381 |
XML manipulation by non-expert users / Manipulation des données XML par des utilisateurs non-expertsTekli, Gilbert 04 October 2011 (has links)
Aujourd’hui, les ordinateurs et l’Internet sont partout dans le monde : dans chaque maison, domaine et plateforme. Dans ce contexte, le standard XML s’est établi comme un moyen insigne pour la représentation et l’échange efficaces des données. Les communications et les échanges d’informations entre utilisateurs, applications et systèmes d’information hétérogènes sont désormais réalisés moyennant XML afin de garantir l’interopérabilité des données. Le codage simple et robuste de XML, à base de données textuelles semi-structurées, a fait que ce standard a rapidement envahi les communications medias. Ces communications sont devenues inter-domaines, partant de l’informatique et s’intégrant dans les domaines médical, commercial, et social, etc. Par conséquent, et au vu du niveau croissant des données XML flottantes entre des utilisateurs non-experts (employés, scientifiques, etc.), que ce soit sur les messageries instantanées, réseaux sociaux, stockage de données ou autres, il devient incontournable de permettre aux utilisateurs non-experts de manipuler et contrôler leurs données (e.g., des parents qui souhaitent appliquer du contrôle parental sur les messageries instantanées de leur maison, un journaliste qui désire regrouper et filtrer des informations provenant de différents flux RSS, etc.). L'objectif principal de cette thèse est l'étude des manipulations des données XML par des utilisateurs non-experts. Quatre principales catégories ont été identifiées dans la littérature : i) les langages visuels orientés XML, ii) les Mashups, iii) les techniques de manipulation des données XML, et iv) les DFVPL (langages de programmation visuel à base de Dataflow), couvrant différentes pistes. Cependant, aucune d’entre elles ne fournit une solution complète. Dans ce travail de recherche, nous avons formellement défini un Framework de manipulation XML, intitulé XA2C (XML-oriented mAnipulAtion Compositions). XA2C représente un environnement de programmation visuel (e.g., Visual-Studio) pour un DFVPL orienté XML, intitulé XCDL (XML-oriented Composition Definition Language) qui constitue la contribution majeure de cette thèse. XCDL, basé sur les réseaux de Pétri colorés, permet aux non-experts de définir, d’arranger et de composer des opérations de manipulation orientées XML. Ces opérations peuvent être des simples sélections/projections de données, ainsi que des opérations plus complexes de modifications de données (insertion, suppression, tatouage, etc.). Le langage proposé traite les données XML à base de documents ou de fragments. En plus de la définition formelle (syntaxique et sémantique) du langage XCDL, XA2C introduit une architecture complète à base d’un compilateur et un environnement d'exécution dédiés. Afin de tester et d’évaluer notre approche théorique, nous avons développé un prototype, intitulé X-Man, avec un Framework d’évaluation pour les langages et outils visuels de programmation orientés XML. Une série d'études de cas et d’expérimentations a été réalisée afin d'évaluer la qualité d'usage de notre langage, et de le comparer aux solutions existantes. Les résultats obtenus soulignent la supériorité de note approche, notamment en termes de qualité d’interaction, de visualisation, et d’utilisation. Plusieurs pistes sont en cours d’exploration, telles que l'intégration des opérations plus complexes (opérateurs de contrôle, boucles, etc.), les compositions automatiques, et l’extension du langage pour gérer la spécificité des formats dérivés du standard XML (flux RSS, RDF, SMIL, etc.) / Computers and the Internet are everywhere nowadays, in every home, domain and field. Communications between users, applications and heterogeneous information systems are mainly done via XML structured data. XML, based on simple textual data and not requiring any specific platform or environment, has invaded and governed the communication Medias. In the 21stcentury, these communications are now inter-domain and have stepped outside the scope of computer science into other areas (i.e., medical, commerce, social, etc.). As a consequence, and due to the increasing amount of XML data floating between non-expert users (programmers, scientists, etc.), whether on instant messaging, social networks, data storage and others, it is becoming crucial and imperative to allow non-experts to be able to manipulate and control their data (e.g.,parents who want to apply parental control over instant messaging tools in their house, a journalist who wants to gather information from different RSS feeds and filter them out, etc.). The main objective of this work is the study of XML manipulations by non-expert users. Four main related categories have been identified in the literature: XML-oriented visual languages, Mashups, XML manipulation by security and adaptation techniques, and Dataflow visual programming languages. However, none of them provides a full-fledged solution for appropriate XML data manipulation. In our research, we formally defined an XML manipulation framework, entitled XA2C (XML Alteration/Adaptation Composition Framework). XA2C represents a visual studio for an XML-oriented DFVPL (Dataflow Visual Programming Language), called XCDL (XML-oriented Composition Definition Language) which constitutes the major contribution of this study. XCDL is based on Colored Petri Nets allowing non-expert users to compose manipulation operations. The XML manipulations range from simple data selection/projection to data modification (insertion, removal, obfuscation, etc.). The language is oriented to deal with XML data (XML documents and fragments), providing users with means to compose XML oriented operations. Complementary to the language syntax and semantics, XA2C formally defines also the compiler and runtime environment of XCDL. In addition to the theoretical contribution, we developed a prototype, called X-Man, and formally defined an evaluation framework for XML-oriented visual languages and tools that was used in a set of case studies and experiments to evaluate the quality of use of our language and compare it to existing approaches. The obtained assessments and results were positive and show that our approach outperforms existing ones. Several future tracks are being studied such as integration of more complex operations (control operators, loops, etc.), automated compositions, and language derivation to define specific languages oriented towards different XML-based standards (e.g., RSS, RDF, SMIL, etc.)
