• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 40
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 189
  • 87
  • 43
  • 40
  • 35
  • 33
  • 32
  • 29
  • 29
  • 28
  • 28
  • 24
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Microstructure and properties of welds in the lean duplex stainless steel LDX 2101

Westin, Elin M. January 2010 (has links)
Duplex stainless steels can be very attractive alternatives to austenitic grades due to their almost double strength at equal pitting corrosion resistance. When welding, the duplex alloys normally require addition of filler metal, while the commodity austenitic grades can often be welded autogenously. Over-alloyed consumables are used to counteract segregation of important alloying elements and to balance the two phases, ferrite and austenite, in the duplex weld metal. This work focuses on the weldability of the recently-developed lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101). The pitting corrosion resistance of this grade is better than that of austenitic AISI 304 (EN 1.4307) and can reach the level of AISI 316L (EN 1.4404). The austenite formation is rapid in LDX 2101 compared to older duplex grades. Pitting resistance tests performed show that 1-2.5 mm thick laser and gas tungsten arc (GTA) welded LDX 2101 can have good corrosion properties even when welding autogenously. Additions of filler metal, nitrogen in the shielding gas, nitrogen-based backing gas and use of laser hybrid welding methods, however, increase the austenite formation. The pitting resistance may also be increased by suppressing formation of chromium nitrides in the weld metal and heat affected zone (HAZ). After thorough post-weld cleaning (pickling), pitting primarily occurred 1-3 mm from the fusion line, in the parent metal rather than in the HAZ. Neither the chromium nitride precipitates found in the HAZ, nor the element depletion along the fusion line that was revealed by electron probe microanalysis (EPMA) were found to locally decrease the pitting resistance. The preferential pitting location is suggested to be controlled by the residual weld oxide composition that varies over the surface. The composition and thickness of weld oxide formed on LDX 2101 and 2304 (EN 1.4362, UNS S32304) were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the AISI 300 series. A new approach to heat tint formation is presented; whereby evaporation of material from the weld metal and subsequent deposition on the already-formed weld oxide are suggested to contribute to weld oxide formation. This is consistent with manganese loss from the weld metal, and nitrogen additions to the GTA shielding gas enhance the evaporation. The segregation of all elements apart from nitrogen is low in autogenously welded LDX 2101. This means that filler wire additions may not be required as for other duplex grades assuming that there is no large nitrogen loss that could cause excessive ferrite contents. As the nitrogen appears to be controlling the austenite formation, it becomes essential to avoid losing nitrogen during welding by choosing nitrogen-containing shielding and backing gas. / QC 20101213
182

Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxide on corrosion properties

Westin, Elin M. January 2008 (has links)
<p>Duplex stainless steels are a very attractive alternative to austenitic grades due to their higher strength and good corrosion performance. The austenitic grades can often be welded autogenously, while the duplex grades normally require addition of filler metal. This is to counteract segregation of important alloying elements and to give sufficient austenite formation to prevent precipitation of chromium nitrides that could have a negative effect on impact toughness and pitting resistance. The corrosion performance of the recently-developed lean duplex stainless steel LDX 2101 is higher than that of 304 and can reach the level of 316. This thesis summarises pitting resistance tests performed on laser and gas tungsten arc (GTA) welded LDX 2101. It is shown here that this material can be autogenously welded, but additions of filler metal, nitrogen in the shielding gas and use of hybrid methods increases the austenite formation and the pitting resistance by further suppressing formation of chromium nitride precipitates in the weld metal. If the weld metal austenite formation is sufficient, the chromium nitride precipitates in the heat-affected zone (HAZ) could cause local pitting, however, this was not seen in this work. Instead, pitting occurred 1–3 mm from the fusion line, in the parent metal rather than in the high temperature HAZ (HTHAZ). This is suggested here to be controlled by the heat tint, and the effect of residual weld oxides on the pitting resistance is studied. The composition and the thickness of weld oxide formed on LDX 2101 and 2304 were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the 300 series. A new approach on heat tint formation is consequently presented. Evaporation of material from the weld metal and subsequent deposition on the weld oxide are suggested to contribute to weld oxide formation. This is supported by element loss in LDX 2101 weld metal, and nitrogen additions to the GTA shielding gas further increase the evaporation.</p><p> </p>
183

