• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 21
  • 18
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mécanismes de retransmission Hybrid-ARQ en radio-cognitive.

Tajan, Romain 05 December 2013 (has links) (PDF)
Dans les standards actuels tels que HSDPA ou LTE, des protocoles de retransmissions (ARQ: Automatic Repeat reQuest) sont utilisés conjointement au codage de canal afin de palier aux erreurs dues à l'absence ou la mauvaise de connaissance de canal à la transmission. On garantit ainsi la fiabilité du lien physique pour les couches OSI supérieures (du moins un taux d'erreur paquet faible). De tels protocoles sont appelés protocoles de retransmission hybrides (HARQ). L'objet de cette thèse est de proposer des outils permettant l'analyse et l'optimisation des systèmes de communication en présences de protocoles HARQ avec une emphase particulière sur les systèmes cognitifs.Dans la première partie, nous étudierons un système point-à-point dans lequel trois différents protocoles HARQ adaptatifs seront considérés. Dans un premier temps, nous considérerons le régime asymptotique (i.e. codes optimaux gaussiens). Nous proposerons, dans ce cas, deux optimisations possibles : la minimisation de la puissance moyenne sous la contrainte de débit moyen et la maximisation du débit moyen sous une contrainte de puissance moyenne. Nous montrerons que les Processus de Décision Markoviens (MDP) sont des outils adaptés aux problèmes d'optimisation considérés.Dans les standards actuels tels que HSDPA ou LTE, des protocoles de retransmissions (ARQ: Automatic Repeat reQuest) sont utilisés conjointement au codage de canal afin de palier aux erreurs dues à l'absence ou la mauvaise de connaissance de canal à la transmission. On garantit ainsi la fiabilité du lien physique pour les couches OSI supérieures (du moins un taux d'erreur paquet faible). De tels protocoles sont appelés protocoles de retransmission hybrides (HARQ). L'objectif de cette thèse est de proposer des outils permettant l'analyse et l'optimisation des systèmes de communication en présences de protocoles HARQ avec une emphase particulière sur les systèmes cognitifs. La radio cognitive est une approche permettant à des utilisateurs non-licenciés de communiquer dans les mêmes bandes de fréquences que des utilisateurs licenciés afin d'augmenter l'efficacité spectrale des réseaux sans fil. Les utilisateurs secondaires doivent néanmoins limiter les interférences générées sur les signaux des utilisateurs primaires. Dans ce contexte, nous étudierons les débits atteignables par un utilisateur secondaire utilisant l'observation du protocole HARQ de l'utilisateur primaire afin de contrôler son interférence.
42

Efficient Lattice Decoders for the Linear Gaussian Vector Channel: Performance & Complexity Analysis