|
382 |
Conception d’un solveur linéaire creux parallèle hybride direct-itératifGaidamour, Jérémie 08 December 2009 (has links)
Cette thèse présente une méthode de résolution parallèle de systèmes linéaires creux qui combine efficacement les techniques de résolutions directes et itératives en utilisant une approche de type complément de Schur. Nous construisons une décomposition de domaine. L'intérieur des sous-domaines est éliminé de manière directe pour se ramener à un problème sur l'interface. Ce problème est résolu grâce à une méthode itérative préconditionnée par une factorisation incomplète. Un réordonnancement de l'interface permet la construction d'un préconditionneur global du complément de Schur. Des algorithmes minimisant le pic mémoire de la construction du préconditionneur sont proposés. Nous exploitons un schéma d'équilibrage de charge utilisant une répartition de multiples sous-domaines sur les processeurs. Les méthodes sont implémentées dans le solveur HIPS et des résultats expérimentaux parallèles sont présentés sur de grands cas tests industriels. / This thesis presents a parallel resolution method for sparse linear systems which combines effectively techniques of direct and iterative solvers using a Schur complement approach. A domain decomposition is built ; the interiors of the subdomains are eliminated by a direct method in order to use an iterative method only on the interface unknowns. The system on the interface (Schur complement) is solved thanks to an iterative method preconditioned by a global incomplete factorization. A special ordering on the Schur complement allows to build a scalable preconditioner. Algorithms minimizing the memory peak that appears during the construction of the preconditioner are presented. The memory is balanced thanks to a multiple domains per processors parallelization scheme. The methods are implemented in the HIPS solver and parallel experimental results are presented on large industrial test cases.
|
383 |
Traitement des signaux et images en temps réel : "implantation de H.264 sur MPSoC"Messaoudi, Kamel 19 December 2012 (has links)
Cette thèse est élaborée en cotutelle entre l’université Badji Mokhtar (Laboratoire LERICA) et l’université de bourgogne (Laboratoire LE2I, UMR CNRS 5158). Elle constitue une contribution à l’étude et l’implantation de l’encodeur H.264/AVC. Durent l’évolution des normes de compression vidéo, une réalité sure est vérifiée de plus en plus : avoir une bonne performance du processus de compression nécessite l’élaboration d’équipements beaucoup plus performants en termes de puissance de calcul, de flexibilité et de portabilité et ceci afin de répondre aux exigences des différents traitements et satisfaire au critère « Temps Réel ». Pour assurer un temps réel pour ce genre d’applications, une solution reste possible est l’utilisation des systèmes sur puce (SoC) ou bien des systèmes multiprocesseurs sur puce (MPSoC) implantés sur des plateformes reconfigurables à base de circuit FPGA. L’objective de cette thèse consiste à l’étude et l’implantation des algorithmes de traitement des signaux et images et en particulier la norme H.264/AVC, et cela dans le but d’assurer un temps réel pour le cycle codage-décodage. Nous utilisons deux plateformes FPGA de Xilinx (ML501 et XUPV5). Dans la littérature, il existe déjà plusieurs implémentations du décodeur. Pour l’encodeur, malgré les efforts énormes réalisés, il reste toujours du travail pour l’optimisation des algorithmes et l’extraction des parallélismes possibles surtout avec une variété de profils et de niveaux de la norme H.264/AVC.Dans un premier temps de cette thèse, nous proposons une implantation matérielle d’un contrôleur mémoire spécialement pour l’encodeur H.264/AVC. Ce contrôleur est réalisé en ajoutant, au contrôleur mémoire DDR2 des deux plateformes de Xilinx, une couche intelligente capable de calculer les adresses et récupérer les données nécessaires pour les différents modules de traitement de l’encodeur. Ensuite, nous proposons des implantations matérielles (niveau RTL) des modules de traitement de l’encodeur H.264. Sur ces implantations, nous allons exploiter les deux principes de parallélisme et de pipelining autorisé par l’encodeur en vue de la grande dépendance inter-blocs. Nous avons ainsi proposé plusieurs améliorations et nouvelles techniques dans les modules de la chaine Intra et le filtre anti-blocs. A la fin de cette thèse, nous utilisons les modules réalisés en matériels pour la l’implantation Matérielle/logicielle de l’encodeur