowing preparation of macroscopic 3D structures from NPs is their gelation and preparation of aerogels. As an alternative, NPs can be embedded in some matrix creating bulk composite material, with homogenously distributed non-aggregated NPs.Therefore, this work is devoted to development of materials with different dimensionalities for various applications from metal oxides NPs (mainly Y3Al5O12:Ce and Li4Ti5O12). The first part describes the syntheses of YAG:Ce and LTO NPs by glycothermal approach. In the case of YAG:Ce, the reactions conditions were appropriately adjusted in order to obtain non-aggregated nanocrystals (NCs) of few nanometers. The colloidal solution containing such NCs with different concentration was used for fabrication of thin films with controllable thickness by spin-coating method. Contrary, the synthesis of LTO led to aggregated NPs with hierarchical structuration which was highly beneficial for Li-ion batteries. The large surface area and porosity ensured efficient exchange of Li ions between electrolyte and anode material. Furthermore, the YAG:Ce NCs were used for preparation of macroscopic monoliths with high porosity and transparency. For that reason, colloidal solution of NCs was gelled by the abrupt change of solvent dielectric constant. The gels were further supercritically dried yielding YAG:Ce NPs-based aerogels with high porosity and transparency. The same approach turned o be appropriate for other systems like GdF3 or hybrid aerogels of YAG:Ce and GdF3.Alternatively, YAG:Ce NPs were incorporated into silica aerogels forming robust macroscopic and highly transparent aerogels exhibiting properties of incorporated NPs. They served for novel type of sensors for low-energy ionizing radiation in liquids and gases. Their high porosity assured well-developed contact between radioactive emitter and the scintillator ensuring good harvesting of radioactive energy.
10

Elaboration d'aérogels d'hydroxydes doubles lamellaires et de bionanocomposites à base d'alginate / Elaboration of LDH aerogel  and alginate based nanocomposites

Touati, Souad 14 November 2013 (has links)
Cette thèse présente un travail sur l’obtention d’aérogels d’HDL par séchage en conditions CO2 supercritique et l’élaboration de nouveaux bionanocomposites formés par la coprécipitation d’hydroxydes doubles lamellaire (HDL) dans l'espace confiné des billes d'alginate. Grâce à la combinaison d’une synthèse par coprécipitation Flash et d’un séchage en conditions supercritiques au CO2, des aérogels d’HDL possédant des surfaces spécifiques élevées sont élaborés. Parallèlement, l’alginate est utilisé comme une matrice de confinement pour la précipitation inorganique d’HDL. D’une part, les billes d'alginate sont synthétisées par complexation des ions Ca2+ et la coprécipitation des phases HDL s’effectue en réalisant des imprégnations successives de réactifs. D’autre part, des billes d'alginate sont formées directement en présence des cations divalents (Mg2+, Ni2++, Co2+, ...) et des cations des métaux trivalents (Al3+), précurseurs des composés inorganiques. La coprécipitation des HDL se produit dans ce cas lors d'une étape d'imprégnation dans une solution d'hydroxyde de sodium. Tous les composés HDL, aérogels ou encore bionanocomposites sont caractérisés en détail par DRX, spectroscopie IR, MEB/MET, adsorption/désorption d’azote et ATG/DTG, pour obtenir un meilleur aperçu de la structure des particules, de leur taille et de leur morphologie. Des études menées sur l’adsorption de la trypsine pour les aérogels ou encore sur les performances d’électrodes modifiées HDL-alginate ont permis de montrer qu’il était possible d'améliorer les performances des HDL en augmenter leur porosité et en élaborant des bionanocomposites. / In this work, we investigated both the use of CO2 supercritical drying conditions and the use of biopolymer to modify the growth and aggregation of inorganic Layered Double Hydroxide (LDH) particles. Indeed, one possibility to enhance their performances is to increase the LDH porosity and to design them as nanostructured open structure. Thanks to the combinaison of fast coprecipitation and CO2 supercritical drying, highly porous LDH aerogels were obtained with enhanced textural properties. In parallel, the coprecipitation of Layered Double Hydroxides (LDH) in the confined space of alginate beads is reported. In our approach, Alginate acts as a template to support and confined the inorganic precipitation. In one hand, beads made of Alginate are synthesized by complexation of Ca2+ ions and LDH phases are coprecipitated using successive impregnations of reactants. In another hand, Alginate beads are formed directly in presence of the divalent (Mg2+, Ni2+, Co2+,…) and trivalent metal cations (Al3+), precursors of the inorganic compounds. LDH coprecipitation then occurs during a further impregnation step in a sodium hydroxide solution. All the LDH aerogels and LDH nanocomposites beads are deeply characterized using XRD, SEM/TEM, FTIR spectroscopic, adsorption/desorption of nitrogen and TGA/DTG to get better insight on particle structure, size and morphology Aerogels display enhanced adsorption behavior toward trypsine immobilization whereas a net improvement of the electrochemical response is noticed for the NiAl based bionanocomposites prepared by confined coprecipitation into Alginate.

Page generated in 0.0417 seconds