Abediseid, Walid 15 September 2011 (has links)
The theory of lattices --- a mathematical approach for representing infinite discrete points in Euclidean space, has become a powerful tool to analyze many point-to-point digital and wireless communication systems, particularly, communication systems that can be well-described by the linear Gaussian vector channel model. This is mainly due to the three facts about channel codes constructed using lattices: they have simple structure, their ability to achieve the fundamental limits (the capacity) of the channel, and most importantly, they can be decoded using efficient decoders called lattice decoders. Since its introduction to multiple-input multiple-output (MIMO) wireless communication systems, sphere decoders has become an attractive efficient implementation of lattice decoders, especially for small signal dimensions and/or moderate to large signal-to-noise ratios (SNRs). In the first part of this dissertation, we consider sphere decoding algorithms that describe lattice decoding. The exact complexity analysis of the basic sphere decoder for general space-time codes applied to MIMO wireless channel is known to be difficult. Characterizing and understanding the complexity distribution is important, especially when the sphere decoder is used under practically relevant runtime constraints. In this work, we shed the light on the (average) computational complexity of sphere decoding for the quasi-static, LAttice Space-Time (LAST) coded MIMO channel. Sphere decoders are only efficient in the high SNR regime and low signal dimensions, and exhibits exponential (average) complexity for low-to-moderate SNR and large signal dimensions. On the other extreme, linear and non-linear receivers such as minimum mean-square error (MMSE), and MMSE decision-feedback equalization (DFE) are considered attractive alternatives to sphere decoders in MIMO channels. Unfortunately, the very low decoding complexity advantage that these decoders can provide comes at the expense of poor performance, especially for large signal dimensions. The problem of designing low complexity receivers for the MIMO channel that achieve near-optimal performance is considered a challenging problem and has driven much research in the past years. The problem can solved through the use of lattice sequential decoding that is capable of bridging the gap between sphere decoders and low complexity linear decoders (e.g., MMSE-DFE decoder). In the second part of this thesis, the asymptotic performance of the lattice sequential decoder for LAST coded MIMO channel is analyzed. We determine the rates achievable by lattice coding and sequential decoding applied to such a channel. The diversity-multiplexing tradeoff under such a decoder is derived as a function of its parameter--- the bias term. In this work, we analyze both the computational complexity distribution and the average complexity of such a decoder in the high SNR regime. We show that there exists a cut-off multiplexing gain for which the average computational complexity of the decoder remains bounded. Our analysis reveals that there exists a finite probability that the number of computations performed by the decoder may become excessive, even at high SNR, during high channel noise. This probability is usually referred to as the probability of a decoding failure. Such probability limits the performance of the lattice sequential decoder, especially for a one-way communication system. For a two-way communication system, such as in MIMO Automatic Repeat reQuest (ARQ) system, the feedback channel can be used to eliminate the decoding failure probability. In this work, we modify the lattice sequential decoder for the MIMO ARQ channel, to predict in advance the occurrence of decoding failure to avoid wasting the time trying to decode the message. This would result in a huge saving in decoding complexity. In particular, we will study the throughput-performance-complexity tradeoffs in sequential decoding algorithms and the effect of preprocessing and termination strategies. We show, analytically and via simulation, that using the lattice sequential decoder that implements a simple yet efficient time-out algorithm for joint error detection and correction, the optimal tradeoff of the MIMO ARQ channel can be achieved with significant reduction in decoding complexity.
43

Seasonal and Environmental Influences on Soil O2 and CO2 Concentrations in Abandoned Mine Tailings

Reinhardt, Alyssa 26 July 2023 (has links)
No description available.
44

Industrial WiFi Redundancy Methods

Henrysson, Fabian, Dizdarevic, Oliver January 2024 (has links)
This thesis explores various Wi-Fi redundancy methods to enhance network resilience in industrial settings. Maintaining uninterrupted data transmission is crucial due to the increasing reliance on wireless technologies for industrial operations. Our research investigates the performance of different redundancy strategies, including Multi-Link Operation (MLO) and Truncated Automatic Repeat Request (TARQ), through practical prototyping and testing on specific hardware configurations. We aim to assess these methods' effectiveness in mitigating packet loss and improving transmission consistency under varying attenuation. The findings are expected to provide valuable insights into the potential of existing redundancy methods to improve Wi-Fi network robustness. This thesis evaluates two main redundancy methods: MLO and TARQ. In our findings, MLO demonstrated improved packet transmission consistency at lower levels of signal attenuation compared to standard implementations. TARQ, particularly on the 2.4 GHz band, significantly reduced packet loss across a wide range of attenuation levels, thus showing its potential to enhance network reliability.
45

在WiMAX下以跨層設計改進自動重送要求以提升MPEG-4影像串流品質 / Adapt ARQ to Improve MPEG-4 Video Streaming Based on MAC-centric Cross Layer Design in WiMAX