H.264/AVC. Des résultats de synthèse et de simulation, en utilisant les deux plateformes de Xilinx, sont montrés et comparés avec les autres implémentations existantes / This thesis has been carried out in joint supervision between the Badji Mokhtar University (LERICA Laboratory) and the University of Burgundy (LE2I laboratory, UMR CNRS 5158). It is a contribution to the study and implementation of the H.264/AVC encoder. The evolution in video coding standards have historically demanded stringent performances of the compression process, which imposes the development of platforms that perform much better in terms of computing power, flexibility and portability. Such demands are necessary to fulfill requirements of the different treatments and to meet "Real Time" processing constraints. In order to ensure real-time performances, a possible solution is to made use of systems on chip (SoC) or multiprocessor systems on chip (MPSoC) built on platforms based reconfigurable FPGAs. The objective of this thesis is the study and implementation of algorithms for signal and image processing (in particular the H.264/AVC standard); especial attention was given to provide real-time coding-decoding cycles. We use two FPGA platforms (ML501 and XUPV5 from Xilinx) to implement our architectures. In the literature, there are already several implementations of the decoder. For the encoder part, despite the enormous efforts made, work remains to optimize algorithms and extract the inherent parallelism of the architecture. This is especially true with a variety of profiles and levels of H.264/AVC. Initially, we proposed a hardware implementation of a memory controller specifically targeted to the H.264/AVC encoder. This controller is obtained by adding, to the DDR2 memory controller, an intelligent layer capable of calculating the addresses and to retrieve the necessary data for several of the processing modules of the encoder. Afterwards, we proposed hardware implementations (RTL) for the processing modules of the H.264 encoder. In these implementations, we made use of principles of parallelism and pipelining, taking into account the constraints imposed by the inter-block dependency in the encoder. We proposed several enhancements and new technologies in the channel Intra modules and the deblocking filter. At the end of this thesis, we use the modules implemented in hardware for implementing the H.264/AVC encoder in a hardware/software design. Synthesis and simulation results, using both platforms for Xilinx, are shown and compared with other existing implementations
|
384 |
Calcul haute performance pour la détection de rayon Gamma / High Performance Computing for Detection of Gamma rayAubert, Pierre 04 October 2018 (has links)
La nouvelle génération d'expériences de physique produira une quantité de données sans précédent. Cette augmentation du flux de données cause des bouleversements techniques à tous les niveaux, comme le stockage des données, leur analyse, leur dissémination et leur préservation.Le projet CTA sera le plus grand observatoire d'astronomie gamma au sol à partir de 2021. Il produira plusieurs centaines de Péta-octets de données jusqu'en 2030 qui devront être analysées, stockée, compressées, et réanalysées tous les ans.Ce travail montre comment optimiser de telles analyses de physique avec les techniques de l'informatique hautes performances par le biais d'un générateur de format de données efficace, d'optimisation bas niveau de l'utilisation du pipeline CPU et de la vectorisation des algorithmes existants, un algorithme de compression rapide d'entiers et finalement une nouvelle analyse de données basée sur une méthode de comparaison d'image optimisée. / The new generation research experiments will introduce huge data surge to a continuously increasing data production by current experiments. This increasing data rate causes upheavals at many levels, such as data storage, analysis, diffusion and conservation.The CTA project will become the utmost observatory of gamma astronomy on the ground from 2021. It will generate hundreds Peta-Bytes of data by 2030 and will have to be stored, compressed and analyzed each year.This work address the problems of data analysis optimization using high performance computing techniques via an efficient data format generator, very low level programming to optimize the CPU pipeline and vectorization of existing algorithms, introduces a fast compression algorithm for integers and finally exposes a new analysis algorithm based on efficient pictures comparison.