Alternative welding methods for nitrogen alloyed steel / Alternativa svetsmetoder för kvävelegerat stål

Bertilsson, Anders January 2017 (has links)
This project explores the feasibility of the solid-state welding method direct-drive friction welding to be used as a joining method for the nitrogen alloyed steel Uddeholm Vanax SuperClean, produced via processes based on powder metallurgy. Vanax SuperClean cannot be welded using fusion welding methods where the base material melts, due to nitrogen escaping the material, resulting in inferior quality welds. The cost of the material motivates the use of Vanax SuperClean for critical parts in applications, combined with a less costly material for the remaining parts, causing alternative joining methods to be examined. Vanax SuperClean is friction welded to itself and to Uddeholm steel types Stavax ESR and UHB 11. Samples are prepared for a number of examinations. Microstructures of the samples are examined using microscopy, microhardness testing is carried out per the Vickers principle, retained austenite is measured using X-ray diffraction and tensile testing of the welded samples is performed. Defect-free welds are produced in all examined samples, showing that the method is suitable for Vanax SuperClean and that no preheating or slow cooling of workpieces are necessary. The possibility of using friction stir welding as a joining method for Vanax SuperClean is discussed. / Detta projekt undersöker möjligheten att använda trycksvetsningsmetoden friktionssvetsning som sammanfogningsmetod för det kvävelegerade pulvermetallurgiskt framställda stålet Uddeholm Vanax SuperClean. Vanax SuperClean kan inte svetsas med smältsvetsmetoder där grundmaterialet smälter, på grund av kvävgasbildning som resulterar i undermåliga svetsfogar. Kostnaden för materialet motiverar användandet av Vanax SuperClean för kritiska delar i applikationer, kombinerat med ett mindre kostsamt material till övriga delar, vilket föranleder undersökning av alternativa sammanfogningsmetoder. Vanax SuperClean friktionssvetsas mot sig själv, såväl som mot Uddeholmsstålen Stavax ESR och UHB 11. Prov tas fram för ett antal undersökningar. Mikrostruktur undersöks med mikroskopi, mikrohårdhetsprovning utförs enligt Vickersprincipen, restaustenitnivåer mäts med röntgendiffraktion och dragprovning utförs. Lyckade svetsfogar fås i alla undersökta prover, vilket visar att svetsmetoden är lämplig för Vanax SuperClean och att varken förvärmning eller långsamt svalnande av arbetsstycken krävs. Möjligheten att använda friktionsomrörningssvetsning som sammanfogningsmetod för Vanax SuperClean diskuteras.
184

Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxides on corrosion properties

Westin, Elin M. January 2008 (has links)
Duplex stainless steels are a very attractive alternative to austenitic grades due to their higher strength and good corrosion performance. The austenitic grades can often be welded autogenously, while the duplex grades normally require addition of filler metal. This is to counteract segregation of important alloying elements and to give sufficient austenite formation to prevent precipitation of chromium nitrides that could have a negative effect on impact toughness and pitting resistance. The corrosion performance of the recently-developed lean duplex stainless steel LDX 2101 is higher than that of 304 and can reach the level of 316. This thesis summarises pitting resistance tests performed on laser and gas tungsten arc (GTA) welded LDX 2101. It is shown here that this material can be autogenously welded, but additions of filler metal, nitrogen in the shielding gas and use of hybrid methods increases the austenite formation and the pitting resistance by further suppressing formation of chromium nitride precipitates in the weld metal. If the weld metal austenite formation is sufficient, the chromium nitride precipitates in the heat-affected zone (HAZ) could cause local pitting, however, this was not seen in this work. Instead, pitting occurred 1–3 mm from the fusion line, in the parent metal rather than in the high temperature HAZ (HTHAZ). This is suggested here to be controlled by the heat tint, and the effect of residual weld oxides on the pitting resistance is studied. The composition and the thickness of weld oxide formed on LDX 2101 and 2304 were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the 300 series. A new approach on heat tint formation is consequently presented. Evaporation of material from the weld metal and subsequent deposition on the weld oxide are suggested to contribute to weld oxide formation. This is supported by element loss in LDX 2101 weld metal, and nitrogen additions to the GTA shielding gas further increase the evaporation. / QC 20101126
185