盛鵬宇, Sheng, Peng Yu Unknown Date (has links)
網路使用率逐漸普及、傳輸技術的進步以及通訊網路蓬勃發展,提供人們許多生活上的便利,無線網路已經成為現代通訊市場上的新寵兒。其中,IEEE於1999年開始制定與修正WiMAX,此協定在無線網路的應用視為解決”最後一哩”接取問題的利器。然而,無線網路仍舊會遇到傳送訊號耗弱、通訊死角或是氣候干擾等種種原因造成傳輸失敗的問題。 MPEG-4編碼上,考慮影音封包具有不同重要性的意義,針對影音封包需制定不同的重傳機制,本研究先行改善WiMAX中ARQ(Auto Repeat Request)的流程,再利用跨層設計使得MAC層可以辨識影音封包資訊,確保GOP-tree中之"骨幹"節點穩定的抵達率,再利用Lagrange’s Method of Multiplier方法,針對GOP-tree中非骨幹部分提出合適的trade-off客製化。最後本研究藉由網路模擬器NS-2(Network Simulater ver. 2)與myEvalvid-NT的實驗架構,做不同效能的評比,並以PSNR值評估所提出之方法的有效性。 / The growing of network popularity, progressing of trasmission technology and development of communication network have facilitated our daily life these years. Wireless network has become a new favor at modern communication market. Among of them, IEEE has started to design and modify specification of WiMAX since 1999, which has been thought to be the solution toward “last mile”. But, there still exist problems such as Doppler effect, blind corner of communication and obstruction of weather condition, which cause the failure of communication. MPEG-4 coding would concern the different significances of distinct types of packets, we should define retransmission strategies for different multimedia packets, respectively. Firstly, we improve the process of ARQ(Auto Repeat reQuest). Secondly, we use MAC-centric design to distinguish multimedia packets and guarantee the arrival rate of packets in the “backbone nodes” of a group of pictures tree. Thirdly, Lagrange’s Method of Multiplier is used to customize the trade-off of “non-backbone node”. In the end, we have performance evaluations by NS-2(Network Simulator ver. 2) and myEvalvid-NT, to verify the efficiency of the proposed method using Peak Signal to Noise Ratio.
46

Enhancement of LTE Radio Access Protocols for Efficient Video Streaming

Tirouvengadam, Balaaji 13 September 2012 (has links)
A drastic increase in traffic of mobile broadband is seen in the past few years, which is further accelerated by the increase in usage of smart phones and its applications. The availability of good smart phones and better data connectivity are encouraging mobile users to use video services. This huge increase in usage will pose a lot of challenges to the wireless networks. The wireless network has to become content aware in order to offer enhanced quality of video service through efficient utilization of the wireless spectrum. This thesis focuses on improving the Quality of Experience (QoE) for video transmission over Long Term Evolution (LTE) networks by imparting the content awareness to the system and providing unequal error protection for critical video packets. Two different schemes for the improvement of video quality delivery over LTE networks are presented in this thesis. Using content awareness, the retransmission count of Hybrid Automatic Repeat reQuest (HARQ) are changed dynamically such that the most important video frame gets more number of retransmission attempts, which increases its success for delivery in-turn increasing the received video quality. Since Radio Link Control (RLC) is the link layer for radio interface, the second approach focuses on optimizing this layer for efficient video transmission. As part of this scheme, a new operation mode called Hybrid Mode (HM) for RLC is defined. This mode performs retransmission only for the critical video frames, leaving other frames to unacknowledged transmission. The simulation results of both proposed schemes provide significant improvement in achieving good video quality without affecting the system performance.
47

Enhancement of LTE Radio Access Protocols for Efficient Video Streaming

Tirouvengadam, Balaaji 13 September 2012 (has links)
A drastic increase in traffic of mobile broadband is seen in the past few years, which is further accelerated by the increase in usage of smart phones and its applications. The availability of good smart phones and better data connectivity are encouraging mobile users to use video services. This huge increase in usage will pose a lot of challenges to the wireless networks. The wireless network has to become content aware in order to offer enhanced quality of video service through efficient utilization of the wireless spectrum. This thesis focuses on improving the Quality of Experience (QoE) for video transmission over Long Term Evolution (LTE) networks by imparting the content awareness to the system and providing unequal error protection for critical video packets. Two different schemes for the improvement of video quality delivery over LTE networks are presented in this thesis. Using content awareness, the retransmission count of Hybrid Automatic Repeat reQuest (HARQ) are changed dynamically such that the most important video frame gets more number of retransmission attempts, which increases its success for delivery in-turn increasing the received video quality. Since Radio Link Control (RLC) is the link layer for radio interface, the second approach focuses on optimizing this layer for efficient video transmission. As part of this scheme, a new operation mode called Hybrid Mode (HM) for RLC is defined. This mode performs retransmission only for the critical video frames, leaving other frames to unacknowledged transmission. The simulation results of both proposed schemes provide significant improvement in achieving good video quality without affecting the system performance.
48