|
385 |
Parallélisation de simulations interactives de champs ultrasonores pour le contrôle non destructif / Parallelization of ultrasonic field simulations for non destructive testingLambert, Jason 03 July 2015 (has links)
La simulation est de plus en plus utilisée dans le domaine industriel du Contrôle Non Destructif. Elle est employée tout au long du processus de contrôle, que ce soit pour en accélérer la mise au point ou en comprendre les résultats. Les travaux menés au cours de cette thèse présentent une méthode de calcul rapide de champ ultrasonore rayonné par un capteur multi-éléments dans une pièce isotrope, permettant un usage interactif des simulations. Afin de tirer parti des architectures parallèles communément disponibles, un modèle régulier (qui limite au maximum les branchements divergents) dérivé du modèle générique présent dans la plateforme logicielle CIVA a été mis au point. Une première implémentation de référence a permis de le valider par rapport aux résultats CIVA et d'analyser son comportement en termes de performances. Le code a ensuite été porté et optimisé sur trois classes d'architectures parallèles aujourd'hui disponibles dans les stations de calcul : le processeur généraliste central (GPP), le coprocesseur manycore (Intel MIC) et la carte graphique (nVidia GPU). Concernant le processeur généraliste et le coprocesseur manycore, l'algorithme a été réorganisé et le code implémenté afin de tirer parti des deux niveaux de parallélisme disponibles, le multithreading et les instructions vectorielles. Sur la carte graphique, les différentes étapes de simulation de champ ont été découpées en une série de noyaux CUDA. Enfin, des bibliothèques de calculs spécifiques à ces architectures, Intel MKL et nVidia cuFFT, ont été utilisées pour effectuer les opérations de Transformées de Fourier Rapides. Les performances et la bonne adéquation des codes produits ont été analysées en détail pour chaque architecture. Dans plusieurs cas, sur des configurations de contrôle réalistes, des performances autorisant l'interactivité ont été atteintes. Des perspectives pour traiter des configurations plus complexes sont dressées. Enfin la problématique de l'industrialisation de ce type de code dans la plateforme logicielle CIVA est étudiée. / The Non Destructive Testing field increasingly uses simulation.It is used at every step of the whole control process of an industrial part, from speeding up control development to helping experts understand results. During this thesis, a simulation tool dedicated to the fast computation of an ultrasonic field radiated by a phase array probe in an isotropic specimen has been developped. Its performance enables an interactive usage. To benefit from the commonly available parallel architectures, a regular model (aimed at removing divergent branching) derived from the generic CIVA model has been developped. First, a reference implementation was developped to validate this model against CIVA results, and to analyze its performance behaviour before optimization. The resulting code has been optimized for three kinds of parallel architectures commonly available in workstations: general purpose processors (GPP), manycore coprocessors (Intel MIC) and graphics processing units (nVidia GPU). On the GPP and the MIC, the algorithm was reorganized and implemented to benefit from both parallelism levels, multhreading and vector instructions. On the GPU, the multiple steps of field computing have been divided in multiple successive CUDA kernels.Moreover, libraries dedicated to each architecture were used to speedup Fast Fourier Transforms, Intel MKL on GPP and MIC and nVidia cuFFT on GPU. Performance and hardware adequation of the produced algorithms were thoroughly studied for each architecture. On multiple realistic control configurations, interactive performance was reached. Perspectives to adress more complex configurations were drawn. Finally, the integration and the industrialization of this code in the commercial NDT plateform CIVA is discussed.
