761 |
Von Neumann Algebras for Abstract Harmonic AnalysisZwarich, Cameron January 2008 (has links)
This thesis develops the theory of operator algebras from the perspective of abstract harmonic analysis, and in particular, the theory of von Neumann algebras. Results from operator algebras are applied to the study of spaces of coefficient functions of unitary representations of locally compact groups, and in particular, the Fourier algebra of a locally compact group. The final result, which requires most of the material developed in earlier sections, is that the group von Neumann algebra of a locally compact group is in standard form.
|
762 |
Perspectives on the Formalism of Quantum TheoryUdudec, Cozmin January 2012 (has links)
Quantum theory has the distinction among physical theories of currently underpinning
most of modern physics, while remaining essentially mysterious, with no general agreement about the nature of its principles or the underlying reality. Recently, the rise of quantum information science has shown that thinking in operational or information-theoretic terms can be extremely enlightening, and that a fruitful direction for understanding quantum theory is to study it in the context of more general probabilistic theories. The framework
for such theories will be reviewed in the Chapter Two.
In Chapter Three we will study a property of quantum theory called self-duality, which is a correspondence between states and observables. In particular, we will show that self-duality follows from a computational primitive called bit symmetry, which states that every logical bit can be mapped to any other logical bit by a reversible transformation.
In Chapter Four we will study a notion of probabilistic interference based on a hierarchy of interference-type experiments involving multiple slits. We characterize theories which do not exhibit interference in experiments with k slits, and give a simple operational interpretation. We also prove a connection between bit symmetric theories which possess certain natural transformations, and those which exhibit at most two-slit interference.
In Chapter Five we will focus on reconstructing the algebraic structures of quantum theory. We will show that the closest cousins to standard quantum theory, namely the finite-dimensional Jordan-algebraic theories, can be characterized by three simple principles: (1) a generalized spectral decomposition, (2) a high degree of symmetry, and (3) a generalization of the von Neumann-Luders projection postulate. Finally, we also show that the absence of three-slit interference may be used as an alternative to the third principle.
In Chapter Six, we focus on quantum statistical mechanics and the problem of understanding how its characteristic features can be derived from an exact treatment of the underlying quantum system. Our central assumptions are sufficiently complex dynamics encoded as a condition on the complexity of the eigenvectors of the Hamiltonian, and an information theoretic restriction on measurement resources. We show that for almost all Hamiltonian systems measurement outcome probabilities are indistinguishable from the uniform distribution.
|
763 |
Algebraic Aspects of Multi-Particle Quantum WalksSmith, Jamie January 2012 (has links)
A continuous time quantum walk consists of a particle moving among the vertices of a graph G. Its movement is governed by the structure of the graph. More formally, the adjacency matrix A is the Hamiltonian that determines the movement of our particle. Quantum walks have found a number of algorithmic applications, including unstructured search, element distinctness and Boolean formula evaluation. We will examine the properties of periodicity and state transfer. In particular, we will prove a result of the author along with Godsil, Kirkland and Severini, which states that pretty good state transfer occurs in a path of length n if and only if the n+1 is a power of two, a prime, or twice a prime. We will then examine the property of strong cospectrality, a necessary condition for pretty good state transfer from u to v.
We will then consider quantum walks involving more than one particle. In addition to moving around the graph, these particles interact when they encounter one another. Varying the nature of the interaction term gives rise to a range of different behaviours. We will introduce two graph invariants, one using a continuous-time multi-particle quantum walk, and the other using a discrete-time quantum walk. Using cellular algebras, we will prove several results which characterize the strength of these two graph invariants.
Let A be an association scheme of n × n matrices. Then, any element of A can act on the space of n × n matrices by left multiplication, right multiplication, and Schur multiplication. The set containing these three linear mappings for all elements of A generates an algebra. This is an example of a Jaeger algebra. Although these algebras were initially developed by Francois Jaeger in the context of spin models and knot invariants, they prove to be useful in describing multi-particle walks as well. We will focus on triply-regular association schemes, proving several new results regarding the representation of their Jaeger algebras. As an example, we present the simple modules of a Jaeger algebra for the 4-cube.