Low-complexity and power-efficient wireless cooperative relay networks with enhanced reliability

Choi, Gi Wan 09 January 2013 (has links)
In recent years, global mobile data traffic has been increasing exponentially as mobile devices pervade our daily lives. To cope with the ever growing demands for higher data rates and seamless connectivity, one solution is to drastically increase the number of macro base stations in the conventional cellular architecture. However, this results in high deployment costs. Deploying low-power nodes such as relays that do not require a wired backhaul connection within a macrocell is one of cost-effective ways to extend high data rate coverage range. Relays are typically deployed to increase signal strength in poor coverage areas or to eliminate dead spots. But more importantly, relays provide a natural diversity, called cooperative diversity. In addition to a direct signal from a base station, extra copies of the same signal are forwarded from relays. Utilizing this diversity at the destination can yield significant performance enhancements. Thus, cooperative relay strategies need to be considered to enable high data rate coverage in a cost-effective manner. In this dissertation, we consider a simple single-relay network and present low-complexity and power-efficient cooperative relay designs that can achieve low error rate. We first study decode-and-forward (DF) relay networks with a single antenna at each node, where the relay decodes the received signal and forwards the re-encoded information to the destination. In DF relay scheme, decoding at the relay is not perfect and the error-propagation phenomenon is a detrimental problem, preventing the destination from collecting the cooperative diversity. To enable cooperative diversity in DF relay networks, we adopt link-adaptive power-scaling relay strategies where the relay scales the transmission power of the re-encoded signal based on the reliability of the source-relay link. We generalize power-profile designs and analyze the diversity order enabled by the general power-profile designs. We provide necessary and sufficient conditions for the designs to enable full cooperative diversity at the destination. In the second part of this dissertation, we extend the power-scaling relay strategy to DF multi-input multi-output (MIMO) relay networks, where multiple antennas are adopted at each node, and show that full cooperative diversity can also be achieved here. To collect spatial diversity provided by multiple antennas without using maximum-likelihood equalizers (MLEs) or near-ML detectors which exhibit high complexity, channel-controlled automatic repeat request (CC-ARQ) scheme is developed for DF MIMO relay networks to enable spatial diversity with linear equalizers (LEs) maintaining low-complexity. We also show that joint cooperative and spatial diversity can be achieved at the destination when the power-scaling strategy and the CC-ARQ with LEs are combined. Finally, amplify-and-forward (AF) MIMO relay designs, where the relay simply amplifies the received signal and forwards it to the destination, are studied with consideration of peak-power constraints at the relay. One practical concern for AF relaying is that the output signal at the relay may suffer from large peak-to-average power ratio (PAR), which may cause nonlinear distortion and/or saturation in the transmitted signal due to the limited linear range of power amplifiers. Thus, we first investigate peak-power constrained power-scaling strategies and find a sufficient condition to enable joint cooperative and spatial diversity at the destination. Based on this study, we propose simple and practical AF MIMO relay designs with peak-power constraint at the relay. CC-ARQ is also applied to AF MIMO relay networks to reduce the decoding complexity.
49