|
386 |
Amélioration des méthodes de calcul de cœurs de réacteurs nucléaires dans APOLLO3 : décomposition de domaine en théorie du transport pour des géométries 2D et 3D avec une accélération non linéaire par la diffusion / Contribution to the development of methods for nuclear reactor core calculations with APOLLO3 code : domain decomposition in transport theory for 2D and 3D geometries with nonlinear diffusion accelerationLenain, Roland 15 September 2015 (has links)
Ce travail de thèse est consacré à la mise en œuvre d’une méthode de décomposition de domaine appliquée à l’équation du transport. L’objectif de ce travail est l’accès à des solutions déterministes haute-fidélité permettant de correctement traiter les hétérogénéités des réacteurs nucléaires, pour des problèmes dont la taille varie d’un motif d’assemblage en 3 dimensions jusqu’à celle d’un grand cœur complet en 3D. L’algorithme novateur développé au cours de la thèse vise à optimiser l’utilisation du parallélisme et celle de la mémoire. La démarche adoptée a aussi pour but la diminution de l’influence de l’implémentation parallèle sur les performances. Ces objectifs répondent aux besoins du projet APOLLO3, développé au CEA et soutenu par EDF et AREVA, qui se doit d’être un code portable (pas d’optimisation sur une architecture particulière) permettant de réaliser des modélisations haute-fidélité (best estimate) avec des ressources allant des machines de bureau aux calculateurs disponibles dans les laboratoires d’études. L’algorithme que nous proposons est un algorithme de Jacobi Parallèle par Bloc Multigroupe. Chaque sous domaine est un problème multigroupe à sources fixes ayant des sources volumiques (fission) et surfaciques (données par les flux d’interface entre les sous domaines). Le problème multigroupe est résolu dans chaque sous domaine et une seule communication des flux d’interface est requise par itération de puissance. Le rayon spectral de l’algorithme de résolution est rendu comparable à celui de l’algorithme de résolution classique grâce à une méthode d’accélération non linéaire par la diffusion bien connue nommée Coarse Mesh Finite Difference. De cette manière une scalabilité idéale est atteignable lors de la parallélisation. L’organisation de la mémoire, tirant parti du parallélisme à mémoire partagée, permet d’optimiser les ressources en évitant les copies de données redondantes entre les sous domaines. Les architectures de calcul à mémoire distribuée sont rendues accessibles par un parallélisme hybride qui combine le parallélisme à mémoire partagée et à mémoire distribuée. Pour des problèmes de grande taille, ces architectures permettent d’accéder à un plus grand nombre de processeurs et à la quantité de mémoire nécessaire aux modélisations haute-fidélité. Ainsi, nous avons réalisé plusieurs exercices de modélisation afin de démontrer le potentiel de la réalisation : calcul de cœur et de motifs d’assemblages en 2D et 3D prenant en compte les contraintes de discrétisation spatiales et énergétiques attendues. / This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems’ size ranging from colorsets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each subdomain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the subdomains). The multi-group problem is solved in each subdomain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the subdomains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of memory required for high-fidelity modeling. Thus, we have completed several modeling exercises to demonstrate the potential of the method: 2D full core calculation of a large pressurized water reactor and 3D colorsets of assemblies taking into account the constraints of space and energy discretization expected for high-fidelity modeling.
|
387 |
Finite element modeling of electromagnetic radiation and induced heat transfer in the human bodyKim, Kyungjoo 24 September 2013 (has links)
This dissertation develops adaptive hp-Finite Element (FE) technology and a parallel sparse direct solver enabling the accurate modeling of the absorption of Electro-Magnetic (EM) energy in the human head. With a large and growing number of cell phone users, the adverse health effects of EM fields have raised public concerns. Most research that attempts to explain the relationship between exposure to EM fields and its harmful effects on the human body identifies temperature changes due to the EM energy as the dominant source of possible harm. The research presented here focuses on determining the temperature distribution within the human body exposed to EM fields with an emphasis on the human head. Major challenges in accurately determining the temperature changes lie in the dependence of EM material properties on the temperature. This leads to a formulation that couples the BioHeat Transfer (BHT) and Maxwell equations. The mathematical model is formed by the time-harmonic Maxwell equations weakly coupled with the transient BHT equation. This choice of equations reflects the relevant time scales. With a mobile device operating at a single frequency, EM fields arrive at a steady-state in the micro-second range. The heat sources induced by EM fields produce a transient temperature field converging to a steady-state distribution on a time scale ranging from seconds to minutes; this necessitates the transient formulation. Since the EM material properties depend upon the temperature, the equations are fully coupled; however, the coupling is realized weakly due to the different time scales for Maxwell and BHT equations. The BHT equation is discretized in time with a time step reflecting the thermal scales. After multiple time steps, the temperature field is used to determine the EM material properties and the time-harmonic Maxwell equations are solved. The resulting heat sources are recalculated and the process continued. Due to the weak coupling of the problems, the corresponding numerical models are established separately. The BHT equation is discretized with H¹ conforming elements, and Maxwell equations