Effect of Adjusted Gas Nitriding Parameters on Microstructure and Wear Resistance of HVOF-Sprayed AISI 316L Coatings

Kutschmann, Pia, Lindner, Thomas, Börner, Kristian, Reese, Ulrich, Lampke, Thomas 31 July 2019 (has links)
Gas nitriding is known as a convenient process to improve the wear resistance of steel components. A precipitation-free hardening by low-temperature processes is established to retain the good corrosion resistance of stainless steel. In cases of thermal spray coatings, the interstitial solvation is achieved without an additional surface activation step. The open porosity permits the penetration of the donator media and leads to a structural diffusion. An inhomogeneous diffusion enrichment occurs at the single spray particle edges within the coating’s microstructure. A decreasing diffusion depth is found with increasing surface distance. The present study investigates an adjusted process management for low-temperature gas nitriding of high velocity oxy-fuel-sprayed AISI 316L coatings. To maintain a homogeneous diffusion depth within the coating, a pressure modulation during the process is studied. Additionally, the use of cracked gas as donator is examined. The process management is designed without an additional surface activation step. Regardless of surface distance, microstructural investigations reveal a homogeneous diffusion depth by a reduced processing time. The constant hardening depth allows a reliable prediction of the coatings’ properties. An enhanced hardness and improved wear resistance is found in comparison with the as-sprayed coating condition.
186

Investigation of Structural Properties and their Relation to the Phase Transitions in Shape Memory Heusler Compounds