|
764 |
Extended affine lie algebras and extended affine weyl groupsAzam, Saeid 01 January 1997 (has links)
This thesis is about extended affine Lie algebras and extended affine Weyl groups. In Chapter I, we provide the basic knowledge necessary for the study of extended affine Lie algebras and related objects. In Chapter II, we show that the well-known twisting phenomena which appears in the realization of the twisted affine Lie algebras can be extended to the class of extended affine Lie algebras, in the sense that some extended affine Lie algebras (in particular nonsimply laced extended affine Lie algebras) can be realized as fixed point subalgebras of some other extended affine Lie algebras (in particular simply laced extended affine Lie algebras) relative to some finite order automorphism. We show that extended affine Lie algebras of type A<sub>1</sub>, B, C and BC can be realized as twisted subalgebras of types A<sub>§¤</sub>(l ¡Ã 2) and D algebras. Also we show that extended affine Lie algebras of type BC can be realized as twisted subalgebras of type C algebras. In Chapter III, the last chapter, we study the Weyl groups of reduced extended affine root systems. We start by describing the extended affine Weyl group as a semidirect product of a finite Weyl group and a Heisenberg-like normal subgroup. This provides a unique expression for the Weyl group elements which in turn leads to a presentation of the Weyl group, called a presentation by conjugation. Using a new notion, called the index, which is an invariant of the extended affine root systems, we show that one of the important features of finite and affine root systems (related to Weyl group) holds for the class of extended affine root systems. We also show that extended affine Weyl groups (of index zero) are homomorphic images of some indefinite Weyl groups where the homomorphism and its kernel are given explicitly.
|
765 |
Convolution type operators on cones and asymptotic spectral theoryMascarenhas, Helena 28 January 2004 (has links) (PDF)
Die Arbeit beschäftigt sich mit Faltungsoperatoren auf Kegeln, die in Lebesgueräumen L^p(R^2) (1<p<\infty) von Funktionen auf der Ebene wirken.
Es werden asymptotische Spektraleigenschaften der zugehörigen Finite Sections studiert. Im Falle p=2 (Hilbertraum) wird das Invertierbarkeitsproblem von Operatoren vom Faltungstyp auf Kegeln mit Hilfe der Methode der Standard-Modell-Algebren untersucht.
|
766 |
Lie methods in pro-p groupsSnopçe, Ilir. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Mathematical Sciences, 2009. / Includes bibliographical references.
|
767 |
Spatially-homogeneous Vlasov-Einstein dynamicsOkabe, Takahide 05 October 2012 (has links)
The influence of matter described by the Vlasov equation, on the evolution of anisotropy in the spatially-homogeneous universes, called the Bianchi cosmologies, is studied. Due to the spatial-homogeneity, the Einstein equations for each Bianchi Type are reduced to a set of coupled ordinary differential equations, which has Hamiltonian form with the metric components being the canonical coordinates. In the vacuum Bianchi cosmologies, it is known that a curvature potential, which comes from the symmetries of the three-dimensional Lie groups, determines the basic properties of the evolution of anisotropy. In this work, matter potentials are constructed for Vlasov matter. They are obtained by first introducing a new matter action principle for the Vlasov equation, in terms of a conjugate pair of functions, and then enforcing the symmetry to obtain a reduction. This yields an expression for the matter potential in terms of the phase space density, which is further reduced by assuming cold streaming matter. Some vacuum Bianchi cosmologies and Type I with Vlasov matter are compared. It is shown that the Vlasov-matter potential for cold streaming matter results in qualitatively distinct dynamics from the well-known vacuum Bianchi cosmologies. / text
|
768 |
A systematic approach to the design and analysis of linear algebra algorithmsGunnels, Joseph Andrew 14 March 2011 (has links)
Not available / text
|
769 |
Υπερβολικές άλγεβρες και κοσμολογίαΛυμπέρης, Ανδρέας 04 August 2009 (has links)
Τα δυναμικά βαρυτικών συστημάτων μπορούν να περιγραφούν ασυμπτωτικά στη γειτονιά μιας χωρικής ανωμαλίας σαν μια κίνηση μπιλιάρδου στον υπερβολικό χώρο.Η περιγραφή αυτή μπορεί να πραγματοποιηθεί με άλγεβρες Kac-Moody λαμβάνοντας σαν σύστημα ένα σ-μοντέλο. / The dynamics of some models in Gravity can be described as a billiard motion in the vicinity of a spacelike singularity in hyperbolic space. This description is equivalent in terms of a sigma model and can be described by some hyperbolic Kac-Moody algebras
|
770 |
Moduli spaces of bundles over two-dimensional ordersReede, Fabian 23 April 2013 (has links)
Wir studieren Moduln über Maximalordnungen auf glatten projektiven Flächen und ihre Modulräume. Wir untersuchen null- und zweidimensionale Modulräume auf K3 und abelschen Flächen für unverzweigte Ordnungen, den sogenannten Azumaya Algebren. Weiterhin untersuchen wir Modulräume für spezielle verzweigte Ordnungen auf der projektiven Ebene. Wir beweisen das diese Räume immer glatt sind. Mit Hilfe dieses Ergebnisses studieren wir die Deformationstheorie der betrachteten Moduln. Im letzten Kapitel konstruieren wir explizite Ordnungen und berechnen einige Modulräume.
|
Page generated in 0.043 seconds