are discretized with H(curl) conforming elements. The complexity of the human head geometry naturally leads to the use of tetrahedral elements, which are commonly employed by unstructured mesh generators. The EM domain, including the head and a radiating source, is terminated by a Perfectly Matched Layer (PML), which is discretized with prismatic elements. The use of high order elements of different shapes and discretization types has motivated the development of a general 3D hp-FE code. In this work, we present new generic data structures and algorithms to perform adaptive local refinements on a hybrid mesh composed of different shaped elements. A variety of isotropic and anisotropic refinements that preserve conformity of discretization are designed. The refinement algorithms support one- irregular meshes with the constrained approximation technique. The algorithms are experimentally proven to be deadlock free. A second contribution of this dissertation lies with a new parallel sparse direct solver that targets linear systems arising from hp-FE methods. The new solver interfaces to the hierarchy of a locally refined mesh to build an elimination ordering for the factorization that reflects the h-refinements. By following mesh refinements, not only the computation of element matrices but also their factorization is restricted to new elements and their ancestors. The solver is parallelized by exploiting two-level task parallelism: tasks are first generated from a parallel post-order tree traversal on the assembly tree; next, those tasks are further refined by using algorithms-by-blocks to gain fine-grained parallelism. The resulting fine-grained tasks are asynchronously executed after their dependencies are analyzed. This approach effectively reduces scheduling overhead and increases flexibility to handle irregular tasks. The solver outperforms the conventional general sparse direct solver for a class of problems formulated by high order FEs. Finally, numerical results for a 3D coupled BHT with Maxwell equations are presented. The solutions of this Maxwell code have been verified using the analytic Mie series solutions. Starting with simple spherical geometry, parametric studies are conducted on realistic head models for a typical frequency band (900 MHz) of mobile phones. / text
|
388 |
Adapting the polytope model for dynamic and speculative parallelizationJimborean, Alexandra 14 September 2012 (has links) (PDF)
In this thesis, we present a Thread-Level Speculation (TLS) framework whose main feature is to speculatively parallelize a sequential loop nest in various ways, to maximize performance. We perform code transformations by applying the polyhedral model that we adapted for speculative and runtime code parallelization. For this purpose, we designed a parallel code pattern which is patched by our runtime system according to the profiling information collected on some execution samples. We show on several benchmarks that our framework yields good performance on codes which could not be handled efficiently by previously proposed TLS systems.
|
389 |
Simulation de la dynamique des dislocations à très grande échelle / Hybrid parallelism on large scale dislocation dynamic simulationEtcheverry, Arnaud 23 November 2015 (has links)
Le travail réalisé durant cette thèse vise à offrir à un code de simulation en dynamique des dislocations les composantes essentielles pour permettre le passage à l’échelle sur les calculateurs modernes. Nous abordons plusieurs aspects de la simulation numérique avec tout d’abord des considérations algorithmiques. Pour permettre de réaliser des simulations efficaces en terme de complexité algorithmique pour des grandes simulations, nous explorons les contraintes des différentes étapes de la simulation en offrant une analyse et des améliorations aux algorithmes. Ensuite, une considération particulière est apportée aux structures de données. En prenant en compte les nouveaux algorithmes, nous proposons une structure de données pour bénéficier d’accès performants à travers la hiérarchie mémoire. Cette structure est modulaire pour faire face à deux types d’algorithmes, avec d’un côté la gestion du maillage nécessitant une gestion dynamique de la mémoire et de l’autre les phases de calcul intensifs avec des accès rapides. Pour cela cette structure modulaire est complétée par un octree pour gérer la décomposition de domaine et aussi les algorithmes hiérarchiques comme le calcul du champ de contrainte et la détection des collisions. Enfin nous présentons les aspects parallèles du code. Pour cela nous introduisons une approche hybride, avec un parallélisme à grain fin à base de threads, et un parallélisme à gros grain de type MPI nécessitant une décomposition de domaine et un équilibrage de charge.Finalement, ces contributions sont testées pour valider les apports pour la simulation numérique. Deux cas d’étude sont présentés pour observer et analyser le comportement des différentes briques de la simulation. Tout d’abord une simulation extrêmement dynamique, composée de sources de Frank-Read dans un cristal de zirconium est utilisée, avant de présenter quelques résultats sur une simulation cible contenant une forte densité de défauts d’irradiation. / This research work focuses on bringing performances in 3D dislocation dynamics simulation, to run efficiently on modern computers. First of all, we introduce some algorithmic technics, to reduce the complexity in order to target large scale simulations. Second of all, we focus on data structure to take into account both memory hierachie and algorithmic data access. On one side we build this adaptive data structure to handle dynamism of data and on the other side we use an Octree to combine hierachie decompostion and data locality in order to face intensive arithmetics with force field computation and collision detection. Finnaly, we introduce some parallel aspects of our simulation. We propose a classical hybrid parallelism, with task based openMP threads and domain decomposition technics for MPI.