Devi, Parul 18 March 2019 (has links)
The present thesis is devoted to the investigation of modulated structures as well as the direct measurement of magnetocaloric effect (MCE) in Ni-Mn based magnetic shape memory (MSM) Heusler compounds in pulsed magnetic fields after analyzing isothermal entropy data taken in static magnetic fields. The emphasis is on the modulated structure of MSM Heusler compounds because of lower twinning stress which facilitates the easy transformation from austenite to martensite structure. Synchrotron x-ray powder diffraction (SXRPD) was carried out to study the modulated structure and NPD for antisite disorder as Ni and Mn have easily the same atomic scattering factor. Direct measurement of the adiabatic temperature change ΔTad was done in pulsed magnetic fields, because of fast response of ~10 to 100 ms to the sample temperature on magnetic field, providing adiabatic conditions. It also gives an opportunity of very high magnetic fields up to 70 T because of short pulse duration during the measurement. The modulated structure has been studied for the off-stoichiometric Ni2Mn1.4In0.6 and Ni1.9Pt0.1MnGa MSM Heusler compounds from SXRPD and NPD. Ni2Mn1.4In0.6 exhibits martensitic transition at TM ~ 295 K and Curie temperature TC ~ 315 K. Rietveld refinement reveals uniform atomic displacement in the modulated structure of martensite phase and the absence of premartensite phase and phason broadening of the satellite peaks which was further confirmed by HRTEM study. Therefore, the structural modulation in Ni2Mn1.4In0.6 can be successfully explained in term of the adaptive phase model. Whereas, Ni1.9Pt0.1MnGa shows the premartensite phase in addition to the martensite and austenite phases and follows the soft phonon model. The temperature dependent ac-susceptibility shows the change in slope at different temperatures 365, 265, 230 and 220 K corresponding to the Curie temperature TC, first premartensite T1, second premartensite T2 and martensite temperature TM, respectively. Temperature-dependent high resolution SXRPD data analysis shows first, a nearly 3M modulated premartensite phase with an average cubic-like feature i.e. negligible Bain distortion of the elementary L21 unit cell results from the austenite phase. This phase then undergoes an isostructural phase transition 3M like premartensite phase with robust Bain distortion in the temperature range from 220 to 195 K. Below 195 K, the martensite phase appears which results from the larger Bain-distorted premartensite phase. In this work, the magnetocaloric properties of Ni2.2Mn0.8Ga and Ni1.8Mn1.8In0.4 magnetic shape memory (MSM) Heusler compounds were studied. Ni2.2Mn0.8Ga exhibits the reversible conventional MCE, measured from isothermal entropy change ΔSM and adiabatic temperature change ΔTad because of the geometric compatibility condition (GCC) for cubic austenite phase to tetragonal martensite phase as a consequence of low thermal hysteresis of the martensite phase transition. The reversible MCE has been confirmed by applying more than one pulse in the hysteresis region at 317 K. Ni1.8Mn1.8In0.4 possess improved reversible behavior of inverse MCE due to the closely satisfying of GCC from cubic austenite to modulated monoclinic martensite structure. The maximum value of ΔSM has been found to the same for both heating and cooling curves measured from isothermal magnetization M(T) curves until a magnetic field of 5 T. The adiabatic temperature change ΔTad results in a value of -10 K by applying a magnetic field of 20 T in a pulsed magnetic field. Furthermore, reversible magnetostriction of 0.3% was observed near the first-order martensite phase transition temperatures 265, 270 and 280 K. A reduction of thermal hysteresis has been found in MSM Heusler compounds Ni2Mn1.4In0.6 and Ni1.8Co0.2Mn1.4In0.6 with the application of hydrostatic pressure followed by GCC from pressure dependent x-ray diffraction in both austenite and martensite phase. By increasing pressure, the lattice parameters of both phases change in such a way that they increasingly satisfy the GCC. The approach of GCC for different kind of martensite structures (tetragonal, orthorhombic and monoclinic) will help to design new MSM Heusler compounds taking advantage of first-order martensite phase transition.
187

Influence of the Active Screen Plasma Power during Afterglow Nitrocarburizing on the Surface Modification of AISI 316L

Böcker, Jan, Puth, Alexander, Dalke, Anke, Röpcke, Jürgen, van Helden, Jean-Pierre, Biermann, Horst 16 April 2024 (has links)
Active screen plasma nitrocarburizing (ASPNC) increases the surface hardness and lifetime of austenitic stainless steel without deteriorating its corrosion resistance. Using an active screen made of carbon opens up new technological possibilities that have not been exploited to date. In this study, the effect of screen power variation without bias application on resulting concentrations of process gas species and surface modification of AISI 316L steel was studied. The concentrations of gas species (e.g., HCN, NH3, CH4, C2H2) were measured as functions of the active screen power and the feed gas composition at constant temperature using in situ infrared laser absorption spectroscopy. At constant precursor gas composition, the decrease in active screen power led to a decrease in both the concentrations of the detected molecules and the diffusion depths of nitrogen and carbon. Depending on the gas mixture, a threshold of the active screen power was found above which no changes in the expanded austenite layer thickness were measured. The use of a heating independent of the screen power offers an additional parameter for optimizing the ASPNC process in addition to changes in the feed gas composition and the bias power. In this way, an advanced process control can be established.
188

Performance characterisation of duplex stainless steel in nuclear waste storage environment