Adaptive Concatenated Coding for Wireless Real-Time Communications

Uhlemann, Elisabeth January 2004 (has links)
The objective of this thesis is to improve the performance of real-time communication overa wireless channel, by means of specifically tailored channel coding. The deadlinedependent coding (DDC) communication protocol presented here lets the timeliness and thereliability of the delivered information constitute quality of service (QoS) parametersrequested by the application. The values of these QoS parameters are transformed intoactions taken by the link layer protocol in terms of adaptive coding strategies.Incremental redundancy hybrid automatic repeat request (IR-HARQ) schemes usingrate compatible punctured codes are appealing since no repetition of previously transmittedbits is made. Typically, IR-HARQ schemes treat the packet lengths as fixed and maximizethe throughput by optimizing the puncturing pattern, i.e. the order in which the coded bitsare transmitted. In contrast, we define an IR strategy as the maximum number of allowedtransmissions and the number of code bits to include in each transmission. An approach isthen suggested to find the optimal IR strategy that maximizes the average code rate, i.e., theoptimal partitioning of n-kparity bits over at most M transmissions, assuming a givenpuncturing pattern. Concatenated coding used in IR-HARQ schemes provides a new arrayof possibilities for adaptability in terms of decoding complexity and communication timeversus reliability. Hence, critical reliability and timing constraints can be readily evaluatedas a function of available system resources. This in turn enables quantifiable QoS and thusnegotiable QoS. Multiple concatenated single parity check codes are chosen as examplecodes due to their very low decoding complexity. Specific puncturing patterns for thesecomponent codes are obtained using union bounds based on uniform interleavers. Thepuncturing pattern that has the best performance in terms of frame error rate (FER) at a lowsignal-to-noise ratio (SNR) is chosen. Further, using extrinsic information transfer (EXIT)analysis, rate compatible puncturing ratios for the constituent component code are found.The puncturing ratios are chosen to minimize the SNR required for convergence.The applications targeted in this thesis are not necessarily replacement of cables inexisting wired systems. Instead the motivation lies in the new services that wireless real-time communication enables. Hence, communication within and between cooperatingembedded systems is typically the focus. The resulting IR-HARQ-DDC protocol presentedhere is an efficient and fault tolerant link layer protocol foundation using adaptiveconcatenated coding intended specifically for wireless real-time communications. / Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie, 2198, Technical report. D, 29,
50

Service quality assurance for the IPTV networks

Azgin, Aytac 17 September 2013 (has links)
The objective of the proposed research is to design and evaluate end-to-end solutions to support the Quality of Experience (QoE) for the Internet Protocol Television (IPTV) service. IPTV is a system that integrates voice, video, and data delivery into a single Internet Protocol (IP) framework to enable interactive broadcasting services at the subscribers. It promises significant advantages for both service providers and subscribers. For instance, unlike conventional broadcasting systems, IPTV broadcasts will not be restricted by the limited number of channels in the broadcast/radio spectrum. Furthermore, IPTV will provide its subscribers with the opportunity to access and interact with a wide variety of high-quality on-demand video content over the Internet. However, these advantages come at the expense of stricter quality of service (QoS) requirements than traditional Internet applications. Since IPTV is considered as a real-time broadcast service over the Internet, the success of the IPTV service depends on the QoE perceived by the end-users. The characteristics of the video traffic as well as the high-quality requirements of the IPTV broadcast impose strict requirements on transmission delay. IPTV framework has to provide mechanisms to satisfy the stringent delay, jitter, and packet loss requirements of the IPTV service over lossy transmission channels with varying characteristics. The proposed research focuses on error recovery and channel change latency problems in IPTV networks. Our specific aim is to develop a content delivery framework that integrates content features, IPTV application requirements, and network characteristics in such a way that the network resource utilization can be optimized for the given constraints on the user perceived service quality. To achieve the desired QoE levels, the proposed research focuses on the design of resource optimal server-based and peer-assisted delivery techniques. First, by analyzing the tradeoffs on the use of proactive and reactive repair techniques, a solution that optimizes the error recovery overhead is proposed. Further analysis on the proposed solution is performed by also focusing on the use of multicast error recovery techniques. By investigating the tradeoffs on the use of network-assisted and client-based channel change solutions, distributed content delivery frameworks are proposed to optimize the error recovery performance. Next, bandwidth and latency tradeoffs associated with the use of concurrent delivery streams to support the IPTV channel change are analyzed, and the results are used to develop a resource-optimal channel change framework that greatly improves the latency performance in the network. For both problems studied in this research, scalability concerns for the IPTV service are addressed by properly integrating peer-based delivery techniques into server-based solutions.

Page generated in 0.0297 seconds