|
390 |
Modélisation et implémentation de parallélisme implicite pour les simulations scientifiques basées sur des maillages / Model and implementation of implicit parallélism for mesh-based scientific simulationsCoullon, Hélène 29 September 2014 (has links)
Le calcul scientifique parallèle est un domaine en plein essor qui permet à la fois d’augmenter la vitesse des longs traitements, de traiter des problèmes de taille plus importante ou encore des problèmes plus précis. Ce domaine permet donc d’aller plus loin dans les calculs scientifiques, d’obtenir des résultats plus pertinents, car plus précis, ou d’étudier des problèmes plus volumineux qu’auparavant. Dans le monde plus particulier de la simulation numérique scientifique, la résolution d’équations aux dérivées partielles (EDP) est un calcul particulièrement demandeur de ressources parallèles. Si les ressources matérielles permettant le calcul parallèle sont de plus en plus présentes et disponibles pour les scientifiques, à l’inverse leur utilisation et la programmation parallèle se démocratisent difficilement. Pour cette raison, des modèles de programmation parallèle, des outils de développement et même des langages de programmation parallèle ont vu le jour et visent à simplifier l’utilisation de ces machines. Il est toutefois difficile, dans ce domaine dit du “parallélisme implicite”, de trouver le niveau d’abstraction idéal pour les scientifiques, tout en réduisant l’effort de programmation. Ce travail de thèse propose tout d’abord un modèle permettant de mettre en oeuvre des solutions de parallélisme implicite pour les simulations numériques et la résolution d’EDP. Ce modèle est appelé “Structured Implicit Parallelism for scientific SIMulations” (SIPSim), et propose une vision au croisement de plusieurs types d’abstraction, en tentant de conserver les avantages de chaque vision. Une première implémentation de ce modèle, sous la forme d’une librairie C++ appelée SkelGIS, est proposée pour les maillages cartésiens à deux dimensions. Par la suite, SkelGIS, et donc l’implémentation du modèle, est étendue à des simulations numériques sur les réseaux (permettant l’application de simulations représentant plusieurs phénomènes physiques). Les performances de ces deux implémentations sont évaluées et analysées sur des cas d’application réels et complexes et démontrent qu’il est possible d’obtenir de bonnes performances en implémentant le modèle SIPSim. / Parallel scientific computations is an expanding domain of computer science which increases the speed of calculations and offers a way to deal with heavier or more accurate calculations. Thus, the interest of scientific computations increases, with more precised results and bigger physical domains to study. In the particular case of scientific numerical simulations, solving partial differential equations (PDEs) is an especially heavy calculation and a perfect applicant to parallel computations. On one hand, it is more and more easy to get an access to very powerfull parallel machines and clusters, but on the other hand parallel programming is hard to democratize, and most scientists are not able to use these machines. As a result, high level programming models, framework, libraries, languages etc. have been proposed to hide technical details of parallel programming. However, in this “implicit parallelism” field, it is difficult to find the good abstraction level while keeping a low programming effort. This thesis proposes a model to write implicit parallelism solutions for numerical simulations such as mesh-based PDEs computations. This model is called “Structured Implicit Parallelism for scientific SIMulations” (SIPSim), and proposes an approach at the crossroads of existing solutions, taking advantage of each one. A first implementation of this model is proposed, as a C++ library called SkelGIS, for two dimensional Cartesian meshes. A second implementation of the model, and an extension of SkelGIS, proposes an implicit parallelism solution for network-simulations (which deals with simulations with multiple physical phenomenons), and is studied in details. A performance analysis of both these implementations is given on real case simulations, and it demonstrates that the SIPSim model can be implemented efficiently.
|
Page generated in 0.0633 seconds