Ornek, Cem January 2016 (has links)
The majority of UK’s intermediate level radioactive waste is currently stored in 316L and 304L austenitic stainless steel containers in interim storage facilities for permanent disposal until a geological disposal facility has become available. The structural integrity of stainless steel canisters is required to persevere against environmental degradation for up to 500 years to assure a safe storage and disposal scheme. Hitherto existing severe localised corrosion observances on real waste storage containers after 10 years of exposure to an ambient atmosphere in an in-land warehouse in Culham at Oxfordshire, however, questioned the likelihood occurrence of stress corrosion cracking that may harm the canister’s functionality during long-term storage. The more corrosion resistant duplex stainless steel grade 2205, therefore, has been started to be manufactured as a replacement for the austenitic grades. Over decades, the threshold stress corrosion cracking temperature of austenitic stainless steels has been believed to be 50-60°C, but lab- and field-based research has shown that 304L and 316L may suffer from atmospheric stress corrosion cracking at ambient temperatures. Such an issue has not been reported to occur for the 2205 duplex steel, and its atmospheric stress corrosion cracking behaviour at low temperatures (40-50°C) has been sparsely studied which requires detailed investigations in this respect. Low temperature atmospheric stress corrosion cracking investigations on 2205 duplex stainless steel formed the framework of this PhD thesis with respect to the waste storage context. Long-term surface magnesium chloride deposition exposures at 50°C and 30% relative humidity for up to 15 months exhibited the occurrence of stress corrosion cracks, showing stress corrosion susceptibility of 2205 duplex stainless steel at 50°C.The amount of cold work increased the cracking susceptibility, with bending deformation being the most critical type of deformation mode among tensile and rolling type of cold work. The orientation of the microstructure deformation direction, i.e. whether the deformation occurred in transverse or rolling direction, played vital role in corrosion and cracking behaviour, as such that bending in transverse direction showed almost 3-times larger corrosion and stress corrosion cracking propensity. Welding simulation treatments by ageing processes at 750°C and 475°C exhibited substantial influences on the corrosion properties. It was shown that sensitisation ageing at 750°C can render the material enhanced susceptible to stress corrosion cracking at even low chloride deposition densities of ≤145 µm/cm². However, it could be shown that short-term heat treatments at 475°C can decrease corrosion and stress corrosion cracking susceptibility which may be used to improve the materials performance. Mechanistic understanding of stress corrosion cracking phenomena in light of a comprehensive microstructure characterisation was the main focus of this thesis.
189

An Analysis of Microstructure and Corrosion Resistance in Underwater Friction Stir Welded 304L Stainless Steel

Clark, Tad Dee 30 June 2005 (has links) (PDF)
An effective procedure and parameter window was developed for underwater friction stir welding (UWFSW) 304L stainless steel with a PCBN tool. UWFSW produced statistically significant: increases in yield strengths, decreases in percent elongation. The ultimate tensile strength was found to be significantly higher at certain parameters. Although sigma was identified in the UWFSWs, a significant reduction of sigma was found in UWFSWs compared to ambient FSWs. The degree of sensitization in UWFSWs was evaluated using double loop EPR testing and oxalic acid electro-etched metallography. Results were compared to base metal, ambient FSW, and arc welds. Upper and lower sensitization localization bands were identified in the UWFSWs. Although higher sensitization levels were present in UWFSWs compared to the arc weld, ambient FSW, and heat treated base metals, the UWFSWs were found less susceptible to corrosion than arc welds due to the subsurface location of the sensitization bands. A SCC analysis of UWFSWs relative to base metal and arc weldments was performed. U-bends were exposed to two 3.5% NaCl cyclic immersion experiments at 21 °C and 63 °C for 1000 hours each. A tertiary test was conducted in a 25% NaCl boiling solution. The UWFSW u-bends were no more susceptible to SCC than base metal in the cyclic immersion tests. In the boiling NaCl test, the SCC of the UWFSWs showed significant improvement over the SCC of arc welds. Arc u-bends cracked entirely within the weld bead and HAZ, while SCC in the UWFSWs showed no cracking localization.

Page generated in 0.2014 seconds